6.91/2.36
6.91/2.36
(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
nonZero(0) → false
6.91/2.36
nonZero(s(x)) → true
6.91/2.36
p(0) → 0
6.91/2.36
p(s(x)) → x
6.91/2.36
id_inc(x) → x
6.91/2.36
id_inc(x) → s(x)
6.91/2.36
random(x) → rand(x, 0)
6.91/2.36
rand(x, y) → if(nonZero(x), x, y)
6.91/2.36
if(false, x, y) → y
6.91/2.36
if(true, x, y) → rand(p(x), id_inc(y))
Rewrite Strategy: INNERMOST
6.91/2.36
6.91/2.36
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
6.91/2.36
6.91/2.36
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
6.91/2.36
nonZero(s(z0)) → true
6.91/2.36
p(0) → 0
6.91/2.36
p(s(z0)) → z0
6.91/2.36
id_inc(z0) → z0
6.91/2.36
id_inc(z0) → s(z0)
6.91/2.36
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RANDOM(z0) → c6(RAND(z0, 0))
7.28/2.40
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
S tuples:
RANDOM(z0) → c6(RAND(z0, 0))
7.28/2.40
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RANDOM, RAND, IF
Compound Symbols:
c6, c7, c9
7.28/2.40
7.28/2.40
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
7.28/2.40
7.28/2.40
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.40
nonZero(s(z0)) → true
7.28/2.40
p(0) → 0
7.28/2.40
p(s(z0)) → z0
7.28/2.40
id_inc(z0) → z0
7.28/2.40
id_inc(z0) → s(z0)
7.28/2.40
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RANDOM(z0) → c6(RAND(z0, 0))
7.28/2.40
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
S tuples:
RANDOM(z0) → c6(RAND(z0, 0))
7.28/2.40
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RANDOM, RAND, IF
Compound Symbols:
c6, c7, c9
7.28/2.40
7.28/2.40
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
RANDOM(z0) → c6(RAND(z0, 0))
7.28/2.40
7.28/2.40
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.40
nonZero(s(z0)) → true
7.28/2.40
p(0) → 0
7.28/2.40
p(s(z0)) → z0
7.28/2.40
id_inc(z0) → z0
7.28/2.40
id_inc(z0) → s(z0)
7.28/2.40
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
S tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
7.28/2.40
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
7.28/2.40
7.28/2.40
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
RAND(
z0,
z1) →
c7(
IF(
nonZero(
z0),
z0,
z1)) by
RAND(0, x1) → c7(IF(false, 0, x1))
7.28/2.40
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.40
7.28/2.40
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.40
nonZero(s(z0)) → true
7.28/2.40
p(0) → 0
7.28/2.40
p(s(z0)) → z0
7.28/2.40
id_inc(z0) → z0
7.28/2.40
id_inc(z0) → s(z0)
7.28/2.40
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.40
RAND(0, x1) → c7(IF(false, 0, x1))
7.28/2.40
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.40
RAND(0, x1) → c7(IF(false, 0, x1))
7.28/2.40
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7
7.28/2.40
7.28/2.40
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
7.28/2.40
7.28/2.40
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.40
nonZero(s(z0)) → true
7.28/2.40
p(0) → 0
7.28/2.40
p(s(z0)) → z0
7.28/2.40
id_inc(z0) → z0
7.28/2.40
id_inc(z0) → s(z0)
7.28/2.40
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.40
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.40
RAND(0, x1) → c7
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.40
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.40
RAND(0, x1) → c7
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7, c7
7.28/2.40
7.28/2.40
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
RAND(0, x1) → c7
7.28/2.40
7.28/2.40
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.40
nonZero(s(z0)) → true
7.28/2.40
p(0) → 0
7.28/2.40
p(s(z0)) → z0
7.28/2.40
id_inc(z0) → z0
7.28/2.40
id_inc(z0) → s(z0)
7.28/2.40
random(z0) → rand(z0, 0)
7.28/2.40
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.40
if(false, z0, z1) → z1
7.28/2.40
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.42
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.42
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7, c7
7.28/2.42
7.28/2.42
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
RAND(0, x1) → c7
We considered the (Usable) Rules:
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
And the Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.42
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
7.28/2.42
POL(0) = 0
7.28/2.42
POL(IF(x1, x2, x3)) = [1] + x1
7.28/2.42
POL(RAND(x1, x2)) = [1]
7.28/2.42
POL(c7) = 0
7.28/2.42
POL(c7(x1)) = x1
7.28/2.42
POL(c9(x1)) = x1
7.28/2.42
POL(id_inc(x1)) = [2] + [2]x1
7.28/2.42
POL(p(x1)) = 0
7.28/2.42
POL(s(x1)) = 0
7.28/2.42
POL(true) = 0
7.28/2.42
7.28/2.42
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.42
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
7.28/2.42
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:
RAND(0, x1) → c7
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7, c7
7.28/2.42
7.28/2.42
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
z0,
z1) →
c9(
RAND(
p(
z0),
id_inc(
z1))) by
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
7.28/2.42
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
K tuples:
RAND(0, x1) → c7
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(17) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
7.28/2.42
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
K tuples:
RAND(0, x1) → c7
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(19) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
7.28/2.42
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
We considered the (Usable) Rules:
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
7.28/2.42
POL(0) = 0
7.28/2.42
POL(IF(x1, x2, x3)) = [2]x2
7.28/2.42
POL(RAND(x1, x2)) = [2]x1
7.28/2.42
POL(c7) = 0
7.28/2.42
POL(c7(x1)) = x1
7.28/2.42
POL(c9(x1)) = x1
7.28/2.42
POL(id_inc(x1)) = x1
7.28/2.42
POL(p(x1)) = x1
7.28/2.42
POL(s(x1)) = [2] + x1
7.28/2.42
POL(true) = [1]
7.28/2.42
7.28/2.42
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), z0))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
x0,
z0) →
c9(
RAND(
p(
x0),
z0)) by
IF(true, 0, x1) → c9(RAND(0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
7.28/2.42
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, x1))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
7.28/2.42
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c9(RAND(z0, x1))
We considered the (Usable) Rules:
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
7.28/2.42
POL(0) = 0
7.28/2.42
POL(IF(x1, x2, x3)) = [4]x2
7.28/2.42
POL(RAND(x1, x2)) = [4]x1
7.28/2.42
POL(c7) = 0
7.28/2.42
POL(c7(x1)) = x1
7.28/2.42
POL(c9(x1)) = x1
7.28/2.42
POL(id_inc(x1)) = [4] + x1
7.28/2.42
POL(p(x1)) = x1
7.28/2.42
POL(s(x1)) = [2] + x1
7.28/2.42
POL(true) = [1]
7.28/2.42
7.28/2.42
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
x0,
z0) →
c9(
RAND(
p(
x0),
s(
z0))) by
IF(true, 0, x1) → c9(RAND(0, s(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
7.28/2.42
7.28/2.42
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, s(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, s(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(31) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
IF(true, 0, x1) → c9(RAND(0, s(x1)))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
7.28/2.42
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
We considered the (Usable) Rules:
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
7.28/2.42
POL(0) = 0
7.28/2.42
POL(IF(x1, x2, x3)) = [2]x2
7.28/2.42
POL(RAND(x1, x2)) = [2]x1
7.28/2.42
POL(c7) = 0
7.28/2.42
POL(c7(x1)) = x1
7.28/2.42
POL(c9(x1)) = x1
7.28/2.42
POL(id_inc(x1)) = x1
7.28/2.42
POL(s(x1)) = [1] + x1
7.28/2.42
POL(true) = [1]
7.28/2.42
7.28/2.42
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
7.28/2.42
nonZero(s(z0)) → true
7.28/2.42
p(0) → 0
7.28/2.42
p(s(z0)) → z0
7.28/2.42
id_inc(z0) → z0
7.28/2.42
id_inc(z0) → s(z0)
7.28/2.42
random(z0) → rand(z0, 0)
7.28/2.42
rand(z0, z1) → if(nonZero(z0), z0, z1)
7.28/2.42
if(false, z0, z1) → z1
7.28/2.42
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:
RAND(0, x1) → c7
7.28/2.42
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c7, c9
7.28/2.42
7.28/2.42
(35) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, x1))
7.28/2.42
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
Now S is empty
7.28/2.42
7.28/2.42
(36) BOUNDS(O(1), O(1))
7.28/2.42