2.80/1.14
2.80/1.14
(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
2.80/1.14
head(cons(X, XS)) → X
2.80/1.14
2nd(cons(X, XS)) → head(activate(XS))
2.80/1.14
take(0, XS) → nil
2.80/1.14
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
2.80/1.14
sel(0, cons(X, XS)) → X
2.80/1.14
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
2.80/1.14
from(X) → n__from(X)
2.80/1.14
take(X1, X2) → n__take(X1, X2)
2.80/1.14
activate(n__from(X)) → from(X)
2.80/1.14
activate(n__take(X1, X2)) → take(X1, X2)
2.80/1.14
activate(X) → X
Rewrite Strategy: INNERMOST
2.80/1.14
2.80/1.14
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
2.80/1.14
2.80/1.14
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
2.80/1.14
head(cons(z0, z1)) → z0
2.80/1.14
2nd(cons(z0, z1)) → head(activate(z1))
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
sel(0, cons(z0, z1)) → z0
2.80/1.14
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
2.80/1.14
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
2.80/1.14
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__from(z0)) → c9(FROM(z0))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
2.80/1.14
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__from(z0)) → c9(FROM(z0))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
2ND, TAKE, SEL, ACTIVATE
Compound Symbols:
c3, c5, c8, c9, c10
2.80/1.14
2.80/1.14
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
2.80/1.14
2.80/1.14
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
2.80/1.14
head(cons(z0, z1)) → z0
2.80/1.14
2nd(cons(z0, z1)) → head(activate(z1))
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
sel(0, cons(z0, z1)) → z0
2.80/1.14
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
2.80/1.14
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE, 2ND
Compound Symbols:
c5, c8, c10, c3, c9
2.80/1.14
2.80/1.14
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
Removed 1 trailing nodes:
ACTIVATE(n__from(z0)) → c9
2.80/1.14
2.80/1.14
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
2.80/1.14
head(cons(z0, z1)) → z0
2.80/1.14
2nd(cons(z0, z1)) → head(activate(z1))
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
sel(0, cons(z0, z1)) → z0
2.80/1.14
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
2.80/1.14
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10, c9
2.80/1.14
2.80/1.14
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
We considered the (Usable) Rules:
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
And the Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
The order we found is given by the following interpretation:
Polynomial interpretation :
2.80/1.14
POL(0) = [3]
2.80/1.14
POL(ACTIVATE(x1)) = [4]
2.80/1.14
POL(SEL(x1, x2)) = [4]x1
2.80/1.14
POL(TAKE(x1, x2)) = [4]
2.80/1.14
POL(activate(x1)) = [4]x1
2.80/1.14
POL(c10(x1)) = x1
2.80/1.14
POL(c5(x1)) = x1
2.80/1.14
POL(c8(x1, x2)) = x1 + x2
2.80/1.14
POL(c9) = 0
2.80/1.14
POL(cons(x1, x2)) = [4]
2.80/1.14
POL(from(x1)) = [4] + [2]x1
2.80/1.14
POL(n__from(x1)) = [2] + x1
2.80/1.14
POL(n__take(x1, x2)) = [2] + x2
2.80/1.14
POL(nil) = [1]
2.80/1.14
POL(s(x1)) = [2] + x1
2.80/1.14
POL(take(x1, x2)) = [2] + [2]x2
2.80/1.14
2.80/1.14
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
2.80/1.14
head(cons(z0, z1)) → z0
2.80/1.14
2nd(cons(z0, z1)) → head(activate(z1))
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
sel(0, cons(z0, z1)) → z0
2.80/1.14
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
2.80/1.14
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10, c9
2.80/1.14
2.80/1.14
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
We considered the (Usable) Rules:
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
And the Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
The order we found is given by the following interpretation:
Polynomial interpretation :
2.80/1.14
POL(0) = [3]
2.80/1.14
POL(ACTIVATE(x1)) = [2]x1
2.80/1.14
POL(SEL(x1, x2)) = x1·x2
2.80/1.14
POL(TAKE(x1, x2)) = [2]x2
2.80/1.14
POL(activate(x1)) = [1] + x1
2.80/1.14
POL(c10(x1)) = x1
2.80/1.14
POL(c5(x1)) = x1
2.80/1.14
POL(c8(x1, x2)) = x1 + x2
2.80/1.14
POL(c9) = 0
2.80/1.14
POL(cons(x1, x2)) = [1] + x2
2.80/1.14
POL(from(x1)) = [2]
2.80/1.14
POL(n__from(x1)) = [1]
2.80/1.14
POL(n__take(x1, x2)) = x2
2.80/1.14
POL(nil) = 0
2.80/1.14
POL(s(x1)) = [2] + x1
2.80/1.14
POL(take(x1, x2)) = [1] + x2
2.80/1.14
2.80/1.14
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
2.80/1.14
from(z0) → n__from(z0)
2.80/1.14
head(cons(z0, z1)) → z0
2.80/1.14
2nd(cons(z0, z1)) → head(activate(z1))
2.80/1.14
take(0, z0) → nil
2.80/1.14
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
2.80/1.14
take(z0, z1) → n__take(z0, z1)
2.80/1.14
sel(0, cons(z0, z1)) → z0
2.80/1.14
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
2.80/1.14
activate(n__from(z0)) → from(z0)
2.80/1.14
activate(n__take(z0, z1)) → take(z0, z1)
2.80/1.14
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
2.80/1.14
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
S tuples:
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
2.80/1.14
ACTIVATE(n__from(z0)) → c9
2.80/1.14
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10, c9
2.80/1.14
2.80/1.14
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2.80/1.14
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
Now S is empty
2.80/1.14
2.80/1.14
(12) BOUNDS(O(1), O(1))
2.80/1.14