YES(O(1),O(n^1))
0.00/0.35	YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict Trs:
0.00/0.35	  { decrease(Cons(x, xs)) -> decrease(xs)
0.00/0.35	  , decrease(Nil()) -> number42(Nil())
0.00/0.35	  , number42(x) ->
0.00/0.35	    Cons(Nil(),
0.00/0.35	         Cons(Nil(),
0.00/0.35	              Cons(Nil(),
0.00/0.35	                   Cons(Nil(),
0.00/0.35	                        Cons(Nil(),
0.00/0.35	                             Cons(Nil(),
0.00/0.35	                                  Cons(Nil(),
0.00/0.35	                                       Cons(Nil(),
0.00/0.35	                                            Cons(Nil(),
0.00/0.35	                                                 Cons(Nil(),
0.00/0.35	                                                      Cons(Nil(),
0.00/0.35	                                                           Cons(Nil(),
0.00/0.35	                                                                Cons(Nil(),
0.00/0.35	                                                                     Cons(Nil(),
0.00/0.35	                                                                          Cons(Nil(),
0.00/0.35	                                                                               Cons(Nil(),
0.00/0.35	                                                                                    Cons(Nil(),
0.00/0.35	                                                                                         Cons(Nil(),
0.00/0.35	                                                                                              Cons(Nil(),
0.00/0.35	                                                                                                   Cons(Nil(),
0.00/0.35	                                                                                                        Cons(Nil(),
0.00/0.35	                                                                                                             Cons(Nil(),
0.00/0.35	                                                                                                                  Cons(Nil(),
0.00/0.35	                                                                                                                       Cons(Nil(),
0.00/0.35	                                                                                                                            Cons(Nil(),
0.00/0.35	                                                                                                                                 Cons(Nil(),
0.00/0.35	                                                                                                                                      Cons(Nil(),
0.00/0.35	                                                                                                                                           Cons(Nil(),
0.00/0.35	                                                                                                                                                Cons(Nil(),
0.00/0.35	                                                                                                                                                     Cons(Nil(),
0.00/0.35	                                                                                                                                                          Cons(Nil(),
0.00/0.35	                                                                                                                                                               Cons(Nil(),
0.00/0.35	                                                                                                                                                                    Cons(Nil(),
0.00/0.35	                                                                                                                                                                         Cons(Nil(),
0.00/0.35	                                                                                                                                                                              Cons(Nil(),
0.00/0.35	                                                                                                                                                                                   Cons(Nil(),
0.00/0.35	                                                                                                                                                                                        Cons(Nil(),
0.00/0.35	                                                                                                                                                                                             Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                  Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                       Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                            Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                                 Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                                      Nil()))))))))))))))))))))))))))))))))))))))))))
0.00/0.35	  , goal(x) -> decrease(x) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	We add the following weak dependency pairs:
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil()))
0.00/0.35	  , number42^#(x) -> c_3()
0.00/0.35	  , goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	
0.00/0.35	and mark the set of starting terms.
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil()))
0.00/0.35	  , number42^#(x) -> c_3()
0.00/0.35	  , goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	Strict Trs:
0.00/0.35	  { decrease(Cons(x, xs)) -> decrease(xs)
0.00/0.35	  , decrease(Nil()) -> number42(Nil())
0.00/0.35	  , number42(x) ->
0.00/0.35	    Cons(Nil(),
0.00/0.35	         Cons(Nil(),
0.00/0.35	              Cons(Nil(),
0.00/0.35	                   Cons(Nil(),
0.00/0.35	                        Cons(Nil(),
0.00/0.35	                             Cons(Nil(),
0.00/0.35	                                  Cons(Nil(),
0.00/0.35	                                       Cons(Nil(),
0.00/0.35	                                            Cons(Nil(),
0.00/0.35	                                                 Cons(Nil(),
0.00/0.35	                                                      Cons(Nil(),
0.00/0.35	                                                           Cons(Nil(),
0.00/0.35	                                                                Cons(Nil(),
0.00/0.35	                                                                     Cons(Nil(),
0.00/0.35	                                                                          Cons(Nil(),
0.00/0.35	                                                                               Cons(Nil(),
0.00/0.35	                                                                                    Cons(Nil(),
0.00/0.35	                                                                                         Cons(Nil(),
0.00/0.35	                                                                                              Cons(Nil(),
0.00/0.35	                                                                                                   Cons(Nil(),
0.00/0.35	                                                                                                        Cons(Nil(),
0.00/0.35	                                                                                                             Cons(Nil(),
0.00/0.35	                                                                                                                  Cons(Nil(),
0.00/0.35	                                                                                                                       Cons(Nil(),
0.00/0.35	                                                                                                                            Cons(Nil(),
0.00/0.35	                                                                                                                                 Cons(Nil(),
0.00/0.35	                                                                                                                                      Cons(Nil(),
0.00/0.35	                                                                                                                                           Cons(Nil(),
0.00/0.35	                                                                                                                                                Cons(Nil(),
0.00/0.35	                                                                                                                                                     Cons(Nil(),
0.00/0.35	                                                                                                                                                          Cons(Nil(),
0.00/0.35	                                                                                                                                                               Cons(Nil(),
0.00/0.35	                                                                                                                                                                    Cons(Nil(),
0.00/0.35	                                                                                                                                                                         Cons(Nil(),
0.00/0.35	                                                                                                                                                                              Cons(Nil(),
0.00/0.35	                                                                                                                                                                                   Cons(Nil(),
0.00/0.35	                                                                                                                                                                                        Cons(Nil(),
0.00/0.35	                                                                                                                                                                                             Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                  Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                       Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                            Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                                 Cons(Nil(),
0.00/0.35	                                                                                                                                                                                                                      Nil()))))))))))))))))))))))))))))))))))))))))))
0.00/0.35	  , goal(x) -> decrease(x) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	No rule is usable, rules are removed from the input problem.
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil()))
0.00/0.35	  , number42^#(x) -> c_3()
0.00/0.35	  , goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	The weightgap principle applies (using the following constant
0.00/0.35	growth matrix-interpretation)
0.00/0.35	
0.00/0.35	The following argument positions are usable:
0.00/0.35	  Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_4) = {1}
0.00/0.35	
0.00/0.35	TcT has computed the following constructor-restricted matrix
0.00/0.35	interpretation.
0.00/0.35	
0.00/0.35	    [Cons](x1, x2) = [1 0] x2 + [0]
0.00/0.35	                     [0 0]      [0]
0.00/0.35	                                   
0.00/0.35	             [Nil] = [0]           
0.00/0.35	                     [0]           
0.00/0.35	                                   
0.00/0.35	  [decrease^#](x1) = [0]           
0.00/0.35	                     [0]           
0.00/0.35	                                   
0.00/0.35	         [c_1](x1) = [1 0] x1 + [2]
0.00/0.35	                     [0 1]      [0]
0.00/0.35	                                   
0.00/0.35	         [c_2](x1) = [1 0] x1 + [1]
0.00/0.35	                     [0 1]      [0]
0.00/0.35	                                   
0.00/0.35	  [number42^#](x1) = [1 2] x1 + [0]
0.00/0.35	                     [2 2]      [0]
0.00/0.35	                                   
0.00/0.35	             [c_3] = [1]           
0.00/0.35	                     [0]           
0.00/0.35	                                   
0.00/0.35	      [goal^#](x1) = [2 2] x1 + [2]
0.00/0.35	                     [1 1]      [2]
0.00/0.35	                                   
0.00/0.35	         [c_4](x1) = [1 0] x1 + [1]
0.00/0.35	                     [0 1]      [2]
0.00/0.35	
0.00/0.35	The order satisfies the following ordering constraints:
0.00/0.35	
0.00/0.35	  [decrease^#(Cons(x, xs))] = [0]                     
0.00/0.35	                              [0]                     
0.00/0.35	                            ? [2]                     
0.00/0.35	                              [0]                     
0.00/0.35	                            = [c_1(decrease^#(xs))]   
0.00/0.35	                                                      
0.00/0.35	        [decrease^#(Nil())] = [0]                     
0.00/0.35	                              [0]                     
0.00/0.35	                            ? [1]                     
0.00/0.35	                              [0]                     
0.00/0.35	                            = [c_2(number42^#(Nil()))]
0.00/0.35	                                                      
0.00/0.35	            [number42^#(x)] = [1 2] x + [0]           
0.00/0.35	                              [2 2]     [0]           
0.00/0.35	                            ? [1]                     
0.00/0.35	                              [0]                     
0.00/0.35	                            = [c_3()]                 
0.00/0.35	                                                      
0.00/0.35	                [goal^#(x)] = [2 2] x + [2]           
0.00/0.35	                              [1 1]     [2]           
0.00/0.35	                            > [1]                     
0.00/0.35	                              [2]                     
0.00/0.35	                            = [c_4(decrease^#(x))]    
0.00/0.35	                                                      
0.00/0.35	
0.00/0.35	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil()))
0.00/0.35	  , number42^#(x) -> c_3() }
0.00/0.35	Weak DPs: { goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	We estimate the number of application of {3} by applications of
0.00/0.35	Pre({3}) = {2}. Here rules are labeled as follows:
0.00/0.35	
0.00/0.35	  DPs:
0.00/0.35	    { 1: decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	    , 2: decrease^#(Nil()) -> c_2(number42^#(Nil()))
0.00/0.35	    , 3: number42^#(x) -> c_3()
0.00/0.35	    , 4: goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil())) }
0.00/0.35	Weak DPs:
0.00/0.35	  { number42^#(x) -> c_3()
0.00/0.35	  , goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	The following weak DPs constitute a sub-graph of the DG that is
0.00/0.35	closed under successors. The DPs are removed.
0.00/0.35	
0.00/0.35	{ number42^#(x) -> c_3() }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2(number42^#(Nil())) }
0.00/0.35	Weak DPs: { goal^#(x) -> c_4(decrease^#(x)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	Due to missing edges in the dependency-graph, the right-hand sides
0.00/0.35	of following rules could be simplified:
0.00/0.35	
0.00/0.35	  { decrease^#(Nil()) -> c_2(number42^#(Nil())) }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2() }
0.00/0.35	Weak DPs: { goal^#(x) -> c_3(decrease^#(x)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	Consider the dependency graph
0.00/0.35	
0.00/0.35	  1: decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	     -->_1 decrease^#(Nil()) -> c_2() :2
0.00/0.35	     -->_1 decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) :1
0.00/0.35	  
0.00/0.35	  2: decrease^#(Nil()) -> c_2()
0.00/0.35	  
0.00/0.35	  3: goal^#(x) -> c_3(decrease^#(x))
0.00/0.35	     -->_1 decrease^#(Nil()) -> c_2() :2
0.00/0.35	     -->_1 decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) :1
0.00/0.35	  
0.00/0.35	
0.00/0.35	Following roots of the dependency graph are removed, as the
0.00/0.35	considered set of starting terms is closed under reduction with
0.00/0.35	respect to these rules (modulo compound contexts).
0.00/0.35	
0.00/0.35	  { goal^#(x) -> c_3(decrease^#(x)) }
0.00/0.35	
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs:
0.00/0.35	  { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	  , decrease^#(Nil()) -> c_2() }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	We estimate the number of application of {2} by applications of
0.00/0.35	Pre({2}) = {1}. Here rules are labeled as follows:
0.00/0.35	
0.00/0.35	  DPs:
0.00/0.35	    { 1: decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs))
0.00/0.35	    , 2: decrease^#(Nil()) -> c_2() }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs: { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) }
0.00/0.35	Weak DPs: { decrease^#(Nil()) -> c_2() }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	The following weak DPs constitute a sub-graph of the DG that is
0.00/0.35	closed under successors. The DPs are removed.
0.00/0.35	
0.00/0.35	{ decrease^#(Nil()) -> c_2() }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(n^1)).
0.00/0.35	
0.00/0.35	Strict DPs: { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(n^1))
0.00/0.35	
0.00/0.35	We use the processor 'Small Polynomial Path Order (PS,1-bounded)'
0.00/0.35	to orient following rules strictly.
0.00/0.35	
0.00/0.35	DPs:
0.00/0.35	  { 1: decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) }
0.00/0.35	
0.00/0.35	Sub-proof:
0.00/0.35	----------
0.00/0.35	  The input was oriented with the instance of 'Small Polynomial Path
0.00/0.35	  Order (PS,1-bounded)' as induced by the safe mapping
0.00/0.35	  
0.00/0.35	   safe(Cons) = {1, 2}, safe(decrease^#) = {}, safe(c_1) = {}
0.00/0.35	  
0.00/0.35	  and precedence
0.00/0.35	  
0.00/0.35	   empty .
0.00/0.35	  
0.00/0.35	  Following symbols are considered recursive:
0.00/0.35	  
0.00/0.35	   {decrease^#}
0.00/0.35	  
0.00/0.35	  The recursion depth is 1.
0.00/0.35	  
0.00/0.35	  Further, following argument filtering is employed:
0.00/0.35	  
0.00/0.35	   pi(Cons) = [1, 2], pi(decrease^#) = [1], pi(c_1) = [1]
0.00/0.35	  
0.00/0.35	  Usable defined function symbols are a subset of:
0.00/0.35	  
0.00/0.35	   {decrease^#}
0.00/0.35	  
0.00/0.35	  For your convenience, here are the satisfied ordering constraints:
0.00/0.35	  
0.00/0.35	    pi(decrease^#(Cons(x, xs))) = decrease^#(Cons(; x,  xs);)
0.00/0.35	                                > c_1(decrease^#(xs;);)      
0.00/0.35	                                = pi(c_1(decrease^#(xs)))    
0.00/0.35	                                                             
0.00/0.35	
0.00/0.35	The strictly oriented rules are moved into the weak component.
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(1)).
0.00/0.35	
0.00/0.35	Weak DPs: { decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) }
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(1))
0.00/0.35	
0.00/0.35	The following weak DPs constitute a sub-graph of the DG that is
0.00/0.35	closed under successors. The DPs are removed.
0.00/0.35	
0.00/0.35	{ decrease^#(Cons(x, xs)) -> c_1(decrease^#(xs)) }
0.00/0.35	
0.00/0.35	We are left with following problem, upon which TcT provides the
0.00/0.35	certificate YES(O(1),O(1)).
0.00/0.35	
0.00/0.35	Rules: Empty
0.00/0.35	Obligation:
0.00/0.35	  innermost runtime complexity
0.00/0.35	Answer:
0.00/0.35	  YES(O(1),O(1))
0.00/0.35	
0.00/0.35	Empty rules are trivially bounded
0.00/0.35	
0.00/0.35	Hurray, we answered YES(O(1),O(n^1))
0.00/0.35	EOF