YES(O(1),O(n^2))
31.51/18.77	YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	We are left with following problem, upon which TcT provides the
31.51/18.77	certificate YES(O(1),O(n^2)).
31.51/18.77	
31.51/18.77	Strict Trs:
31.51/18.77	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.77	  , a__first(0(), X) -> nil()
31.51/18.77	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.77	  , mark(0()) -> 0()
31.51/18.77	  , mark(nil()) -> nil()
31.51/18.77	  , mark(s(X)) -> s(mark(X))
31.51/18.77	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.77	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.77	  , mark(from(X)) -> a__from(mark(X))
31.51/18.77	  , a__from(X) -> cons(mark(X), from(s(X)))
31.51/18.77	  , a__from(X) -> from(X) }
31.51/18.77	Obligation:
31.51/18.77	  innermost runtime complexity
31.51/18.77	Answer:
31.51/18.77	  YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	The weightgap principle applies (using the following nonconstant
31.51/18.77	growth matrix-interpretation)
31.51/18.77	
31.51/18.77	The following argument positions are usable:
31.51/18.77	  Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.77	  Uargs(a__from) = {1}
31.51/18.77	
31.51/18.77	TcT has computed the following matrix interpretation satisfying
31.51/18.77	not(EDA) and not(IDA(1)).
31.51/18.77	
31.51/18.77	  [a__first](x1, x2) = [1] x1 + [1] x2 + [1]
31.51/18.77	                                            
31.51/18.77	                 [0] = [0]                  
31.51/18.77	                                            
31.51/18.77	               [nil] = [6]                  
31.51/18.77	                                            
31.51/18.77	             [s](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	      [cons](x1, x2) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [mark](x1) = [0]                  
31.51/18.77	                                            
31.51/18.77	     [first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	       [a__from](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [from](x1) = [1] x1 + [7]         
31.51/18.77	
31.51/18.77	The order satisfies the following ordering constraints:
31.51/18.77	
31.51/18.77	            [a__first(X1, X2)] =  [1] X1 + [1] X2 + [1]         
31.51/18.77	                               >  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [first(X1, X2)]               
31.51/18.77	                                                                
31.51/18.77	            [a__first(0(), X)] =  [1] X + [1]                   
31.51/18.77	                               ?  [6]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	  [a__first(s(X), cons(Y, Z))] =  [1] X + [1] Y + [1]           
31.51/18.77	                               >  [0]                           
31.51/18.77	                               =  [cons(mark(Y), first(X, Z))]  
31.51/18.77	                                                                
31.51/18.77	                   [mark(0())] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [0()]                         
31.51/18.77	                                                                
31.51/18.77	                 [mark(nil())] =  [0]                           
31.51/18.77	                               ?  [6]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	                  [mark(s(X))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [s(mark(X))]                  
31.51/18.77	                                                                
31.51/18.77	          [mark(cons(X1, X2))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [cons(mark(X1), X2)]          
31.51/18.77	                                                                
31.51/18.77	         [mark(first(X1, X2))] =  [0]                           
31.51/18.77	                               ?  [1]                           
31.51/18.77	                               =  [a__first(mark(X1), mark(X2))]
31.51/18.77	                                                                
31.51/18.77	               [mark(from(X))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [a__from(mark(X))]            
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [cons(mark(X), from(s(X)))]   
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               ?  [1] X + [7]                   
31.51/18.77	                               =  [from(X)]                     
31.51/18.77	                                                                
31.51/18.77	
31.51/18.77	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
31.51/18.77	
31.51/18.77	We are left with following problem, upon which TcT provides the
31.51/18.77	certificate YES(O(1),O(n^2)).
31.51/18.77	
31.51/18.77	Strict Trs:
31.51/18.77	  { a__first(0(), X) -> nil()
31.51/18.77	  , mark(0()) -> 0()
31.51/18.77	  , mark(nil()) -> nil()
31.51/18.77	  , mark(s(X)) -> s(mark(X))
31.51/18.77	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.77	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.77	  , mark(from(X)) -> a__from(mark(X))
31.51/18.77	  , a__from(X) -> cons(mark(X), from(s(X)))
31.51/18.77	  , a__from(X) -> from(X) }
31.51/18.77	Weak Trs:
31.51/18.77	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.77	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) }
31.51/18.77	Obligation:
31.51/18.77	  innermost runtime complexity
31.51/18.77	Answer:
31.51/18.77	  YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	The weightgap principle applies (using the following nonconstant
31.51/18.77	growth matrix-interpretation)
31.51/18.77	
31.51/18.77	The following argument positions are usable:
31.51/18.77	  Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.77	  Uargs(a__from) = {1}
31.51/18.77	
31.51/18.77	TcT has computed the following matrix interpretation satisfying
31.51/18.77	not(EDA) and not(IDA(1)).
31.51/18.77	
31.51/18.77	  [a__first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	                 [0] = [4]                  
31.51/18.77	                                            
31.51/18.77	               [nil] = [3]                  
31.51/18.77	                                            
31.51/18.77	             [s](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	      [cons](x1, x2) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [mark](x1) = [0]                  
31.51/18.77	                                            
31.51/18.77	     [first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	       [a__from](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [from](x1) = [1] x1 + [7]         
31.51/18.77	
31.51/18.77	The order satisfies the following ordering constraints:
31.51/18.77	
31.51/18.77	            [a__first(X1, X2)] =  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               >= [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [first(X1, X2)]               
31.51/18.77	                                                                
31.51/18.77	            [a__first(0(), X)] =  [1] X + [4]                   
31.51/18.77	                               >  [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	  [a__first(s(X), cons(Y, Z))] =  [1] X + [1] Y + [0]           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [cons(mark(Y), first(X, Z))]  
31.51/18.77	                                                                
31.51/18.77	                   [mark(0())] =  [0]                           
31.51/18.77	                               ?  [4]                           
31.51/18.77	                               =  [0()]                         
31.51/18.77	                                                                
31.51/18.77	                 [mark(nil())] =  [0]                           
31.51/18.77	                               ?  [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	                  [mark(s(X))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [s(mark(X))]                  
31.51/18.77	                                                                
31.51/18.77	          [mark(cons(X1, X2))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [cons(mark(X1), X2)]          
31.51/18.77	                                                                
31.51/18.77	         [mark(first(X1, X2))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [a__first(mark(X1), mark(X2))]
31.51/18.77	                                                                
31.51/18.77	               [mark(from(X))] =  [0]                           
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [a__from(mark(X))]            
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               >= [0]                           
31.51/18.77	                               =  [cons(mark(X), from(s(X)))]   
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               ?  [1] X + [7]                   
31.51/18.77	                               =  [from(X)]                     
31.51/18.77	                                                                
31.51/18.77	
31.51/18.77	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
31.51/18.77	
31.51/18.77	We are left with following problem, upon which TcT provides the
31.51/18.77	certificate YES(O(1),O(n^2)).
31.51/18.77	
31.51/18.77	Strict Trs:
31.51/18.77	  { mark(0()) -> 0()
31.51/18.77	  , mark(nil()) -> nil()
31.51/18.77	  , mark(s(X)) -> s(mark(X))
31.51/18.77	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.77	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.77	  , mark(from(X)) -> a__from(mark(X))
31.51/18.77	  , a__from(X) -> cons(mark(X), from(s(X)))
31.51/18.77	  , a__from(X) -> from(X) }
31.51/18.77	Weak Trs:
31.51/18.77	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.77	  , a__first(0(), X) -> nil()
31.51/18.77	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) }
31.51/18.77	Obligation:
31.51/18.77	  innermost runtime complexity
31.51/18.77	Answer:
31.51/18.77	  YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	The weightgap principle applies (using the following nonconstant
31.51/18.77	growth matrix-interpretation)
31.51/18.77	
31.51/18.77	The following argument positions are usable:
31.51/18.77	  Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.77	  Uargs(a__from) = {1}
31.51/18.77	
31.51/18.77	TcT has computed the following matrix interpretation satisfying
31.51/18.77	not(EDA) and not(IDA(1)).
31.51/18.77	
31.51/18.77	  [a__first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	                 [0] = [4]                  
31.51/18.77	                                            
31.51/18.77	               [nil] = [3]                  
31.51/18.77	                                            
31.51/18.77	             [s](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	      [cons](x1, x2) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [mark](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	     [first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	       [a__from](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [from](x1) = [1] x1 + [4]         
31.51/18.77	
31.51/18.77	The order satisfies the following ordering constraints:
31.51/18.77	
31.51/18.77	            [a__first(X1, X2)] =  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               >= [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [first(X1, X2)]               
31.51/18.77	                                                                
31.51/18.77	            [a__first(0(), X)] =  [1] X + [4]                   
31.51/18.77	                               >  [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	  [a__first(s(X), cons(Y, Z))] =  [1] X + [1] Y + [0]           
31.51/18.77	                               >= [1] Y + [0]                   
31.51/18.77	                               =  [cons(mark(Y), first(X, Z))]  
31.51/18.77	                                                                
31.51/18.77	                   [mark(0())] =  [4]                           
31.51/18.77	                               >= [4]                           
31.51/18.77	                               =  [0()]                         
31.51/18.77	                                                                
31.51/18.77	                 [mark(nil())] =  [3]                           
31.51/18.77	                               >= [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	                  [mark(s(X))] =  [1] X + [0]                   
31.51/18.77	                               >= [1] X + [0]                   
31.51/18.77	                               =  [s(mark(X))]                  
31.51/18.77	                                                                
31.51/18.77	          [mark(cons(X1, X2))] =  [1] X1 + [0]                  
31.51/18.77	                               >= [1] X1 + [0]                  
31.51/18.77	                               =  [cons(mark(X1), X2)]          
31.51/18.77	                                                                
31.51/18.77	         [mark(first(X1, X2))] =  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               >= [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [a__first(mark(X1), mark(X2))]
31.51/18.77	                                                                
31.51/18.77	               [mark(from(X))] =  [1] X + [4]                   
31.51/18.77	                               >  [1] X + [0]                   
31.51/18.77	                               =  [a__from(mark(X))]            
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               >= [1] X + [0]                   
31.51/18.77	                               =  [cons(mark(X), from(s(X)))]   
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [0]                   
31.51/18.77	                               ?  [1] X + [4]                   
31.51/18.77	                               =  [from(X)]                     
31.51/18.77	                                                                
31.51/18.77	
31.51/18.77	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
31.51/18.77	
31.51/18.77	We are left with following problem, upon which TcT provides the
31.51/18.77	certificate YES(O(1),O(n^2)).
31.51/18.77	
31.51/18.77	Strict Trs:
31.51/18.77	  { mark(0()) -> 0()
31.51/18.77	  , mark(nil()) -> nil()
31.51/18.77	  , mark(s(X)) -> s(mark(X))
31.51/18.77	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.77	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.77	  , a__from(X) -> cons(mark(X), from(s(X)))
31.51/18.77	  , a__from(X) -> from(X) }
31.51/18.77	Weak Trs:
31.51/18.77	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.77	  , a__first(0(), X) -> nil()
31.51/18.77	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.77	  , mark(from(X)) -> a__from(mark(X)) }
31.51/18.77	Obligation:
31.51/18.77	  innermost runtime complexity
31.51/18.77	Answer:
31.51/18.77	  YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	The weightgap principle applies (using the following nonconstant
31.51/18.77	growth matrix-interpretation)
31.51/18.77	
31.51/18.77	The following argument positions are usable:
31.51/18.77	  Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.77	  Uargs(a__from) = {1}
31.51/18.77	
31.51/18.77	TcT has computed the following matrix interpretation satisfying
31.51/18.77	not(EDA) and not(IDA(1)).
31.51/18.77	
31.51/18.77	  [a__first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	                 [0] = [4]                  
31.51/18.77	                                            
31.51/18.77	               [nil] = [3]                  
31.51/18.77	                                            
31.51/18.77	             [s](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	      [cons](x1, x2) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [mark](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	     [first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	       [a__from](x1) = [1] x1 + [1]         
31.51/18.77	                                            
31.51/18.77	          [from](x1) = [1] x1 + [4]         
31.51/18.77	
31.51/18.77	The order satisfies the following ordering constraints:
31.51/18.77	
31.51/18.77	            [a__first(X1, X2)] =  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               >= [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [first(X1, X2)]               
31.51/18.77	                                                                
31.51/18.77	            [a__first(0(), X)] =  [1] X + [4]                   
31.51/18.77	                               >  [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	  [a__first(s(X), cons(Y, Z))] =  [1] X + [1] Y + [0]           
31.51/18.77	                               >= [1] Y + [0]                   
31.51/18.77	                               =  [cons(mark(Y), first(X, Z))]  
31.51/18.77	                                                                
31.51/18.77	                   [mark(0())] =  [4]                           
31.51/18.77	                               >= [4]                           
31.51/18.77	                               =  [0()]                         
31.51/18.77	                                                                
31.51/18.77	                 [mark(nil())] =  [3]                           
31.51/18.77	                               >= [3]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	                  [mark(s(X))] =  [1] X + [0]                   
31.51/18.77	                               >= [1] X + [0]                   
31.51/18.77	                               =  [s(mark(X))]                  
31.51/18.77	                                                                
31.51/18.77	          [mark(cons(X1, X2))] =  [1] X1 + [0]                  
31.51/18.77	                               >= [1] X1 + [0]                  
31.51/18.77	                               =  [cons(mark(X1), X2)]          
31.51/18.77	                                                                
31.51/18.77	         [mark(first(X1, X2))] =  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               >= [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [a__first(mark(X1), mark(X2))]
31.51/18.77	                                                                
31.51/18.77	               [mark(from(X))] =  [1] X + [4]                   
31.51/18.77	                               >  [1] X + [1]                   
31.51/18.77	                               =  [a__from(mark(X))]            
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [1]                   
31.51/18.77	                               >  [1] X + [0]                   
31.51/18.77	                               =  [cons(mark(X), from(s(X)))]   
31.51/18.77	                                                                
31.51/18.77	                  [a__from(X)] =  [1] X + [1]                   
31.51/18.77	                               ?  [1] X + [4]                   
31.51/18.77	                               =  [from(X)]                     
31.51/18.77	                                                                
31.51/18.77	
31.51/18.77	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
31.51/18.77	
31.51/18.77	We are left with following problem, upon which TcT provides the
31.51/18.77	certificate YES(O(1),O(n^2)).
31.51/18.77	
31.51/18.77	Strict Trs:
31.51/18.77	  { mark(0()) -> 0()
31.51/18.77	  , mark(nil()) -> nil()
31.51/18.77	  , mark(s(X)) -> s(mark(X))
31.51/18.77	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.77	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.77	  , a__from(X) -> from(X) }
31.51/18.77	Weak Trs:
31.51/18.77	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.77	  , a__first(0(), X) -> nil()
31.51/18.77	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.77	  , mark(from(X)) -> a__from(mark(X))
31.51/18.77	  , a__from(X) -> cons(mark(X), from(s(X))) }
31.51/18.77	Obligation:
31.51/18.77	  innermost runtime complexity
31.51/18.77	Answer:
31.51/18.77	  YES(O(1),O(n^2))
31.51/18.77	
31.51/18.77	The weightgap principle applies (using the following nonconstant
31.51/18.77	growth matrix-interpretation)
31.51/18.77	
31.51/18.77	The following argument positions are usable:
31.51/18.77	  Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.77	  Uargs(a__from) = {1}
31.51/18.77	
31.51/18.77	TcT has computed the following matrix interpretation satisfying
31.51/18.77	not(EDA) and not(IDA(1)).
31.51/18.77	
31.51/18.77	  [a__first](x1, x2) = [1] x1 + [1] x2 + [4]
31.51/18.77	                                            
31.51/18.77	                 [0] = [0]                  
31.51/18.77	                                            
31.51/18.77	               [nil] = [2]                  
31.51/18.77	                                            
31.51/18.77	             [s](x1) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	      [cons](x1, x2) = [1] x1 + [0]         
31.51/18.77	                                            
31.51/18.77	          [mark](x1) = [1] x1 + [1]         
31.51/18.77	                                            
31.51/18.77	     [first](x1, x2) = [1] x1 + [1] x2 + [0]
31.51/18.77	                                            
31.51/18.77	       [a__from](x1) = [1] x1 + [2]         
31.51/18.77	                                            
31.51/18.77	          [from](x1) = [1] x1 + [7]         
31.51/18.77	
31.51/18.77	The order satisfies the following ordering constraints:
31.51/18.77	
31.51/18.77	            [a__first(X1, X2)] =  [1] X1 + [1] X2 + [4]         
31.51/18.77	                               >  [1] X1 + [1] X2 + [0]         
31.51/18.77	                               =  [first(X1, X2)]               
31.51/18.77	                                                                
31.51/18.77	            [a__first(0(), X)] =  [1] X + [4]                   
31.51/18.77	                               >  [2]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	  [a__first(s(X), cons(Y, Z))] =  [1] X + [1] Y + [4]           
31.51/18.77	                               >  [1] Y + [1]                   
31.51/18.77	                               =  [cons(mark(Y), first(X, Z))]  
31.51/18.77	                                                                
31.51/18.77	                   [mark(0())] =  [1]                           
31.51/18.77	                               >  [0]                           
31.51/18.77	                               =  [0()]                         
31.51/18.77	                                                                
31.51/18.77	                 [mark(nil())] =  [3]                           
31.51/18.77	                               >  [2]                           
31.51/18.77	                               =  [nil()]                       
31.51/18.77	                                                                
31.51/18.77	                  [mark(s(X))] =  [1] X + [1]                   
31.51/18.77	                               >= [1] X + [1]                   
31.51/18.77	                               =  [s(mark(X))]                  
31.51/18.77	                                                                
31.51/18.77	          [mark(cons(X1, X2))] =  [1] X1 + [1]                  
31.51/18.77	                               >= [1] X1 + [1]                  
31.51/18.77	                               =  [cons(mark(X1), X2)]          
31.51/18.77	                                                                
31.51/18.78	         [mark(first(X1, X2))] =  [1] X1 + [1] X2 + [1]         
31.51/18.78	                               ?  [1] X1 + [1] X2 + [6]         
31.51/18.78	                               =  [a__first(mark(X1), mark(X2))]
31.51/18.78	                                                                
31.51/18.78	               [mark(from(X))] =  [1] X + [8]                   
31.51/18.78	                               >  [1] X + [3]                   
31.51/18.78	                               =  [a__from(mark(X))]            
31.51/18.78	                                                                
31.51/18.78	                  [a__from(X)] =  [1] X + [2]                   
31.51/18.78	                               >  [1] X + [1]                   
31.51/18.78	                               =  [cons(mark(X), from(s(X)))]   
31.51/18.78	                                                                
31.51/18.78	                  [a__from(X)] =  [1] X + [2]                   
31.51/18.78	                               ?  [1] X + [7]                   
31.51/18.78	                               =  [from(X)]                     
31.51/18.78	                                                                
31.51/18.78	
31.51/18.78	Further, it can be verified that all rules not oriented are covered by the weightgap condition.
31.51/18.78	
31.51/18.78	We are left with following problem, upon which TcT provides the
31.51/18.78	certificate YES(O(1),O(n^2)).
31.51/18.78	
31.51/18.78	Strict Trs:
31.51/18.78	  { mark(s(X)) -> s(mark(X))
31.51/18.78	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.78	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.78	  , a__from(X) -> from(X) }
31.51/18.78	Weak Trs:
31.51/18.78	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.78	  , a__first(0(), X) -> nil()
31.51/18.78	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.78	  , mark(0()) -> 0()
31.51/18.78	  , mark(nil()) -> nil()
31.51/18.78	  , mark(from(X)) -> a__from(mark(X))
31.51/18.78	  , a__from(X) -> cons(mark(X), from(s(X))) }
31.51/18.78	Obligation:
31.51/18.78	  innermost runtime complexity
31.51/18.78	Answer:
31.51/18.78	  YES(O(1),O(n^2))
31.51/18.78	
31.51/18.78	We use the processor 'matrix interpretation of dimension 2' to
31.51/18.78	orient following rules strictly.
31.51/18.78	
31.51/18.78	Trs:
31.51/18.78	  { mark(s(X)) -> s(mark(X))
31.51/18.78	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) }
31.51/18.78	
31.51/18.78	The induced complexity on above rules (modulo remaining rules) is
31.51/18.78	YES(?,O(n^2)) . These rules are moved into the corresponding weak
31.51/18.78	component(s).
31.51/18.78	
31.51/18.78	Sub-proof:
31.51/18.78	----------
31.51/18.78	  The following argument positions are usable:
31.51/18.78	    Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.78	    Uargs(a__from) = {1}
31.51/18.78	  
31.51/18.78	  TcT has computed the following constructor-based matrix
31.51/18.78	  interpretation satisfying not(EDA).
31.51/18.78	  
31.51/18.78	    [a__first](x1, x2) = [1 0] x1 + [1 4] x2 + [4]
31.51/18.78	                         [0 1]      [0 1]      [4]
31.51/18.78	                                                  
31.51/18.78	                   [0] = [0]                      
31.51/18.78	                         [0]                      
31.51/18.78	                                                  
31.51/18.78	                 [nil] = [0]                      
31.51/18.78	                         [0]                      
31.51/18.78	                                                  
31.51/18.78	               [s](x1) = [1 0] x1 + [0]           
31.51/18.78	                         [0 1]      [4]           
31.51/18.78	                                                  
31.51/18.78	        [cons](x1, x2) = [1 5] x1 + [0]           
31.51/18.78	                         [0 1]      [0]           
31.51/18.78	                                                  
31.51/18.78	            [mark](x1) = [1 1] x1 + [0]           
31.51/18.78	                         [0 1]      [0]           
31.51/18.78	                                                  
31.51/18.78	       [first](x1, x2) = [1 0] x1 + [1 4] x2 + [4]
31.51/18.78	                         [0 1]      [0 1]      [4]
31.51/18.78	                                                  
31.51/18.78	         [a__from](x1) = [1 6] x1 + [0]           
31.51/18.78	                         [0 1]      [0]           
31.51/18.78	                                                  
31.51/18.78	            [from](x1) = [1 6] x1 + [0]           
31.51/18.78	                         [0 1]      [0]           
31.51/18.78	  
31.51/18.78	  The order satisfies the following ordering constraints:
31.51/18.78	  
31.51/18.78	              [a__first(X1, X2)] =  [1 0] X1 + [1 4] X2 + [4]     
31.51/18.78	                                    [0 1]      [0 1]      [4]     
31.51/18.78	                                 >= [1 0] X1 + [1 4] X2 + [4]     
31.51/18.78	                                    [0 1]      [0 1]      [4]     
31.51/18.78	                                 =  [first(X1, X2)]               
31.51/18.78	                                                                  
31.51/18.78	              [a__first(0(), X)] =  [1 4] X + [4]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 >  [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [nil()]                       
31.51/18.78	                                                                  
31.51/18.78	    [a__first(s(X), cons(Y, Z))] =  [1 0] X + [1 9] Y + [4]       
31.51/18.78	                                    [0 1]     [0 1]     [8]       
31.51/18.78	                                 >  [1 6] Y + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 =  [cons(mark(Y), first(X, Z))]  
31.51/18.78	                                                                  
31.51/18.78	                     [mark(0())] =  [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 >= [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [0()]                         
31.51/18.78	                                                                  
31.51/18.78	                   [mark(nil())] =  [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 >= [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [nil()]                       
31.51/18.78	                                                                  
31.51/18.78	                    [mark(s(X))] =  [1 1] X + [4]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 >  [1 1] X + [0]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 =  [s(mark(X))]                  
31.51/18.78	                                                                  
31.51/18.78	            [mark(cons(X1, X2))] =  [1 6] X1 + [0]                
31.51/18.78	                                    [0 1]      [0]                
31.51/18.78	                                 >= [1 6] X1 + [0]                
31.51/18.78	                                    [0 1]      [0]                
31.51/18.78	                                 =  [cons(mark(X1), X2)]          
31.51/18.78	                                                                  
31.51/18.78	           [mark(first(X1, X2))] =  [1 1] X1 + [1 5] X2 + [8]     
31.51/18.78	                                    [0 1]      [0 1]      [4]     
31.51/18.78	                                 >  [1 1] X1 + [1 5] X2 + [4]     
31.51/18.78	                                    [0 1]      [0 1]      [4]     
31.51/18.78	                                 =  [a__first(mark(X1), mark(X2))]
31.51/18.78	                                                                  
31.51/18.78	                 [mark(from(X))] =  [1 7] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 >= [1 7] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 =  [a__from(mark(X))]            
31.51/18.78	                                                                  
31.51/18.78	                    [a__from(X)] =  [1 6] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 >= [1 6] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 =  [cons(mark(X), from(s(X)))]   
31.51/18.78	                                                                  
31.51/18.78	                    [a__from(X)] =  [1 6] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 >= [1 6] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 =  [from(X)]                     
31.51/18.78	                                                                  
31.51/18.78	
31.51/18.78	We return to the main proof.
31.51/18.78	
31.51/18.78	We are left with following problem, upon which TcT provides the
31.51/18.78	certificate YES(O(1),O(n^2)).
31.51/18.78	
31.51/18.78	Strict Trs:
31.51/18.78	  { mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.78	  , a__from(X) -> from(X) }
31.51/18.78	Weak Trs:
31.51/18.78	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.78	  , a__first(0(), X) -> nil()
31.51/18.78	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.78	  , mark(0()) -> 0()
31.51/18.78	  , mark(nil()) -> nil()
31.51/18.78	  , mark(s(X)) -> s(mark(X))
31.51/18.78	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.78	  , mark(from(X)) -> a__from(mark(X))
31.51/18.78	  , a__from(X) -> cons(mark(X), from(s(X))) }
31.51/18.78	Obligation:
31.51/18.78	  innermost runtime complexity
31.51/18.78	Answer:
31.51/18.78	  YES(O(1),O(n^2))
31.51/18.78	
31.51/18.78	We use the processor 'matrix interpretation of dimension 2' to
31.51/18.78	orient following rules strictly.
31.51/18.78	
31.51/18.78	Trs:
31.51/18.78	  { mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.78	  , a__from(X) -> from(X) }
31.51/18.78	
31.51/18.78	The induced complexity on above rules (modulo remaining rules) is
31.51/18.78	YES(?,O(n^2)) . These rules are moved into the corresponding weak
31.51/18.78	component(s).
31.51/18.78	
31.51/18.78	Sub-proof:
31.51/18.78	----------
31.51/18.78	  The following argument positions are usable:
31.51/18.78	    Uargs(a__first) = {1, 2}, Uargs(s) = {1}, Uargs(cons) = {1},
31.51/18.78	    Uargs(a__from) = {1}
31.51/18.78	  
31.51/18.78	  TcT has computed the following constructor-based matrix
31.51/18.78	  interpretation satisfying not(EDA).
31.51/18.78	  
31.51/18.78	    [a__first](x1, x2) = [1 0] x1 + [1 4] x2 + [0]
31.51/18.78	                         [0 1]      [0 1]      [0]
31.51/18.78	                                                  
31.51/18.78	                   [0] = [0]                      
31.51/18.78	                         [0]                      
31.51/18.78	                                                  
31.51/18.78	                 [nil] = [0]                      
31.51/18.78	                         [0]                      
31.51/18.78	                                                  
31.51/18.78	               [s](x1) = [1 0] x1 + [0]           
31.51/18.78	                         [0 1]      [2]           
31.51/18.78	                                                  
31.51/18.78	        [cons](x1, x2) = [1 0] x1 + [4]           
31.51/18.78	                         [0 1]      [2]           
31.51/18.78	                                                  
31.51/18.78	            [mark](x1) = [1 2] x1 + [0]           
31.51/18.78	                         [0 1]      [0]           
31.51/18.78	                                                  
31.51/18.78	       [first](x1, x2) = [1 0] x1 + [1 4] x2 + [0]
31.51/18.78	                         [0 1]      [0 1]      [0]
31.51/18.78	                                                  
31.51/18.78	         [a__from](x1) = [1 2] x1 + [7]           
31.51/18.78	                         [0 1]      [4]           
31.51/18.78	                                                  
31.51/18.78	            [from](x1) = [1 2] x1 + [0]           
31.51/18.78	                         [0 1]      [4]           
31.51/18.78	  
31.51/18.78	  The order satisfies the following ordering constraints:
31.51/18.78	  
31.51/18.78	              [a__first(X1, X2)] =  [1 0] X1 + [1 4] X2 + [0]     
31.51/18.78	                                    [0 1]      [0 1]      [0]     
31.51/18.78	                                 >= [1 0] X1 + [1 4] X2 + [0]     
31.51/18.78	                                    [0 1]      [0 1]      [0]     
31.51/18.78	                                 =  [first(X1, X2)]               
31.51/18.78	                                                                  
31.51/18.78	              [a__first(0(), X)] =  [1 4] X + [0]                 
31.51/18.78	                                    [0 1]     [0]                 
31.51/18.78	                                 >= [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [nil()]                       
31.51/18.78	                                                                  
31.51/18.78	    [a__first(s(X), cons(Y, Z))] =  [1 0] X + [1 4] Y + [12]      
31.51/18.78	                                    [0 1]     [0 1]     [4]       
31.51/18.78	                                 >  [1 2] Y + [4]                 
31.51/18.78	                                    [0 1]     [2]                 
31.51/18.78	                                 =  [cons(mark(Y), first(X, Z))]  
31.51/18.78	                                                                  
31.51/18.78	                     [mark(0())] =  [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 >= [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [0()]                         
31.51/18.78	                                                                  
31.51/18.78	                   [mark(nil())] =  [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 >= [0]                           
31.51/18.78	                                    [0]                           
31.51/18.78	                                 =  [nil()]                       
31.51/18.78	                                                                  
31.51/18.78	                    [mark(s(X))] =  [1 2] X + [4]                 
31.51/18.78	                                    [0 1]     [2]                 
31.51/18.78	                                 >  [1 2] X + [0]                 
31.51/18.78	                                    [0 1]     [2]                 
31.51/18.78	                                 =  [s(mark(X))]                  
31.51/18.78	                                                                  
31.51/18.78	            [mark(cons(X1, X2))] =  [1 2] X1 + [8]                
31.51/18.78	                                    [0 1]      [2]                
31.51/18.78	                                 >  [1 2] X1 + [4]                
31.51/18.78	                                    [0 1]      [2]                
31.51/18.78	                                 =  [cons(mark(X1), X2)]          
31.51/18.78	                                                                  
31.51/18.78	           [mark(first(X1, X2))] =  [1 2] X1 + [1 6] X2 + [0]     
31.51/18.78	                                    [0 1]      [0 1]      [0]     
31.51/18.78	                                 >= [1 2] X1 + [1 6] X2 + [0]     
31.51/18.78	                                    [0 1]      [0 1]      [0]     
31.51/18.78	                                 =  [a__first(mark(X1), mark(X2))]
31.51/18.78	                                                                  
31.51/18.78	                 [mark(from(X))] =  [1 4] X + [8]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 >  [1 4] X + [7]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 =  [a__from(mark(X))]            
31.51/18.78	                                                                  
31.51/18.78	                    [a__from(X)] =  [1 2] X + [7]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 >  [1 2] X + [4]                 
31.51/18.78	                                    [0 1]     [2]                 
31.51/18.78	                                 =  [cons(mark(X), from(s(X)))]   
31.51/18.78	                                                                  
31.51/18.78	                    [a__from(X)] =  [1 2] X + [7]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 >  [1 2] X + [0]                 
31.51/18.78	                                    [0 1]     [4]                 
31.51/18.78	                                 =  [from(X)]                     
31.51/18.78	                                                                  
31.51/18.78	
31.51/18.78	We return to the main proof.
31.51/18.78	
31.51/18.78	We are left with following problem, upon which TcT provides the
31.51/18.78	certificate YES(O(1),O(1)).
31.51/18.78	
31.51/18.78	Weak Trs:
31.51/18.78	  { a__first(X1, X2) -> first(X1, X2)
31.51/18.78	  , a__first(0(), X) -> nil()
31.51/18.78	  , a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
31.51/18.78	  , mark(0()) -> 0()
31.51/18.78	  , mark(nil()) -> nil()
31.51/18.78	  , mark(s(X)) -> s(mark(X))
31.51/18.78	  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
31.51/18.78	  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
31.51/18.78	  , mark(from(X)) -> a__from(mark(X))
31.51/18.78	  , a__from(X) -> cons(mark(X), from(s(X)))
31.51/18.78	  , a__from(X) -> from(X) }
31.51/18.78	Obligation:
31.51/18.78	  innermost runtime complexity
31.51/18.78	Answer:
31.51/18.78	  YES(O(1),O(1))
31.51/18.78	
31.51/18.78	Empty rules are trivially bounded
31.51/18.78	
31.51/18.78	Hurray, we answered YES(O(1),O(n^2))
31.51/18.78	EOF