YES(O(1),O(n^3))
367.07/96.57	YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^3)).
367.07/96.57	
367.07/96.57	Strict Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y))
367.07/96.57	  , quot(0(), s(Y)) -> 0()
367.07/96.57	  , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	We add the following dependency tuples:
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(0(), Y) -> c_1()
367.07/96.57	  , le^#(s(X), 0()) -> c_2()
367.07/96.57	  , le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(0(), Y) -> c_4()
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(true(), s(X), Y) -> c_6()
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(0(), s(Y)) -> c_8()
367.07/96.57	  , quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	
367.07/96.57	and mark the set of starting terms.
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^3)).
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(0(), Y) -> c_1()
367.07/96.57	  , le^#(s(X), 0()) -> c_2()
367.07/96.57	  , le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(0(), Y) -> c_4()
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(true(), s(X), Y) -> c_6()
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(0(), s(Y)) -> c_8()
367.07/96.57	  , quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y))
367.07/96.57	  , quot(0(), s(Y)) -> 0()
367.07/96.57	  , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	We estimate the number of application of {1,2,4,6,8} by
367.07/96.57	applications of Pre({1,2,4,6,8}) = {3,5,7,9}. Here rules are
367.07/96.57	labeled as follows:
367.07/96.57	
367.07/96.57	  DPs:
367.07/96.57	    { 1: le^#(0(), Y) -> c_1()
367.07/96.57	    , 2: le^#(s(X), 0()) -> c_2()
367.07/96.57	    , 3: le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	    , 4: minus^#(0(), Y) -> c_4()
367.07/96.57	    , 5: minus^#(s(X), Y) ->
367.07/96.57	         c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	    , 6: ifMinus^#(true(), s(X), Y) -> c_6()
367.07/96.57	    , 7: ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	    , 8: quot^#(0(), s(Y)) -> c_8()
367.07/96.57	    , 9: quot^#(s(X), s(Y)) ->
367.07/96.57	         c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^3)).
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	Weak DPs:
367.07/96.57	  { le^#(0(), Y) -> c_1()
367.07/96.57	  , le^#(s(X), 0()) -> c_2()
367.07/96.57	  , minus^#(0(), Y) -> c_4()
367.07/96.57	  , ifMinus^#(true(), s(X), Y) -> c_6()
367.07/96.57	  , quot^#(0(), s(Y)) -> c_8() }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y))
367.07/96.57	  , quot(0(), s(Y)) -> 0()
367.07/96.57	  , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	The following weak DPs constitute a sub-graph of the DG that is
367.07/96.57	closed under successors. The DPs are removed.
367.07/96.57	
367.07/96.57	{ le^#(0(), Y) -> c_1()
367.07/96.57	, le^#(s(X), 0()) -> c_2()
367.07/96.57	, minus^#(0(), Y) -> c_4()
367.07/96.57	, ifMinus^#(true(), s(X), Y) -> c_6()
367.07/96.57	, quot^#(0(), s(Y)) -> c_8() }
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^3)).
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y))
367.07/96.57	  , quot(0(), s(Y)) -> 0()
367.07/96.57	  , quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	We replace rewrite rules by usable rules:
367.07/96.57	
367.07/96.57	  Weak Usable Rules:
367.07/96.57	    { le(0(), Y) -> true()
367.07/96.57	    , le(s(X), 0()) -> false()
367.07/96.57	    , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	    , minus(0(), Y) -> 0()
367.07/96.57	    , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	    , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	    , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^3)).
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^3))
367.07/96.57	
367.07/96.57	We decompose the input problem according to the dependency graph
367.07/96.57	into the upper component
367.07/96.57	
367.07/96.57	  { quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	
367.07/96.57	and lower component
367.07/96.57	
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y)) }
367.07/96.57	
367.07/96.57	Further, following extension rules are added to the lower
367.07/96.57	component.
367.07/96.57	
367.07/96.57	{ quot^#(s(X), s(Y)) -> minus^#(X, Y)
367.07/96.57	, quot^#(s(X), s(Y)) -> quot^#(minus(X, Y), s(Y)) }
367.07/96.57	
367.07/96.57	TcT solves the upper component with certificate YES(O(1),O(n^1)).
367.07/96.57	
367.07/96.57	Sub-proof:
367.07/96.57	----------
367.07/96.57	  We are left with following problem, upon which TcT provides the
367.07/96.57	  certificate YES(O(1),O(n^1)).
367.07/96.57	  
367.07/96.57	  Strict DPs:
367.07/96.57	    { quot^#(s(X), s(Y)) ->
367.07/96.57	      c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	  Weak Trs:
367.07/96.57	    { le(0(), Y) -> true()
367.07/96.57	    , le(s(X), 0()) -> false()
367.07/96.57	    , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	    , minus(0(), Y) -> 0()
367.07/96.57	    , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	    , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	    , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	  Obligation:
367.07/96.57	    innermost runtime complexity
367.07/96.57	  Answer:
367.07/96.57	    YES(O(1),O(n^1))
367.07/96.57	  
367.07/96.57	  We use the processor 'matrix interpretation of dimension 1' to
367.07/96.57	  orient following rules strictly.
367.07/96.57	  
367.07/96.57	  DPs:
367.07/96.57	    { 1: quot^#(s(X), s(Y)) ->
367.07/96.57	         c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	  Trs: { ifMinus(true(), s(X), Y) -> 0() }
367.07/96.57	  
367.07/96.57	  Sub-proof:
367.07/96.57	  ----------
367.07/96.57	    The following argument positions are usable:
367.07/96.57	      Uargs(c_9) = {1}
367.07/96.57	    
367.07/96.57	    TcT has computed the following constructor-based matrix
367.07/96.57	    interpretation satisfying not(EDA).
367.07/96.57	    
367.07/96.57	               [le](x1, x2) = [0]                  
367.07/96.57	                                                   
367.07/96.57	                        [0] = [0]                  
367.07/96.57	                                                   
367.07/96.57	                     [true] = [0]                  
367.07/96.57	                                                   
367.07/96.57	                    [s](x1) = [1] x1 + [1]         
367.07/96.57	                                                   
367.07/96.57	                    [false] = [0]                  
367.07/96.57	                                                   
367.07/96.57	            [minus](x1, x2) = [1] x1 + [0]         
367.07/96.57	                                                   
367.07/96.57	      [ifMinus](x1, x2, x3) = [1] x2 + [0]         
367.07/96.57	                                                   
367.07/96.57	          [minus^#](x1, x2) = [7] x1 + [7] x2 + [7]
367.07/96.57	                                                   
367.07/96.57	           [quot^#](x1, x2) = [1] x1 + [0]         
367.07/96.57	                                                   
367.07/96.57	              [c_9](x1, x2) = [1] x1 + [0]         
367.07/96.57	    
367.07/96.57	    The order satisfies the following ordering constraints:
367.07/96.57	    
367.07/96.57	                     [le(0(), Y)] =  [0]                                            
367.07/96.57	                                  >= [0]                                            
367.07/96.57	                                  =  [true()]                                       
367.07/96.57	                                                                                    
367.07/96.57	                  [le(s(X), 0())] =  [0]                                            
367.07/96.57	                                  >= [0]                                            
367.07/96.57	                                  =  [false()]                                      
367.07/96.57	                                                                                    
367.07/96.57	                 [le(s(X), s(Y))] =  [0]                                            
367.07/96.57	                                  >= [0]                                            
367.07/96.57	                                  =  [le(X, Y)]                                     
367.07/96.57	                                                                                    
367.07/96.57	                  [minus(0(), Y)] =  [0]                                            
367.07/96.57	                                  >= [0]                                            
367.07/96.57	                                  =  [0()]                                          
367.07/96.57	                                                                                    
367.07/96.57	                 [minus(s(X), Y)] =  [1] X + [1]                                    
367.07/96.57	                                  >= [1] X + [1]                                    
367.07/96.57	                                  =  [ifMinus(le(s(X), Y), s(X), Y)]                
367.07/96.57	                                                                                    
367.07/96.57	       [ifMinus(true(), s(X), Y)] =  [1] X + [1]                                    
367.07/96.57	                                  >  [0]                                            
367.07/96.57	                                  =  [0()]                                          
367.07/96.57	                                                                                    
367.07/96.57	      [ifMinus(false(), s(X), Y)] =  [1] X + [1]                                    
367.07/96.57	                                  >= [1] X + [1]                                    
367.07/96.57	                                  =  [s(minus(X, Y))]                               
367.07/96.57	                                                                                    
367.07/96.57	             [quot^#(s(X), s(Y))] =  [1] X + [1]                                    
367.07/96.57	                                  >  [1] X + [0]                                    
367.07/96.57	                                  =  [c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y))]
367.07/96.57	                                                                                    
367.07/96.57	  
367.07/96.57	  The strictly oriented rules are moved into the weak component.
367.07/96.57	  
367.07/96.57	  We are left with following problem, upon which TcT provides the
367.07/96.57	  certificate YES(O(1),O(1)).
367.07/96.57	  
367.07/96.57	  Weak DPs:
367.07/96.57	    { quot^#(s(X), s(Y)) ->
367.07/96.57	      c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	  Weak Trs:
367.07/96.57	    { le(0(), Y) -> true()
367.07/96.57	    , le(s(X), 0()) -> false()
367.07/96.57	    , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	    , minus(0(), Y) -> 0()
367.07/96.57	    , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	    , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	    , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	  Obligation:
367.07/96.57	    innermost runtime complexity
367.07/96.57	  Answer:
367.07/96.57	    YES(O(1),O(1))
367.07/96.57	  
367.07/96.57	  The following weak DPs constitute a sub-graph of the DG that is
367.07/96.57	  closed under successors. The DPs are removed.
367.07/96.57	  
367.07/96.57	  { quot^#(s(X), s(Y)) ->
367.07/96.57	    c_9(quot^#(minus(X, Y), s(Y)), minus^#(X, Y)) }
367.07/96.57	  
367.07/96.57	  We are left with following problem, upon which TcT provides the
367.07/96.57	  certificate YES(O(1),O(1)).
367.07/96.57	  
367.07/96.57	  Weak Trs:
367.07/96.57	    { le(0(), Y) -> true()
367.07/96.57	    , le(s(X), 0()) -> false()
367.07/96.57	    , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	    , minus(0(), Y) -> 0()
367.07/96.57	    , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	    , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	    , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	  Obligation:
367.07/96.57	    innermost runtime complexity
367.07/96.57	  Answer:
367.07/96.57	    YES(O(1),O(1))
367.07/96.57	  
367.07/96.57	  No rule is usable, rules are removed from the input problem.
367.07/96.57	  
367.07/96.57	  We are left with following problem, upon which TcT provides the
367.07/96.57	  certificate YES(O(1),O(1)).
367.07/96.57	  
367.07/96.57	  Rules: Empty
367.07/96.57	  Obligation:
367.07/96.57	    innermost runtime complexity
367.07/96.57	  Answer:
367.07/96.57	    YES(O(1),O(1))
367.07/96.57	  
367.07/96.57	  Empty rules are trivially bounded
367.07/96.57	
367.07/96.57	We return to the main proof.
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(n^2)).
367.07/96.57	
367.07/96.57	Strict DPs:
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y)) }
367.07/96.57	Weak DPs:
367.07/96.57	  { quot^#(s(X), s(Y)) -> minus^#(X, Y)
367.07/96.57	  , quot^#(s(X), s(Y)) -> quot^#(minus(X, Y), s(Y)) }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(n^2))
367.07/96.57	
367.07/96.57	We use the processor 'matrix interpretation of dimension 2' to
367.07/96.57	orient following rules strictly.
367.07/96.57	
367.07/96.57	DPs:
367.07/96.57	  { 1: le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , 2: minus^#(s(X), Y) ->
367.07/96.57	       c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y)) }
367.07/96.57	Trs:
367.07/96.57	  { ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	
367.07/96.57	Sub-proof:
367.07/96.57	----------
367.07/96.57	  The following argument positions are usable:
367.07/96.57	    Uargs(c_3) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_7) = {1}
367.07/96.57	  
367.07/96.57	  TcT has computed the following constructor-based matrix
367.07/96.57	  interpretation satisfying not(EDA).
367.07/96.57	  
367.07/96.57	               [le](x1, x2) = [0]                      
367.07/96.57	                              [0]                      
367.07/96.57	                                                       
367.07/96.57	                        [0] = [0]                      
367.07/96.57	                              [0]                      
367.07/96.57	                                                       
367.07/96.57	                     [true] = [0]                      
367.07/96.57	                              [0]                      
367.07/96.57	                                                       
367.07/96.57	                    [s](x1) = [1 4] x1 + [0]           
367.07/96.57	                              [0 1]      [2]           
367.07/96.57	                                                       
367.07/96.57	                    [false] = [0]                      
367.07/96.57	                              [0]                      
367.07/96.57	                                                       
367.07/96.57	            [minus](x1, x2) = [1 4] x1 + [0]           
367.07/96.57	                              [0 1]      [0]           
367.07/96.57	                                                       
367.07/96.57	      [ifMinus](x1, x2, x3) = [1 4] x2 + [0]           
367.07/96.57	                              [0 1]      [0]           
367.07/96.57	                                                       
367.07/96.57	             [le^#](x1, x2) = [0 1] x1 + [0]           
367.07/96.57	                              [0 4]      [0]           
367.07/96.57	                                                       
367.07/96.57	                  [c_3](x1) = [1 0] x1 + [1]           
367.07/96.57	                              [0 0]      [3]           
367.07/96.57	                                                       
367.07/96.57	          [minus^#](x1, x2) = [2 4] x1 + [0]           
367.07/96.57	                              [0 0]      [4]           
367.07/96.57	                                                       
367.07/96.57	              [c_5](x1, x2) = [1 0] x1 + [1 0] x2 + [1]
367.07/96.57	                              [0 0]      [0 0]      [3]
367.07/96.57	                                                       
367.07/96.57	    [ifMinus^#](x1, x2, x3) = [2 0] x2 + [0 0] x3 + [0]
367.07/96.57	                              [2 0]      [4 0]      [4]
367.07/96.57	                                                       
367.07/96.57	                  [c_7](x1) = [1 0] x1 + [0]           
367.07/96.57	                              [0 0]      [3]           
367.07/96.57	                                                       
367.07/96.57	           [quot^#](x1, x2) = [2 0] x1 + [0]           
367.07/96.57	                              [0 4]      [0]           
367.07/96.57	  
367.07/96.57	  The order satisfies the following ordering constraints:
367.07/96.57	  
367.07/96.57	                     [le(0(), Y)] =  [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  >= [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  =  [true()]                                             
367.07/96.57	                                                                                          
367.07/96.57	                  [le(s(X), 0())] =  [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  >= [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  =  [false()]                                            
367.07/96.57	                                                                                          
367.07/96.57	                 [le(s(X), s(Y))] =  [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  >= [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  =  [le(X, Y)]                                           
367.07/96.57	                                                                                          
367.07/96.57	                  [minus(0(), Y)] =  [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  >= [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  =  [0()]                                                
367.07/96.57	                                                                                          
367.07/96.57	                 [minus(s(X), Y)] =  [1 8] X + [8]                                        
367.07/96.57	                                     [0 1]     [2]                                        
367.07/96.57	                                  >= [1 8] X + [8]                                        
367.07/96.57	                                     [0 1]     [2]                                        
367.07/96.57	                                  =  [ifMinus(le(s(X), Y), s(X), Y)]                      
367.07/96.57	                                                                                          
367.07/96.57	       [ifMinus(true(), s(X), Y)] =  [1 8] X + [8]                                        
367.07/96.57	                                     [0 1]     [2]                                        
367.07/96.57	                                  >  [0]                                                  
367.07/96.57	                                     [0]                                                  
367.07/96.57	                                  =  [0()]                                                
367.07/96.57	                                                                                          
367.07/96.57	      [ifMinus(false(), s(X), Y)] =  [1 8] X + [8]                                        
367.07/96.57	                                     [0 1]     [2]                                        
367.07/96.57	                                  >  [1 8] X + [0]                                        
367.07/96.57	                                     [0 1]     [2]                                        
367.07/96.57	                                  =  [s(minus(X, Y))]                                     
367.07/96.57	                                                                                          
367.07/96.57	               [le^#(s(X), s(Y))] =  [0 1] X + [2]                                        
367.07/96.57	                                     [0 4]     [8]                                        
367.07/96.57	                                  >  [0 1] X + [1]                                        
367.07/96.57	                                     [0 0]     [3]                                        
367.07/96.57	                                  =  [c_3(le^#(X, Y))]                                    
367.07/96.57	                                                                                          
367.07/96.57	               [minus^#(s(X), Y)] =  [2 12] X + [8]                                       
367.07/96.57	                                     [0  0]     [4]                                       
367.07/96.57	                                  >  [2 9] X + [3]                                        
367.07/96.57	                                     [0 0]     [3]                                        
367.07/96.57	                                  =  [c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))]
367.07/96.57	                                                                                          
367.07/96.57	    [ifMinus^#(false(), s(X), Y)] =  [0 0] Y + [2 8] X + [0]                              
367.07/96.57	                                     [4 0]     [2 8]     [4]                              
367.07/96.57	                                  >= [2 4] X + [0]                                        
367.07/96.57	                                     [0 0]     [3]                                        
367.07/96.57	                                  =  [c_7(minus^#(X, Y))]                                 
367.07/96.57	                                                                                          
367.07/96.57	             [quot^#(s(X), s(Y))] =  [2 8] X + [0]                                        
367.07/96.57	                                     [0 4]     [8]                                        
367.07/96.57	                                  >= [2 4] X + [0]                                        
367.07/96.57	                                     [0 0]     [4]                                        
367.07/96.57	                                  =  [minus^#(X, Y)]                                      
367.07/96.57	                                                                                          
367.07/96.57	             [quot^#(s(X), s(Y))] =  [2 8] X + [0]                                        
367.07/96.57	                                     [0 4]     [8]                                        
367.07/96.57	                                  >= [2 8] X + [0]                                        
367.07/96.57	                                     [0 4]     [0]                                        
367.07/96.57	                                  =  [quot^#(minus(X, Y), s(Y))]                          
367.07/96.57	                                                                                          
367.07/96.57	
367.07/96.57	We return to the main proof. Consider the set of all dependency
367.07/96.57	pairs
367.07/96.57	
367.07/96.57	:
367.07/96.57	  { 1: le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , 2: minus^#(s(X), Y) ->
367.07/96.57	       c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , 3: ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , 4: quot^#(s(X), s(Y)) -> minus^#(X, Y)
367.07/96.57	  , 5: quot^#(s(X), s(Y)) -> quot^#(minus(X, Y), s(Y)) }
367.07/96.57	
367.07/96.57	Processor 'matrix interpretation of dimension 2' induces the
367.07/96.57	complexity certificate YES(?,O(n^2)) on application of dependency
367.07/96.57	pairs {1,2}. These cover all (indirect) predecessors of dependency
367.07/96.57	pairs {1,2,3}, their number of application is equally bounded. The
367.07/96.57	dependency pairs are shifted into the weak component.
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(1)).
367.07/96.57	
367.07/96.57	Weak DPs:
367.07/96.57	  { le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	  , minus^#(s(X), Y) ->
367.07/96.57	    c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	  , ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	  , quot^#(s(X), s(Y)) -> minus^#(X, Y)
367.07/96.57	  , quot^#(s(X), s(Y)) -> quot^#(minus(X, Y), s(Y)) }
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(1))
367.07/96.57	
367.07/96.57	The following weak DPs constitute a sub-graph of the DG that is
367.07/96.57	closed under successors. The DPs are removed.
367.07/96.57	
367.07/96.57	{ le^#(s(X), s(Y)) -> c_3(le^#(X, Y))
367.07/96.57	, minus^#(s(X), Y) ->
367.07/96.57	  c_5(ifMinus^#(le(s(X), Y), s(X), Y), le^#(s(X), Y))
367.07/96.57	, ifMinus^#(false(), s(X), Y) -> c_7(minus^#(X, Y))
367.07/96.57	, quot^#(s(X), s(Y)) -> minus^#(X, Y)
367.07/96.57	, quot^#(s(X), s(Y)) -> quot^#(minus(X, Y), s(Y)) }
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(1)).
367.07/96.57	
367.07/96.57	Weak Trs:
367.07/96.57	  { le(0(), Y) -> true()
367.07/96.57	  , le(s(X), 0()) -> false()
367.07/96.57	  , le(s(X), s(Y)) -> le(X, Y)
367.07/96.57	  , minus(0(), Y) -> 0()
367.07/96.57	  , minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y)
367.07/96.57	  , ifMinus(true(), s(X), Y) -> 0()
367.07/96.57	  , ifMinus(false(), s(X), Y) -> s(minus(X, Y)) }
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(1))
367.07/96.57	
367.07/96.57	No rule is usable, rules are removed from the input problem.
367.07/96.57	
367.07/96.57	We are left with following problem, upon which TcT provides the
367.07/96.57	certificate YES(O(1),O(1)).
367.07/96.57	
367.07/96.57	Rules: Empty
367.07/96.57	Obligation:
367.07/96.57	  innermost runtime complexity
367.07/96.57	Answer:
367.07/96.57	  YES(O(1),O(1))
367.07/96.57	
367.07/96.57	Empty rules are trivially bounded
367.07/96.57	
367.07/96.57	Hurray, we answered YES(O(1),O(n^3))
367.07/96.58	EOF