YES(?,O(n^1)) 0.00/0.37 YES(?,O(n^1)) 0.00/0.37 0.00/0.37 We are left with following problem, upon which TcT provides the 0.00/0.37 certificate YES(?,O(n^1)). 0.00/0.37 0.00/0.37 Strict Trs: 0.00/0.37 { f(X) -> n__f(X) 0.00/0.37 , f(0()) -> cons(0(), n__f(n__s(n__0()))) 0.00/0.37 , f(s(0())) -> f(p(s(0()))) 0.00/0.37 , 0() -> n__0() 0.00/0.37 , s(X) -> n__s(X) 0.00/0.37 , p(s(X)) -> X 0.00/0.37 , activate(X) -> X 0.00/0.37 , activate(n__f(X)) -> f(activate(X)) 0.00/0.37 , activate(n__s(X)) -> s(activate(X)) 0.00/0.37 , activate(n__0()) -> 0() } 0.00/0.37 Obligation: 0.00/0.37 innermost runtime complexity 0.00/0.37 Answer: 0.00/0.37 YES(?,O(n^1)) 0.00/0.37 0.00/0.37 Arguments of following rules are not normal-forms: 0.00/0.37 0.00/0.37 { f(0()) -> cons(0(), n__f(n__s(n__0()))) 0.00/0.37 , f(s(0())) -> f(p(s(0()))) 0.00/0.37 , p(s(X)) -> X } 0.00/0.37 0.00/0.37 All above mentioned rules can be savely removed. 0.00/0.37 0.00/0.37 We are left with following problem, upon which TcT provides the 0.00/0.37 certificate YES(?,O(n^1)). 0.00/0.37 0.00/0.37 Strict Trs: 0.00/0.37 { f(X) -> n__f(X) 0.00/0.37 , 0() -> n__0() 0.00/0.37 , s(X) -> n__s(X) 0.00/0.37 , activate(X) -> X 0.00/0.37 , activate(n__f(X)) -> f(activate(X)) 0.00/0.37 , activate(n__s(X)) -> s(activate(X)) 0.00/0.37 , activate(n__0()) -> 0() } 0.00/0.37 Obligation: 0.00/0.37 innermost runtime complexity 0.00/0.37 Answer: 0.00/0.37 YES(?,O(n^1)) 0.00/0.37 0.00/0.37 The input was oriented with the instance of 'Small Polynomial Path 0.00/0.37 Order (PS,1-bounded)' as induced by the safe mapping 0.00/0.37 0.00/0.37 safe(f) = {1}, safe(0) = {}, safe(n__f) = {1}, safe(n__s) = {1}, 0.00/0.37 safe(n__0) = {}, safe(s) = {1}, safe(activate) = {} 0.00/0.37 0.00/0.37 and precedence 0.00/0.37 0.00/0.37 activate > f, activate > 0, activate > s, f ~ 0, f ~ s, 0 ~ s . 0.00/0.37 0.00/0.37 Following symbols are considered recursive: 0.00/0.37 0.00/0.37 {activate} 0.00/0.37 0.00/0.37 The recursion depth is 1. 0.00/0.37 0.00/0.37 For your convenience, here are the satisfied ordering constraints: 0.00/0.37 0.00/0.37 f(; X) > n__f(; X) 0.00/0.37 0.00/0.37 0() > n__0() 0.00/0.37 0.00/0.37 s(; X) > n__s(; X) 0.00/0.37 0.00/0.37 activate(X;) > X 0.00/0.37 0.00/0.37 activate(n__f(; X);) > f(; activate(X;)) 0.00/0.37 0.00/0.37 activate(n__s(; X);) > s(; activate(X;)) 0.00/0.37 0.00/0.37 activate(n__0();) > 0() 0.00/0.37 0.00/0.37 0.00/0.37 Hurray, we answered YES(?,O(n^1)) 0.00/0.38 EOF