UNIWERSYTET
WARSZAWSKI

Artificial Intelligence in Theorem Proving

(Sztuczna inteligencja w dowodzeniu)

Cezary Kaliszyk

MIMUW, March 2020

Overview

Last Lectures
® Premise Selection
® Adaptations of standard machine learning algorithms
® Deep learning for premise selection

Today

e Unification in Predicate Logic (and other logics)

* Unification in Functional Programming (A-calculus)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification: Motivation

In the next part of the lecture, we will need the details of the unification procedure.

Intuitively unification is a way two similar terms can be made same using a
substitution.

It has many uses in logic and in functional programming

Will be need it both as a basis for the functioning of ATPs (and we will want to
guide ATPs using machine learning in the further part of the course) and it will
also be used to define better machine learning features

The remainder of this lecture will formally define unification, first in logic, second
in functional programming

Artificial Intelligence in Theorem Proving

Substitution Definitions (1/2)

Definition
® substitution is set
0 ={ti/x1,...,tn/Xn}
with terms ti,..., t, and pairwise different variables xi, ..., x,

® given substitution 6 = {t1/x1,...,t,/xn} and expression E, instance EO of
E is obtained by simultaneously replacing each occurrence of x; in E by t;

® composition of substitutions 6 = {t1/x1,...,ta/xn} and o = {s1/y1,...,sc/yx} is
substitution

0o = {tio/x1, ..., tao/xa} U{si/yi | Vj yi # x;}

Example
0= {g(y,z)/x,a/y} E = P(f(y),x,y)
o ={f(y)/x,f(x)/z} E0 = P(f(a),g(y,2),a)
0o = {g(y,f(x))/x,aly, f(x)/z} o0 = {f(a)/x,f(g(y,2))/z,a/y}

Artificial Intelligence in Theorem Proving

Substitution Definitions (2/2)

Definition
® substitution 6 is at least as general as substitution o if u Op = o
® unifier of set S of terms is substitution @ such that Vs, t € S sf = t0

® most general unifier (mgu) is at least as general as any other unifier

Example

terms f(x,g(y), x) and f(z, g(u), h(u)) are unifiable:
{h(a)/x,a/ly,h(a)/z,a/u} {a/u}

unifiers {h(u)/x,u/y, h(u)/z} mgu
{h(g(u))/x,8(u)/y, h(g(u))/z,g(u)/u} {g(u)/u}

Artificial Intelligence in Theorem Proving

Unification Algorithm

Theorem

unifiable terms have mgu which can be computed by unification algorithm

Unification Algorithm

Perform the following steps (in any order)
d decomposition

E1, f(Sl,...,S,,) ~ f(f.‘l,...7i‘,,)7 E;
El, S1~t, ..., Sp R ty, E>

t removal of trivial equations

E17 t~t, E>
E, E
v variable elimination
Ei, x=~t, E Ei, t=x, E
—— 2= and —/——————
(El, EQ)O' (El, E2)0

if x does not occur in t (occurs check) and o = {t/x}

Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y), x) = f(z,g(u), h(u))

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

d{
y &~ u, z= h(u)
vl {u/yvy
z = h(u)
v {h(w)/z}

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

d{
y &~ u, z= h(u)
vl {u/yvy
z = h(u)
v {h(w)/z}
O

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

d{
y &~ u, z= h(u)
vl {u/yvy
z = h(u)
v {h(w)/z}

mgu

{z/xH{u/y}{h(uv)/z}

Artificial Intelligence in Theorem Proving

Unification Example

Example
f(x,8(y),x) = f(z,g(u), h(u))
dd

d{
y &~ u, z= h(u)
vl {u/yvy
z = h(u)
v {h(w)/z}

mgu

{h(u)/x,uly, h(u)/z}

Artificial Intelligence in Theorem Proving

Unification: Properties

Theorem

® there are no infinite derivations

U=5 V=6, W=ypy -

(these are useful if we want to report a reason why particular terms do not unify)

Artificial Intelligence in Theorem Proving

Unification: Properties

Theorem

® there are no infinite derivations
U=o, V=g W=y -
® jfs and t are unifiable then for every maximal derivation

SRt =g Ei =0, B2 =0, -+ =0, En

(these are useful if we want to report a reason why particular terms do not unify)

Artificial Intelligence in Theorem Proving

Unification: Properties

Theorem

® there are no infinite derivations
U=o, V=g W=y -
® jfs and t are unifiable then for every maximal derivation

SRt =g Ei =0, B2 =0, -+ =0, En
° E,=0O

(these are useful if we want to report a reason why particular terms do not unify)

Artificial Intelligence in Theorem Proving

Unification: Properties

Theorem

® there are no infinite derivations
U=o, V=g W=y -
® jfs and t are unifiable then for every maximal derivation

SRt =g Ei =0, B2 =6, -+ =4, En
[] n:D

® 0102030, Is mgu of s and t

(these are useful if we want to report a reason why particular terms do not unify)

Artificial Intelligence in Theorem Proving

Unification: Properties

Theorem

® there are no infinite derivations
U=o, V=g W=y -
® jfs and t are unifiable then for every maximal derivation

SRt =g Ei =0, B2 =0, -+ =0, En
[] n:D

® 010203 0, Is mgu of s and t
Optional Failure Rules
E, f(Sl,,..,Sn)%g(tl,...,tm), E, Ei, x~t, E Ei, t=x, E

1 1 1
if x occursin t

(these are useful if we want to report a reason why particular terms do not unify)

Artificial Intelligence in Theorem Proving

Unification beyond first-order logic

We've seen unification for first-order logic terms

But unification also works for example on types (e.g. types in simply-typed
A-calculus, or in functional programming)

We'll introduce a minimal ML (Ocaml / SML) like language and show how
unification is used to find most general types of expressions (programming
language interpreters do this!)

Warning: There is a notation change in how substitutions are represented in logic
and in functional programming. Be careful! (In the exam or in final assignment |
will accept any notation)

Artificial Intelligence in Theorem Proving

Core ML

Definition (Expressions)

M-Calculus

—_—~
ex=x|ee|xe|_c |let x=-eine]if e then e else e

primitives/constantsT
let binding
conditional

Primitives
Boolean: true, false, <, >, ...
Arithmetic: x, +, —, —, 0, 1, ...
Tuples: pair, fst, snd
Lists: nil, cons, hd, tl

Artificial Intelligence in Theorem Proving

What is Type Checking?

¢ Given some environment (assigning types to primitives)

together with a core ML expression and a type

check whether the expression really has that type

(with respect to that environment)

Artificial Intelligence in Theorem Proving

Preliminaries

Definition (Types)

function type constructor
—
Ti=_a |To7|g(n...,T)

type variable data type constructor

Convention
® type variables a, g, a1, ..., B3, Bo, ...
e function type constructor ‘—" is right associative

* base data type constructors: int, bool (instead of int(), bool())

Example
int — bool, (int — list(int)) — bool, list(ag) — int, ...

Artificial Intelligence in Theorem Proving

Preliminaries (cont'd)

(Typing) environment E: maps (variables and) primitives to types
(e:T) € E “e is of type T in E”
(note: parentheses around e : 7 will be usually dropped)

(Typing) judgment:
Ere:r “it can be proved that expression e has
type T in environment E”

Example
¢ environment P = {+ : int — int — int, nil : list(«), true : bool, ...}

¢ judgement P F true : bool
® judgement P} true : int

Convention
E,e: T abbreviates EU{e: 7}

Artificial Intelligence in Theorem Proving

The Type Checking System C

EFe:m—1m EFe:m

(ref) Ete e:m

Ee:tkhe:r (eop)

Exx . mbke:n . Ere:n Ex: mbe:n
EFxe . n omn ™ EFletx—e ine:n

(let)

Ete :bool EFe:7 Ebe:T
E Fif e; then e else e3 : 7

(ite)

Artificial Intelligence in Theorem Proving

°® environment E = {true : bool, + : int — int — int}
® judgment E F (Ax.x) true : bool

Proof.

E,x : bool F x : bool (abs)
abs
E - Ax.x : bool — bool E F true : bool
E I (Ax.x) true : bool

(app)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

°® environment E = {true : bool, + : int — int — int}
® judgment E F Ax.x + x : int — int

Try it! If you have issues ask on the chat.

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

What is Type Inference?

* Given some environment

together with a core ML expression

® and a type

infer a unifier (type substitution) —if possible—

such that the most general type of the expression is obtained

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Preliminaries (switch to functional notation)

Type variables:

{a} if7=a«
TVar(t) £ { TVar(n) UTVar(ry) ifr=m —n
Ui<ic, TVar(m) if 7 =g(m,...,7)
Type substitution: ¢ is mapping from type variables to types
Application:
o(a) if T=a«
70 £ { 10 — Too fr=m—>mn
g(no,...,mho) ifT=g(m,...,7n)

Ec={e:70|e:T€cE}

Composition: o102 & 050071, i.e., a oa(o1())

Artificial Intelligence in Theorem Proving

Example

T=a—= (v — a3)
o = {a/int — int, a1 /list(az) }

oy ={az/ag, an/a,afar}

TVar(t) ={a,a1,a3}
7o = (int — int) — (list(a2) = a3)
TVar(ro) = {az, a3}
ooy = {a/int — int, oy /list(«@), az/ag, ap/at

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Problems

Definition
* unification problem is (finite) sequence of equations
TIR T Ta T,

n

® [0 denotes empty sequence

® type substitution o is unifier of unification problem if
TIO = T(0;...;Th0 = T)O

® process of computing a unifier is called unification

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

The Unification System U

Evig(ri,....,m0) =~ g(i,...,7h): E>
Ey,mm~Ty.. ;T T B

(d1)

Ei,mm — 1= T{ — 72/;E2
E,mrmnrmb

do

Ey a1, Ey ad¢TVar(r)
(Ev; B2){a/T}

E;r=a B, ad TVar(r)
(Ev; E2){ar/7}

(V1

(v2

Ey,T=T B

Ei; B ®

Artificial Intelligence in Theorem Proving

Unification Problem (cont'd)

Notation
E :>5,') E’ if rule r from U applied to equations E yields E’

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Problem (cont'd)

Notation

E :>5,') E’ if rule r from U applied to equations E yields E’
Theorem

if 1 =00 By =82 . =01 0 then By has unifier oy 05

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

Unification Problem (cont'd)

Notation
E :>5,') E’ if rule r from U applied to equations E yields E’

Theorem
if E :>5,'11) E, :>((;'22) :>¢(,rn”j11) O then Ey has unifier oy ---0n_1

Example
; ~ i (d1) ~
list(bool) ~ list(a) =~ bool ~ «
(v2)
= {a/bool} U

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Unification Problem (cont'd)

Notation
E=0F if rule r from U applied to equations E yields E’
Theorem
if E :>5,'11) E, :>((;r22) :>¢(,rn”j11) O then Ey has unifier oy ---0n_1
Example
list(bool) ~ list(ar) =" bool ~ a
(v2)
= {a/bool} U
Remarks

¢ unification always terminates

® the order of applying inference rules has no (dramatic) effect

Artificial Intelligence in Theorem Proving

Type Inference Problems

® E> e« is type inference problem

® gs.t., Eot e:ago (if exists) is solution (otherwise: e not typable)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

The Type Inference System 7

E,e:mg>e:m E>e e:T
—— (con)
ToR T Epe: a1 E>e:«a
Er> M x.e:T Epletx=e ine:7
(abs)

Ex:ai1>e:ayTra; — ap

E > if ¢ then & else e3 : 7
Ere :boolE>e:T E>e3: T

(ite)

Ere:aEx:a>e:

(app)

(let)

Artificial Intelligence in Theorem Proving

Recipe - Type Inference

Input
core ML expression e and typing environment E

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Recipe - Type Inference

Input
core ML expression e and typing environment E

Algorithm
start with E > e : o (fresh type variable ag)

use Z to transform E > e : ag into unification problem u
(if at any point no rule applicable Not Typable)

if possible solve u (obtaining unifier o) otherwise Not Typable

Artificial Intelligence in Theorem Proving

Recipe - Type Inference

Input
core ML expression e and typing environment E

Algorithm

start with E > e : o (fresh type variable ag)

use Z to transform E > e : ag into unification problem u
(if at any point no rule applicable Not Typable)

if possible solve u (obtaining unifier o) otherwise Not Typable

Output

the most general type of e w.r.t. E is ago

Artificial Intelligence in Theorem Proving

Example

Find most general type of let id = Ax.x in id 1 w.r.t. P

See the two attached videos! (Or you can try yourself)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Some notes on unification:

The algorithms for first-order unification are worst-case exponential (Robinson's
algorithm).

There exist linear algorithms, but with a really bad constant, so exponential ones
are used in practice

Unification for more complex structures quickly becomes hard, in fact higher-order
unification is undecidable

Artificial Intelligence in Theorem Proving

Additional Literature (not required)

More on various properties of unification

Warren D. Goldfarb.
The undecidability of the second-order unification problem.
Theor. Comput. Sci., 13:225-230, 1981.

Krystof Hoder and Andrei Voronkov.
Comparing unification algorithms in first-order theorem proving.
In Barbel Mertsching, Marcus Hund, and Muhammad Zaheer Aziz, editors, K/
2009: Advances in Artificial Intelligence, 32nd Annual German Conference on
Al, Paderborn, Germany, September 15-18, 2009. Proceedings, volume 5803
of Lecture Notes in Computer Science, pages 435—443. Springer, 2009.

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Summary

This Lecture
® Unification in Logic

¢ Unification in Functional Programming

Next
® Syntactic features
* Model features

® Unification based features

ML-evaluation

Machine learning in automated theorem proving

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

