4.87/1.89
4.87/1.89
(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
4.87/1.89
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
4.87/1.89
mul0(Nil, y) → Nil
4.87/1.89
add0(Nil, y) → y
4.87/1.89
goal(xs, ys) → mul0(xs, ys)
Rewrite Strategy: INNERMOST
4.87/1.89
4.87/1.89
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
4.87/1.89
4.87/1.89
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
4.87/1.89
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
4.87/1.89
GOAL(z0, z1) → c4(MUL0(z0, z1))
S tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
4.87/1.89
GOAL(z0, z1) → c4(MUL0(z0, z1))
K tuples:none
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0, GOAL
Compound Symbols:
c, c2, c4
4.87/1.89
4.87/1.89
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c4(MUL0(z0, z1))
4.87/1.89
4.87/1.89
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
4.87/1.89
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
K tuples:none
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
4.87/1.89
4.87/1.89
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
We considered the (Usable) Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
And the Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
4.87/1.89
POL(ADD0(x1, x2)) = [1]
4.87/1.89
POL(Cons(x1, x2)) = [2] + x1 + x2
4.87/1.89
POL(MUL0(x1, x2)) = [2]x1
4.87/1.89
POL(Nil) = [3]
4.87/1.89
POL(S) = [3]
4.87/1.89
POL(add0(x1, x2)) = [3]
4.87/1.89
POL(c(x1, x2)) = x1 + x2
4.87/1.89
POL(c2(x1)) = x1
4.87/1.89
POL(mul0(x1, x2)) = 0
4.87/1.89
4.87/1.89
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
4.87/1.89
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
K tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
4.87/1.89
4.87/1.89
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
We considered the (Usable) Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
And the Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
4.87/1.89
POL(ADD0(x1, x2)) = x1
4.87/1.89
POL(Cons(x1, x2)) = [1] + x2
4.87/1.89
POL(MUL0(x1, x2)) = x12·x2 + x1·x22
4.87/1.89
POL(Nil) = 0
4.87/1.89
POL(S) = 0
4.87/1.89
POL(add0(x1, x2)) = x1 + x2
4.87/1.89
POL(c(x1, x2)) = x1 + x2
4.87/1.89
POL(c2(x1)) = x1
4.87/1.89
POL(mul0(x1, x2)) = x2 + x1·x2
4.87/1.89
4.87/1.89
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
mul0(Cons(z0, z1), z2) → add0(mul0(z1, z2), z2)
4.87/1.89
mul0(Nil, z0) → Nil
4.87/1.89
add0(Cons(z0, z1), z2) → add0(z1, Cons(S, z2))
4.87/1.89
add0(Nil, z0) → z0
4.87/1.89
goal(z0, z1) → mul0(z0, z1)
Tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
S tuples:none
K tuples:
MUL0(Cons(z0, z1), z2) → c(ADD0(mul0(z1, z2), z2), MUL0(z1, z2))
4.87/1.89
ADD0(Cons(z0, z1), z2) → c2(ADD0(z1, Cons(S, z2)))
Defined Rule Symbols:
mul0, add0, goal
Defined Pair Symbols:
MUL0, ADD0
Compound Symbols:
c, c2
4.87/1.89
4.87/1.89
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
4.87/1.89
4.87/1.89
(10) BOUNDS(O(1), O(1))
4.87/1.89