YES(O(1),O(n^1)) 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict Trs: 15.47/8.51 { div(x, y) -> quot(x, y, y) 15.47/8.51 , div(0(), y) -> 0() 15.47/8.51 , quot(x, 0(), s(z)) -> s(div(x, s(z))) 15.47/8.51 , quot(0(), s(y), z) -> 0() 15.47/8.51 , quot(s(x), s(y), z) -> quot(x, y, z) } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 We add the following weak dependency pairs: 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , div^#(0(), y) -> c_2() 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 15.47/8.51 and mark the set of starting terms. 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , div^#(0(), y) -> c_2() 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Strict Trs: 15.47/8.51 { div(x, y) -> quot(x, y, y) 15.47/8.51 , div(0(), y) -> 0() 15.47/8.51 , quot(x, 0(), s(z)) -> s(div(x, s(z))) 15.47/8.51 , quot(0(), s(y), z) -> 0() 15.47/8.51 , quot(s(x), s(y), z) -> quot(x, y, z) } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 No rule is usable, rules are removed from the input problem. 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , div^#(0(), y) -> c_2() 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 The weightgap principle applies (using the following constant 15.47/8.51 growth matrix-interpretation) 15.47/8.51 15.47/8.51 The following argument positions are usable: 15.47/8.51 Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1} 15.47/8.51 15.47/8.51 TcT has computed the following constructor-restricted matrix 15.47/8.51 interpretation. 15.47/8.51 15.47/8.51 [0] = [0] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [s](x1) = [0] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [div^#](x1, x2) = [1] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [c_1](x1) = [1 0] x1 + [2] 15.47/8.51 [0 1] [2] 15.47/8.51 15.47/8.51 [quot^#](x1, x2, x3) = [0] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [c_2] = [0] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [c_3](x1) = [1 0] x1 + [0] 15.47/8.51 [0 1] [1] 15.47/8.51 15.47/8.51 [c_4] = [1] 15.47/8.51 [0] 15.47/8.51 15.47/8.51 [c_5](x1) = [1 0] x1 + [2] 15.47/8.51 [0 1] [0] 15.47/8.51 15.47/8.51 The order satisfies the following ordering constraints: 15.47/8.51 15.47/8.51 [div^#(x, y)] = [1] 15.47/8.51 [0] 15.47/8.51 ? [2] 15.47/8.51 [2] 15.47/8.51 = [c_1(quot^#(x, y, y))] 15.47/8.51 15.47/8.51 [div^#(0(), y)] = [1] 15.47/8.51 [0] 15.47/8.51 > [0] 15.47/8.51 [0] 15.47/8.51 = [c_2()] 15.47/8.51 15.47/8.51 [quot^#(x, 0(), s(z))] = [0] 15.47/8.51 [0] 15.47/8.51 ? [1] 15.47/8.51 [1] 15.47/8.51 = [c_3(div^#(x, s(z)))] 15.47/8.51 15.47/8.51 [quot^#(0(), s(y), z)] = [0] 15.47/8.51 [0] 15.47/8.51 ? [1] 15.47/8.51 [0] 15.47/8.51 = [c_4()] 15.47/8.51 15.47/8.51 [quot^#(s(x), s(y), z)] = [0] 15.47/8.51 [0] 15.47/8.51 ? [2] 15.47/8.51 [0] 15.47/8.51 = [c_5(quot^#(x, y, z))] 15.47/8.51 15.47/8.51 15.47/8.51 Further, it can be verified that all rules not oriented are covered by the weightgap condition. 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Weak DPs: { div^#(0(), y) -> c_2() } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 We estimate the number of application of {3} by applications of 15.47/8.51 Pre({3}) = {1,4}. Here rules are labeled as follows: 15.47/8.51 15.47/8.51 DPs: 15.47/8.51 { 1: div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , 2: quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , 3: quot^#(0(), s(y), z) -> c_4() 15.47/8.51 , 4: quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) 15.47/8.51 , 5: div^#(0(), y) -> c_2() } 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Weak DPs: 15.47/8.51 { div^#(0(), y) -> c_2() 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 The following weak DPs constitute a sub-graph of the DG that is 15.47/8.51 closed under successors. The DPs are removed. 15.47/8.51 15.47/8.51 { div^#(0(), y) -> c_2() 15.47/8.51 , quot^#(0(), s(y), z) -> c_4() } 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(n^1)). 15.47/8.51 15.47/8.51 Strict DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(n^1)) 15.47/8.51 15.47/8.51 We use the processor 'matrix interpretation of dimension 1' to 15.47/8.51 orient following rules strictly. 15.47/8.51 15.47/8.51 DPs: 15.47/8.51 { 3: quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 15.47/8.51 Sub-proof: 15.47/8.51 ---------- 15.47/8.51 The following argument positions are usable: 15.47/8.51 Uargs(c_1) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1} 15.47/8.51 15.47/8.51 TcT has computed the following constructor-based matrix 15.47/8.51 interpretation satisfying not(EDA). 15.47/8.51 15.47/8.51 [0] = [7] 15.47/8.51 15.47/8.51 [s](x1) = [1] x1 + [4] 15.47/8.51 15.47/8.51 [div^#](x1, x2) = [2] x1 + [0] 15.47/8.51 15.47/8.51 [c_1](x1) = [1] x1 + [0] 15.47/8.51 15.47/8.51 [quot^#](x1, x2, x3) = [2] x1 + [0] 15.47/8.51 15.47/8.51 [c_3](x1) = [1] x1 + [0] 15.47/8.51 15.47/8.51 [c_5](x1) = [1] x1 + [5] 15.47/8.51 15.47/8.51 The order satisfies the following ordering constraints: 15.47/8.51 15.47/8.51 [div^#(x, y)] = [2] x + [0] 15.47/8.51 >= [2] x + [0] 15.47/8.51 = [c_1(quot^#(x, y, y))] 15.47/8.51 15.47/8.51 [quot^#(x, 0(), s(z))] = [2] x + [0] 15.47/8.51 >= [2] x + [0] 15.47/8.51 = [c_3(div^#(x, s(z)))] 15.47/8.51 15.47/8.51 [quot^#(s(x), s(y), z)] = [2] x + [8] 15.47/8.51 > [2] x + [5] 15.47/8.51 = [c_5(quot^#(x, y, z))] 15.47/8.51 15.47/8.51 15.47/8.51 We return to the main proof. Consider the set of all dependency 15.47/8.51 pairs 15.47/8.51 15.47/8.51 : 15.47/8.51 { 1: div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , 2: quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , 3: quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 15.47/8.51 Processor 'matrix interpretation of dimension 1' induces the 15.47/8.51 complexity certificate YES(?,O(n^1)) on application of dependency 15.47/8.51 pairs {3}. These cover all (indirect) predecessors of dependency 15.47/8.51 pairs {1,2,3}, their number of application is equally bounded. The 15.47/8.51 dependency pairs are shifted into the weak component. 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(1)). 15.47/8.51 15.47/8.51 Weak DPs: 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(1)) 15.47/8.51 15.47/8.51 The following weak DPs constitute a sub-graph of the DG that is 15.47/8.51 closed under successors. The DPs are removed. 15.47/8.51 15.47/8.51 { div^#(x, y) -> c_1(quot^#(x, y, y)) 15.47/8.51 , quot^#(x, 0(), s(z)) -> c_3(div^#(x, s(z))) 15.47/8.51 , quot^#(s(x), s(y), z) -> c_5(quot^#(x, y, z)) } 15.47/8.51 15.47/8.51 We are left with following problem, upon which TcT provides the 15.47/8.51 certificate YES(O(1),O(1)). 15.47/8.51 15.47/8.51 Rules: Empty 15.47/8.51 Obligation: 15.47/8.51 runtime complexity 15.47/8.51 Answer: 15.47/8.51 YES(O(1),O(1)) 15.47/8.51 15.47/8.51 Empty rules are trivially bounded 15.47/8.51 15.47/8.51 Hurray, we answered YES(O(1),O(n^1)) 15.47/8.52 EOF