
Correctness and Availability
Building Computer Algebra on top of Proof Assistants
and making Proof Assistants available over the Web

Cezary Kaliszyk

Correctness and Availability

Building Computer Algebra on top of Proof Assistants
and making Proof Assistants available over the Web

een wetenschappelĳke proeve op het gebied van de
Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrĳging van de graad van doctor
aan de Radboud Universiteit Nĳmegen

op gezag van de rector magnificus
prof. mr. S.C.J.J. Kortmann,

volgens besluit van het College van Decanen
in het openbaar te verdedigen op donderdag 3 september 2009

om 10:30 uur precies

door

Cezary Kaliszyk

geboren op 4 augustus 1981
te Warschau, Polen

Promotor:

Prof. dr. J.H. Geuvers

Copromotor:

Dr. F. Wiedĳk

Manuscriptcommissie:

Prof. dr. H.P. Barendregt
Prof. dr. M. Beeson (San Jose State University)
Prof. dr. A.M. Cohen (Technische Universiteit Eindhoven)
Dr. J.R. Harrison (Intel Corporation)
Dr. J. McKinna

This research was partially supported by the NWO Project 600.065.130.24N19
FEAR and partially supported by the SURF Project Web-deductie voor het on-
derwĳs in formeel denken.
The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

c© Copyright 2009 Cezary Kaliszyk

ISBN 978-90-9024444-0

IPA Dissertation Series 2009-18

Typeset with LATEX2ε
Printed by PrintPartners Ipskamp, Enschede.

This work is licensed under a Creative Commons Attribution-
No Derivative Works 3.0 Netherlands License. To view a copy of

this license, visit: http://creativecommons.org/licenses/by-nd/3.0/nl/.

http://creativecommons.org/licenses/by-nd/3.0/nl/

Acknowledgments

First, I would like to thank my co-promotor Freek Wiedĳk and my promotor
Herman Geuvers not only for their scientific advice and research suggestions
but also for the inspiration and motivation they gave me.

I thank the reading committee, consisting of Henk Barendregt, Michael Bee-
son, Arjeh Cohen, John Harrison and James McKinna.

Many people showed interest in my research. The discussions with Russell
O’Connor, Dan Synek, Pierre Corbineau, Bas Spitters, Venanzio Capretta, Li-
onel Mamane influenced me in my research. I thank everyone of the Foundations
group in Nĳmegen for being social and friendly and for creating a nice working
environment.

For a year my research was also carried out within the SURF Web Deduction
project. I am grateful to its members, and I would especially like to thank
Maxim Hendriks and Femke van Raamsdonk. For three months I pursued an
internship at the National University of Singapore. I would like to thank Chin
Wei Ngan and everyone in the PLS II laboratory at NUS.

I would like to thank my friends at work: Wojtek, Łukasz, Pavol, Henriëtte,
Botond, Martin, Agnieszka. The discussions with you brought many interesting
ideas, and the coffee breaks together were enjoyable.

Finally, my greatest gratitude goes to my family, for being there when nec-
essary. Your support and understanding were indispensable throughout my
education.

Nĳmegen, 2009

v

Contents

Acknowledgments v

Introduction 1

I Basing Computer Algebra on Proof Assistants 9

1 Computer Algebra in HOL Light 11
1.1 Introduction . 11

1.1.1 Motivation . 11
1.1.2 Approach . 12
1.1.3 Related work . 13
1.1.4 Contents . 15

1.2 Architecture . 15
1.2.1 Input-response loop . 16
1.2.2 Abstract CAS conversion 17

1.3 CAS-like knowledge . 19
1.3.1 Knowledge base . 19
1.3.2 Knowledge representation 20
1.3.3 Numerical approximations 21
1.3.4 Assumptions . 22
1.3.5 Manipulating assumptions 24

1.4 Concluding remarks . 25

2 Automating partiality side conditions 27
2.1 Introduction . 27

2.1.1 Motivation . 27
2.1.2 Approach . 29
2.1.3 Related work . 29
2.1.4 Contents . 30

2.2 Approach . 30
2.2.1 Basic definitions . 30
2.2.2 Example in mathematical notation 31

2.3 The formalization . 33

vii

viii CONTENTS

2.3.1 Design decisions . 33
2.3.2 HOL Light implementation details 33
2.3.3 How to extend the system 38

2.4 Concluding Remarks . 39

3 Computing with classical real numbers 41
3.1 Introduction . 41

3.1.1 The two universes of Coq 42
3.2 Logical Consequences of Coq real numbers 43

3.2.1 The axiomatic definition of the real numbers 43
3.2.2 Decidability of Π0

1 sentences 44
3.3 The construction of the isomorphism 46

3.3.1 Building a constructive reals structure based on Coq reals 46
3.3.2 The isomorphism . 48

3.4 Computation with classical reals 50
3.4.1 Solving ground inequalities 50
3.4.2 Using facts about Coq reals in CoRN 51

3.5 Related Work . 52
3.6 Concluding remarks . 53

II Interactive formalized math on the web 55

4 Web Interfaces for Proof Assistants 57
4.1 Introduction . 57

4.1.1 Motivation . 57
4.1.2 Our Approach . 58
4.1.3 Related work . 58
4.1.4 Contents . 59

4.2 Asynchronous DOM Modification 60
4.3 Generic Interface for Proof Assistants 61
4.4 General Architecture . 62

4.4.1 The Client Part . 63
4.4.2 The Server Part . 63

4.5 Security and Efficiency . 64
4.5.1 User side . 64
4.5.2 Server side . 64

4.6 Prototype . 65
4.6.1 Possible Uses . 67

4.7 Implementation . 67
4.7.1 The server process . 68
4.7.2 The server environment 68
4.7.3 Client side . 69

4.8 Concluding Remarks . 70

CONTENTS ix

5 Teaching logic using a proof assistant 73
5.1 Introduction . 73

5.1.1 Motivation . 73
5.1.2 Our contribution . 74
5.1.3 Related work . 75
5.1.4 Contents . 75

5.2 Experiences in the project . 75
5.3 Architecture of the interface . 77
5.4 Natural deduction for first-order logic 77

5.4.1 Visualization . 79
5.5 The exercise set . 80
5.6 Outlook . 83

5.6.1 Beyond the project . 84

6 Merging proof styles 85
6.1 Introduction . 85

6.1.1 Procedural versus declarative proof assistants 85
6.1.2 Approach . 90
6.1.3 Related Work . 91
6.1.4 Contents . 91

6.2 Translating minimal logic tree proofs 92
6.3 Translating proofs in more complicated logical systems 94
6.4 Simplification of obtained proofs 95
6.5 Simplification of forward proofs 98
6.6 Implementation for Coq proofs 99

6.6.1 Transforming Coq proof state in a flag style proof 100
6.7 Concluding Remarks . 101

7 Repositories for formal proofs 103
7.1 Introduction . 103

7.1.1 Motivation . 103
7.1.2 Related Work . 104
7.1.3 The future of proof interfaces 105
7.1.4 Chapter contents . 105

7.2 Web Technologies . 106
7.2.1 Wikis . 106

7.3 Architecture . 106
7.3.1 Main Components . 106
7.3.2 Global Design . 107
7.3.3 Consistency Issues . 108
7.3.4 Towards a hybrid approach 109

7.4 Prototype . 110
7.4.1 Implementation . 110
7.4.2 Security and Efficiency . 113
7.4.3 How to integrate other provers 114

7.5 Concluding Remarks . 114

x CONTENTS

8 Environment for Computer Mathematics 117
8.1 Vision . 117
8.2 Progress of this thesis towards the vision 118

8.2.1 Multivaluedness . 118
8.3 Future Work towards obtaining the Vision 119

8.3.1 Computer Algebra with Strong Semantics 119
8.3.2 MathWiki . 119
8.3.3 Using a web interface for software 119

8.4 Conclusion . 120

Bibliography 121

Summary 133

Samenvatting (Dutch summary) 135

Streszczenie (Polish summary) 139

Curriculum Vitae 141

Introduction

In this thesis we present an approach to extending the usability of proof assis-
tants in mathematics and computer science. We do it in two ways: by combining
proof assistants with computer algebra systems and by providing interactive ac-
cess to such systems on the web.

Proof Assistants
Proof assistants are computer programs that help the user build a proof that is
mechanically checked. In a typical proof assistant one can set up a theory that
describes mathematical concepts or models a computer system. Proof assistants
support expressing logical properties of the objects in this theory, proving those
properties and checking such proofs.

A formalization of a property in a proof assistant ensures that there are no
mistakes in a mathematical proof or that there are no errors in the model of
a piece of software. Mathematical proofs are sometimes not accepted by the
community of mathematicians, since they are too large to be comprehensible,
or because they require results from computer programs [Hal05]. In computer
science mistakes may have even more severe consequences. Examples include
the error introduced by Intel in the Pentium processor chip [Pra95] which cost
the company millions of dollars and the conversion error in the Ariane 5 missile
software which caused it to explode 36 seconds after launch.

Proof assistants are typically interactive tools. The specified theory and
proofs can be edited. The tool provides information about required proof obli-
gations and allows further refinement of the proof. This is often done by manu-
ally providing a direction in which to proceed. Some proof assistants allow for
automation. This is provided by various decision procedures that solve or sim-
plify goals in a particular theory. Finally proof assistants may check a complete
proof, sometimes providing a certificate of correctness.

There are many proof assistants. There are multiple reasons for this. First,
there are many possible mathematical foundations. There exist proof assis-
tants based on type theory, on higher order logic and on set theory. Some
are based on classical logic and some on intuitionistic logic. Second, there are
many interaction models. In some proof assistants proofs are processed by
stepping over a proof script, in some proof assistants proofs are sequences of

1

2 INTRODUCTION

toplevel commands (LCF-style), in others proofs are processed in batch mode
as a whole. Some proof assistants are tactic based and some implement declar-
ative languages. Furthermore there are many automation strategies or decision
procedures. The level of development of the libraries of various proof assistants
differs per domain.

The most important proof assistants are Coq, HOL Light, PVS [ORS92,
Pvs], Isabelle [NPW02], NuPRL [NuP], Agda [Agd], HOL [Hol], Mizar [Muz93,
Miz], and ACL2 [KM96].

Coq [CDT08, BC04] has been developed since 1984 at INRIA in France. It
is based on the Calculus of Inductive Constructions which is a version of type
theory. It has been implemented in Objective Caml, and has been used for the
formal verification of many proofs, both from mathematics and from computer
science. The most impressive verifications done using Coq are the proof of the
Four Colour Theorem by Georges Gonthier [Gon06] and the development of a
verified C compiler by Xavier Leroy and others [Ler06].

HOL Light [Har96a] is a proof assistant for classical higher order logic. It has
been developed by John Harrison. It is implemented in Objective Caml and is an
extension of its toplevel. Compared to other proof assistants it has a relatively
simple foundations and its kernel (the core part that implements the logic) is
very small. The most impressive results created in HOL Light are the proof of
the Jordan Curve Theorem by Thomas Hales and the proof of the correctness
of the kernel [Har06]. It is also the theorem prover with the highest number of
theorems proved from a list of top 100 mathematical theorems [Wie09].

The use of proof assistants is currently limited to specialists in the domain.
Formalization is a difficult process for many reasons. First, to make a proof as
done on paper accepted by a proof assistant, one needs to add many details.
Furthermore analyzing software in a proof assistant requires not only modeling
the software itself, which may be a big piece of code, but also the semantics of
interpretation or compilation of the software as well as the whole environment
in which the software is supposed to run.

This is why proof assistants are mostly used by specialists, and are not widely
known to mathematicians and computer scientists. In contrast mathematicians
often use computer algebra software.

Computer Algebra Systems
Computer algebra systems (CASs) are computer programs that process math-
ematical expressions. Most CASs allow manipulation of symbolic expressions
including automatic simplifications, performing substitutions, solving equations
over various domains, calculating arbitrary precision numerical approximations
and plotting graphs of functions.

The main computer algebra systems are: Maple [CGGG83, CGG+91], Math-
ematica [Wol03] and Matlab. They are all commercial programs with no source
available. They include general purpose mathematical utilities, not only com-
puter algebra. Each of these three is based on a small efficient kernel written in

INTRODUCTION 3

a low-level language and each provides different versions of high level languages
designed with writing mathematical algorithms in mind.

Many CASs are designed to be easy to use for a beginner. There are many
ways in which this is achieved. The interface of most CASs resembles an ad-
vanced calculator. Computer algebra systems allow the users to enter math-
ematical expressions in traditional mathematical notation and output results
in user friendly format. There are built-in mechanisms to automatically handle
partiality as well as care about side conditions in the expressions. Defining struc-
tures or functions and computing with them is easy, so performing experiments
inside a CAS is simple.

This simplicity comes with a drawback. The algorithms implemented in
those systems are not formally checked and are therefore known to make mis-
takes [Asl96, Wes99]. Even further: the formulas and the algorithms of computer
algebra systems do not have a precise semantics. They are implemented in such
a way to resemble the style mathematicians simplify expressions on paper, so it
is not always obvious what are the correctness criteria for such simplifications.
The errors may come from missing assumptions, incorrect types, incorrect han-
dling of multi-valuedness or from errors in the algorithm implementation.

Web technology
Most proof assistants are interactive. When a theorem is expressed in a proof
assistant the proof follows by the user issuing a sequence of commands, that
transform the state. The proof assistant responds with the remaining goals to
be proven. The resulting sequence of commands, called the proof script is often
unreadable without the intermediate states.

This is often the case when proofs are rendered on the Web. Most proof as-
sistants already provide tools for rendering proofs as HTML pages, sometimes
using advanced math rendering schemes like MathML [CIMP03]. The commu-
nities of users of various provers have a variety of tools that allow the display of
created information about developments in them on the web in static represen-
tations. Examples include the HELM tool [APCS01] developed in the MoWGLI
project and the Mizar Mathematical Library [BR03].

With the development of web technology people are more and more accus-
tomed to having a connection to the internet at all times. There are many
services available just by accessing certain web pages. This allows one to use
a particular tool without installing it on ones machine. Examples include web
interfaces to e-mail, calendars, chat clients, word processors and maps.

One of the most knows services available via the web is Wikipedia. It is a
free, multilingual encyclopedia based around the wiki concept. A wiki is a col-
lection of Web pages that allow visitors to modify content or add pages, with the
changes published immediately. Wikis usually offer simplified markup languages
to allow users to quickly create elegant pages. There are many implementations
of the wiki concept, but all allow collaborative authoring of knowledge reposito-
ries.

4 INTRODUCTION

There are many services for doing informal mathematics online; examples
include computation, computer algebra systems available on the web [Map95],
as well as systems for gathering and exploring mathematical knowledge [Gru06].

Advances in web technology allow the creation of an interactive interface to
proof assistant that resembles, and has the functionality of a prover interface
running locally, but which is available completely within a web browser. In
the second part of this thesis, we present such an interface, as well as possible
extensions that which allow it to be used for teaching and in a wiki environment.

Contents of this Thesis

The thesis consists of two parts. Part I provides approaches that combine com-
puter algebra systems and proof assistants. Part II presents the use of proof
assistants on the web.

The chapters of this work are based on peer reviewed published articles.
Slight modifications were made to the chapters to avoid redundancy. Further-
more the layout and visual style of the papers was changed to improve consis-
tency.

Many of the code fragments presented in the Thesis are written in Coq and
HOL Light. We assume the knowledge of the syntax of these proof assistants
and basic knowledge of functional programming to understand the presented
proof assistant definitions, tactics, and proof scripts.

Chapter 1:

Various algorithms and simplifications present in computer algebra systems are
already available in state-of-the-art proof assistants. In this chapter we present
a prototype computer algebra system built on top of a proof assistant, HOL
Light. This architecture guarantees that one can be certain that the system
will make no mistakes. All expressions in the system will have precise semantics
and the proof assistant will check the correctness of all simplifications according
to this semantics. The system actually proves each simplification performed by
the computer algebra system.

Although our system is built on top of a proof assistant, we designed the
user interface to be very close in spirit to the interface of systems like Maple
and Mathematica. The system, therefore, allows the user to easily probe the
underlying automation of the proof assistant for strengths and weaknesses with
respect to the automation of mainstream computer algebra systems. The system
that we present is a prototype, we describe how it can be scaled up to a practical
computer algebra system.

This chapter is an adaptation of a peer reviewed article [KW07]. The article
was written in collaboration with Freek Wiedĳk, who contributed to designing
the behavior of the system and the semantics of the simplification operations.

INTRODUCTION 5

Chapter 2:
The computer algebra system designed in Chapter 1 had trouble dealing with
even the simplest partial functions. This was due to the fact that assump-
tions about the domains of partial functions are necessary when we guarantee
correctness. On the other hand when mathematicians write about partial func-
tions they tend not to explicitly write these side conditions. In this Chapter
we present an approach to formalizing partiality in real and complex analysis in
total frameworks that allows the side conditions to be kept hidden from the user
as long as they can be computed and simplified automatically. This framework
simplifies defining and operating on partial functions in formalized real analysis
in HOL Light. Our framework allows simplifying expressions under partiality
conditions in a proof assistant in a manner that resembles computer algebra
systems.

This chapter is an adaptation of the peer reviewed article [Kal08].

Chapter 3:
In Computer Algebra we use floating point numbers to approximate real number
expressions. Numeric methods (e.g. interval arithmetic) are used to provide
correctness of these approximations. In Coq, Russell O’Connor’s work [O’C07]
allows working with infinite precision real numbers effectively. In this chapter
we investigate how to use the classical theory of real numbers together with
approximations computed constructively.

There are two main Coq libraries that have a theory of the real numbers.
The Coq standard library gives an axiomatic treatment of the classical theory
of real numbers, while the CoRN library from Nĳmegen defines a constructively
valid theory of real numbers. We present a way of making these two libraries
compatible by showing that their real number structures are isomorphic assum-
ing the classical axioms already present in the standard library reals.

To do this we show that the axioms of classical Coq reals imply decidability
of Π0

1 sentences. We show that if ϕ(n) is decidable for any number n, then we
can decide if it is true for all numbers, and this decision can be made using the
constructive disjunction ⊕. Namely: (∀n : N. ϕ(n)⊕¬ϕ(n))→ (∀n : N. ϕ(n))⊕
¬(∀n : N. ϕ(n)). This shows that classical logic leaks into the computational
part.

We then show that this isomorphism preserves some basic constants (0,
1, e, π), arithmetic operations and the elementary transcendental functions
(exponential, logarithm, sine, cosine). This allows us to use O’Connor’s decision
procedure for solving ground inequalities present in CoRN using the theory of
real numbers from the Coq standard library. It also makes it possible to use
some of the theorems from the Coq standard library with the CoRN reals, if
one does not mind having classical logic.

This chapter is a slight adaptation of a submitted article [KO08]. It was writ-
ten in collaboration with Russell O’Connor who developed the fast implementa-
tion of the constructive reals in CoRN and who helped with the formalizations

6 INTRODUCTION

presented in the chapter.

Part II
In the second part of this thesis we look at interactive formalized mathematics
on the web. We describe a web interface for proof assistants and we investigate
the use of this interface in teaching logic and in collaborative proof development.

Chapter 4:
This chapter describes an architecture for creating responsive web interfaces for
proof assistants. The architecture combines current web development technolo-
gies with the functionality of local prover interfaces. We create an interface that
is available completely within a web browser, but resembles and behaves like a
local one. Security, availability and efficiency issues of the proposed solution are
described. We present a prototype implementation of a web interface for Coq
and describe our experiments with other proof assistants.

This chapter is an adaptation of the peer reviewed article [Kal07].

Chapter 5:
This chapter describes the system ProofWeb developed for teaching logic to
undergraduate computer science students. The system is based on the proof
assistant Coq. It is made available to the students through the interactive
web interface. Part of this system is a large database of logic problems. This
database also holds the solutions of the students. The students do not need to
install anything beyond a web browser to be able to use the system (not even
a browser plug-in) and the teachers are able to centrally track progress of their
students.

The system makes the full power of Coq available to the students, but si-
multaneously presents the logic problems in a way that is customary in under-
graduate logic courses. Part of the system is a parser that indicates whether the
students used the automation of Coq to solve their problems or that they solved
it themselves using only the inference rules of the logic. For these inference rules
dedicated tactics for Coq have been developed.

The system has already been used in a number of type theory courses and
logic undergraduate courses at the universities in Nĳmegen, Amsterdam and
Eindhoven.

This chapter is a slight adaptation of the peer reviewed article [MHW08]. It
was written in collaboration with Maxim Hendriks, Femke van Raamsdonk and
Freek Wiedĳk. The database of the exercises was created by Maxim Hendriks,
the special Coq tactics were written by Maxim Hendriks and Freek Wiedĳk.

Chapter 6:
There are two different styles of writing natural deduction proofs:

INTRODUCTION 7

• the ‘Gentzen’ style in which a proof is a tree with the conclusion at the
root and the assumptions at the leaves,

• the ‘Fitch’ style (also called ‘flag’ style) in which a proof consists of lines
that are grouped together in nested boxes.

In proof assistants these two kinds of natural deduction correspond to pro-
cedural proofs and declarative proofs. Procedural proofs are tactic scripts that
work on one or more subgoals, like those of the Coq, HOL and PVS systems.
Declarative proofs are sequences of named statements, like those of the Mizar
and Isabelle/Isar languages.

In this chapter we give an algorithm for converting tree style proofs to flag
style proofs. We then present a rewrite system that simplifies the results.

This algorithm can be used to convert arbitrary procedural proofs to declara-
tive proofs. It does not work on the level of the proof terms (the basic inferences
of the system), but on the level of the statements that the user sees in the goals
when constructing the proof.

The algorithm from this chapter has been implemented in the ProofWeb
interface to Coq. In ProofWeb a proof that is given as a Coq proof script (even
with arbitrary Coq tactics) can be displayed both as a tree style and as a flag
style proof.

This chapter is an adaptation of an article submitted to [KW08] written in
collaboration with Freek Wiedĳk.

Chapter 7:
In this chapter we combine the web interface from Chapter 4 with a wiki to create
a complete environment for the online development of formalized mathematics.
In this framework users can collaborate and see a rendered and browsable ver-
sion of their work. We describe a prototype based on Coq, its web interface,
and a modified version of the MediaWiki code-base. We discuss computing de-
pendencies and preserving repository consistency. We explain limitations of the
current prototype and we give a perspective towards a more robust solution.

This chapter is an adaptation of the peer reviewed article [CK07]. It was
written in collaboration with Pierre Corbineau. We collaborated in modifying
MediaWiki and he adapted the coqdoc utility to produce MediaWiki compatible
output.

8 INTRODUCTION

Part I

Basing Computer Algebra
on Proof Assistants

9

Chapter 1

Certified Computer Algebra
on top of an Interactive
Theorem Prover

1.1 Introduction
1.1.1 Motivation
In this chapter we study the relationship between proof assistants and computer
algebra systems trying to find a semantically valid and user friendly approach
to manipulating mathematical formulae.

A computer algebra system has at its core a set of algorithms for processing
mathematical expressions, which is provided to the user through an interface.
The formulas, that the algorithms of a computer algebra system manipulate
generally do not have precise semantics. They are simplified in a way that
resembles the style a mathematician simplifies expressions on paper. To perform
such simplifications the symbols that occur in those formulas do not need a
mathematical definition inside the system.

On the other hand, the mathematical symbols that occur in proof assistants
always have precisely defined semantics. Proof assistants not only manipulate
symbolic expressions, but also theorems that are stated using those symbols.
The basic activity in a proof assistant is not simplification of expressions but
construction and checking of proofs of theorems. A proof assistant generally
does not have many algorithms available for automating the application of those
theorems, and to make use of those that are there one needs to have good
knowledge of the prover environment.

Computer algebra systems do not always give correct answers. This happens
because those systems do not certify the operations performed. There can be
various reasons for errors in a CAS: assumptions can be lost, types of expressions
can be forgotten [Asl96], the system might get confused between branches of

11

12 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

‘multi-valued’ functions, and of course the algorithms of the system themselves
may contain implementation errors [Wes99].

As an example of the kind of error that we are talking about here, consider
the following Maple session that tries to compute

∫∞
0

e−(x−1)2
√
x

dx numerically in
two different ways:

> int(exp(-(x-t)^2)/sqrt(x), x=0..infinity);

1
2

e−t
2
(
−

3(t2)
1
4 π

1
2 2

1
2 e
t2
2 K3

4
(t22)

t2
+ (t2) 1

4π
1
2 2 1

2 e
t2
2 K7

4
(t

2

2)
)

π
1
2

> subs(t=1,%);

1
2
e−1(−3π 1

2 2 1
2 e

1
2K3

4
(1

2) + π
1
2 2 1

2 e
1
2K7

4
(1

2)
)

π
1
2

> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity));

1.973732150

The two numerical values obtained are significantly different. The first value
was obtained by integrating the function symbolically, substituting the value
of t to 1 and computing an approximation. The second value was obtained by
integrating with the value of t substituted. (We are showing Maple here, but
all major computer algebra systems make errors like this.)

To be sure that results are correct, one may use a proof assistant instead of
a CAS. But in that case even calculating simple things, like adding fractions or
calculating a derivative of a polynomial becomes a non-trivial activity, which
requires significant experience with the system.

1.1.2 Approach
Our approach is to implement a computer algebra system on top of a proof
assistant. For our prototype we chose the LCF-style theorem prover HOL
Light [Har96a]. We obtain a CAS system where the user can be sure of the
correctness of the results. Such a system has strong semantics, that is all vari-
ables have types, all functions have precise definitions in the logic of the prover
and for every simplification there is a theorem that ensures the correctness of
this simplification.1 The interface of our computer algebra system resembles

1In HOL Light simplification is implemented through what in the LCF world is called
conversions [Pau83]. A conversion is a function that takes a term and returns an equational
theorem. The theorem has the given term on its left side and a simplified version of the term
on the right side.
In this chapter ‘simplification’ should not be taken to be a fixed reduction hard-wired into

the logic of the proof assistant, the way it is in type theoretical systems like Coq [CDT08].

1.1. INTRODUCTION 13

most CAS systems. It has a simple read-eval-print loop. The language of the
formulas typed into the system is as close as possible to the language in which
formulas are generally entered in CAS and to the language in which mathematics
is done on paper. Interaction with the system currently looks like this:

In1 := (3 + 4 DIV 2) EXP 3 * 5 MOD 3
Out1 := 250
In2 := vector [&2; &2] - vector [&1; &0] + vec 1
Out2 := vector [&2; &3]
In3 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x)))
Out3 := λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

– &12 * sin (&2 * x)
In4 := N (exp (&1)) 10
Out4 := #2.7182818284 + ... (exp (&1)) 10 F
In5 := 3 divides 6 ∧ EVEN 12
Out5 := T
In6 := Re ((Cx (&3) + Cx (&2) * ii) / (Cx (– &2) + Cx (&7) * ii))
Out6 := &8 / &53
In7 := x + &1 - x / &1 + &7 * (y + x) pow 2
Out7 := &7 * x pow 2 + &14 * x * y + &7 * y pow 2 + &1
In8 := sum (0,5) (λx. &x * &x)
Out8 := &30

In the above:

• & is the coercion from natural numbers to real numbers

• Cx is the coercion from real numbers to complex numbers

• # is the notation for decimal floating point numbers

• vector is a notation for vectors that give all their coordinates

• vec is a notation for a vector that is same in all dimensions

• N r p is a notation for a decimal approximation of the number r to decimal
precision p and ... is the approximation rest, explained further in Section
1.3.3

1.1.3 Related work
One can distinguish three categories of systems that try to fill the gap between
computer algebra and proof assistants:

• Theorem provers inside computer algebra systems:

– Analytica [BCZ98],
– Theorema [BDJ+00],
– RedLog [DS97],
– logical extension of Axiom [PT98].

• Frameworks for mathematical information exchange between systems:

14 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

– MathML [CIMP03],
– OpenMath [BCC+02],
– OMSCS [BCGH99],
– MathScheme [CFW03] (information exchange within the system),
– Logic Broker [AZ00].

• Bridges between theorem provers and computer algebra systems, also re-
ferred to as ad-hoc information exchange solutions:

– PVS and Maple [ADG+01],
– HOL and Maple [HT98],
– Isabelle and Maple [BHC95],
– NuPrl and Weyl [Jac95],
– Omega and Maple/GAP [Sor00],
– Isabelle and Summit [BP99].

In the bridges category, it is important to distinguish different levels of degree
of trust between the prover and the CAS. In certain approaches the prover uses
the algorithms present in the CAS without checking their correctness, i.e. as an
oracle. In other approaches the prover takes the CAS output and then builds a
verified theorem out of it. In this case there are again two possibilities: either the
result is verified independently of how the CAS obtained it, or the system takes
a trace of the rules that the CAS applied, and then uses that as a suggestion
for what theorems should be used to construct a proof of the result.

In the approaches mentioned above either the proof assistant is built inside
the CAS, or the proof assistant and the CAS are next to each other. In our
work however, we have the CAS inside the proof assistant.

Of course in many proof assistants there already is CAS-like functionality,
in particular many proof assistants have arithmetic procedures and powerful
decision procedures. However, we do not just provide the functionality, but also
build a system that can be used in a similar way as most other computer algebra
systems are used.

Our system is the first combination of a CAS inside a proof assistant (in
which all simplifications are validated), with an interface that has the customary
CAS look and feel.

The advantage of this approach is that all calculations done by our system
are certified by the architecture of our system. No translation of formulas or se-
mantics is necessary, as the CAS shares the internal data structures of the proof
assistant. There is no need to worry about mistakes in the implementation of
the CAS, since all conversions are certified using the logic of the underlying
prover. There is no verification required after the result is obtained, thanks
to the creation of theorems alongside with the results. All simplifications per-
formed by our architecture are completely certified, that is if a certificate for a
particular simplification does not exist [BC01] it cannot be performed.

1.2. ARCHITECTURE 15

1.1.4 Contents
The chapter is organized as follows: in Section 1.2 we present the architecture
of the system. In Section 1.3 we talk about the knowledge base. Finally in
Section 1.4 we present a conclusion.

1.2 Architecture
We present a general architecture for a certified computer algebra system, and
we will describe an implementation prototype [Kal]. For the implementation we
chose the proof assistant HOL Light [Har96a]. The factors that influenced our
choice were: the possibility to manipulate terms to create the conversions, prove
theorems and implement the system in the same language2, as well as a good
library of analysis and algebra. The system created is rather a proof of concept
than a real product, which is why the efficiency of the underlying prover was
not a decisive factor. In particular we perform all computations inside the proof
assistant’s logic.

Our system is divided in three independent parts (Fig. 1.1): the user interface
(input-response loop), the abstract algorithm of dealing with a formula (we will
call this the CAS conversion), and the knowledge that is specific to the CAS
system. That architecture allows the user both to use it as a computer algebra
system, as well as making it usable in the context of theorem proving3.

User
interface

Parsing and
type-checking

user input

Replacing
history

Abstract CAS
conversion

Handling of
commands

CAS-like
Knowledge

Traversing
the term

Discrimination
Net

Theorems

Conversions

Handling of
assumptions

Figure 1.1: Architecture of a CAS inside a TP system with responsibilities of the
parts of our implementation marked. The prover is not marked on the figure,
since all parts make use of it, by using its type of terms and theorems, as well
as tactics and conversions to build them.

HOL Light does not have its own toplevel, instead it uses the OCaml toplevel
and syntax with additional parsing and printing functionality. It is loaded inside
the OCaml toplevel by reading the prover files one by one and executing the
definitions provided there inside the interpreter. All definitions and proofs are
valid OCaml statements given in the programming language syntax and the

2HOL Light is written in OCaml and is provided as an extension of it. Terms and theorems
are defined as ML types in the toplevel and tactics are provided as ML functions. The only
modification to the toplevel itself are special parsing and printing mechanisms provided.

3The CAS conversion can be applied to a goal to be proved using CONV_TAC.

16 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

theorems proved are objects of the theorem type. The prover libraries are also
provided as OCaml source files. Additionally they often provide a make.ml file
that loads all the files needed for a particular theory. We implemented the CAS
in a similar way; that is providing a make file that loads all the needed theories
and our files. HOL Light is often checkpointed for reuse and this can be also
done with the CAS built inside HOL.

HOL Light does not have a unified library. The user chooses a number of
theories that will be requires in a particular development. In our prototype
implementation we load the main theory of HOL Light and the following inde-
pendent theories:

• Binomials

• Permutations

• Vectors

• Matrix operations (Determinants)

• Real analysis and Transcendental functions

• Approximations and decimal approximations

• Rounding

• Complex Analysis

1.2.1 Input-response loop
The system displays a prompt, where one can write expressions to be simplified,
as well as commands. We distinguish expressions to be computed or simplified
from commands that represent actions that do not evaluate anything, like listing
theorems or modifying and printing assumptions.

Every expression that is not recognized as a command is passed to the CAS
conversion, which will try to compute or simplify the expression. The theorem
given back by the CAS conversion is the certificate that the output is correct.
If the CAS conversion is not able to simplify the term, the system returns an
instance of reflexivity, and the output is then the same as the input.

In most CASs variables can be used without declaring them, but for cer-
tain algebraic operations one can define a variable to be of a particular type
(necessary for example in Magma). Our system can handle expressions in both
ways. The free variables are typed using HOL Light type inference, but one
can also require a specific type with the assumetype command (described in
Section 1.3.4).

Most computer algebra systems allow one to reuse previously typed in ex-
pressions and calculated outputs. One may calculate In1 + Out2. The loop has
to have access to all expressions entered, theorems proved and outputs. In our
framework every expression entered is stored with its type, so when it is reused,
parsing the same expression, even in a different context, gives the same type.

1.2. ARCHITECTURE 17

The input-response loop is provided in two files. The first, cas_commands.ml
has the following functions:

• to store a list of already known commands, and implements a handle for
parsing and executing commands

• to create a hash table that will be used as a cache for the intermediate
computation results. Since the cache will be used in the whole processing
it has to be done first. Commands for printing the cache and clearing it
are also provided here.

• to create a list of assumptions and the conversions that perform simplifi-
cation under assumptions and assume variables. A command for printing
all assumptions as well as assumptions about a particular variable (about
var) are added; those will be described in Subsection 1.3.5.

cas_loop.ml contains the rest of the functionality:

• A modified version of the term parsing mechanism. The default term
parsing mechanism prints a warning when a term contains variables that
are not defined or quantified. Since we use the parsing mechanism in a
different way, this would mean that the user would be given a huge amount
of warnings about every input. We allow inferring the types of variables
according to prioritized types, and ignore the warnings.

• A history of inputs and outputs and a mechanism that is able to distin-
guish In[] and Out[] terms in the input. They are replaced with the
stored preterms and the whole expression is reparsed. This allows history
replacement that is compatible with the HOL Light type-checking kernel.

• A function (cas_mainloop) which presents a user with an input-response
loop that performs a conversion on every input. The input after parsing
and history replacement is processed by the conversion and the output is
printed. The mainloop also calls the commands defined in the previous
file. This is intended to be used with the CAS conversion described in the
next subsection, but is independent from it.

• The history of all the theorems proved by the conversion and the theorems
command that prints the simplification history.

1.2.2 Abstract CAS conversion
To be able to benefit from CAS simplification in theorem proving, it is useful
to have the CAS functionality available as a single conversion (that we call here
the CAS conversion). Since the underlying prover can be further developed
with theorems proved later, it is useful to separate the CAS conversion from the
knowledge that it uses. For this reason the CAS conversion is parametrized. The
general idea behind the CAS conversion is to try to apply all sub-conversions
from the knowledge base at all positions in the term until no more simplifications

18 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

can be performed (Fig. 1.2). Applying the same conversions to a modified term
is necessary, since some conversions return terms, parts of which can be again
simplified.

We are not aiming at completness of the conversions, since completeness
can be only assured for simple theories. However any algorithm that exists
for computer algebra systems can be implemented in a HOL Light conversion
that does the same calculation while building the proof of correctness of this
conversion. Examples may include conversions that perform algorithms for in-
tegration, conversions that perform a split and join for calculating results that
have more branches or conversions that simplify term operations (for example
a higher order summation operator).

Yes

Yes YesNo No

No

Not
Found

Not
FoundFound

Found

Lookup the
term in cache

Was it
simplifiable

Is it a combination
or an abstraction

Return
the theorem

Fail
Is any subterm

simplifiable

Simplify
and restart

Lookup the term
in discrimination net

Simplify
and restart

Fail

Figure 1.2: Our implementation of the CAS conversion first tries to look up
the term in a built-in cache (for efficiency). If the term is an application or
an abstraction, then it tries to simplify subterms recursively (not performed
if the term is known not to be expandable or is a suggestion that should not
be expanded, for example NUMERAL or assuming). Finally it tries to apply all
conversions from the knowledge base to the term.

The file that defines the CAS conversion includes:

• The PROGRESS_DEPTH_CONV conversion which is a version of a depth-first
conversion, that traverses a term like DEPTH_CONV, by unfolding applica-
tions and abstractions and trying the given conversion at all levels in a
term. The difference is that it additionally checks for progress on the level
of the whole term, and does not fail if the conversion fails only at one
level. The conversion is implemented both in the top-down and bottom
up priority versions.

• A discrimination net to be used for the stored conversions. Since the
knowledge of the CAS system can be independent from the CAS con-

1.3. CAS-LIKE KNOWLEDGE 19

version, we will describe the usage of the discrimination net and adding
knowledge to it in the next section. We also provide functions that allow
storing particular conversions or conversions with associated patterns in
the discrimination net, as well as adding particular theorems for rewriting.
A conversion for handling conditional rewrite rules is provided with the
discrimination net. We will describe how theorems given as implications
are given to this conversion in the next section.

• Finally the cas_cache_conv conversion which behaves as shown in Fig. 1.2.
This is the main recursive function called by the CAS conversion. The
main CAS conversion cas_conv calls this conversion and if it fails returns
an instance of reflexivity.

1.3 CAS-like knowledge
The knowledge of a computer algebra system is substantially different from
that of a proof assistant. Usually the main part of a CAS are algorithms that
manipulate formulas, and the theory on which they are based is not represented
inside the system. On the other hand, the primary part of a proof assistant is
a large collection of definitions and theorems.

There are different possible approaches we implement to the creation of
theorems that certify correctness of algorithms implementing CAS-style simpli-
fications. In certain cases a theorem is built alongside with the term analyzed.
Sometimes it is sufficient to do a calculation in OCaml code and only verify the
result in the logic. For example a factorization of big integers or polynomials
can be simply verified by multiplying them out. This is where our approach is
similar to the “bridge” approach. The important difference is that an algorithm
for a calculation together with a certification form a single conversion that can
be introduced in the knowledge base.

1.3.1 Knowledge base
The knowledge base is a separate part of the system. The conversions are kept
in a discrimination net (a structure that allows matching a term to a number
of patterns efficiently). There is an interface on the theorem prover level that
allows introducing knowledge to the knowledge base in the following three forms:

• Rewrite rules, for example:
|- ∀z.abs (norm z) = norm z

• Conditional rewrite rules, for example:
|- ∀x.&0 <= x ==> abs x = x

• Conversions that are able to simplify terms of a particular form. Those
are used only on arguments that match a particular pattern and return
an ad-hoc rewrite rule. An ad-hoc rewrite rule is a theorem that is gener-
ated to be used for rewriting the formula, but is not intended to be kept

20 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

in the knowledge base as such (although our implementation keeps all
theorems used for rewriting in a cache, implemented as a hash-table, for
efficiency reasons). For example the HOL Light conversion DIVIDES_CONV
takes terms that match the pattern n divides m and then returns ad-hoc
rewrite rules for the given data like |- 33 divides 123453 <=> T.

The CAS conversion has to check whether the given term matches one of the
rewrite rules and ad-hoc rewrite rules in the knowledge base. For efficiency it
keeps all theorems and conversions included in the knowledge base in a discrim-
ination net. To allow matching conversions with even less overhead, optional
patterns for matching associated with conversions can be provided. The dis-
crimination net is not changed, the particular used instances are only added to
the cache.

1.3.2 Knowledge representation

To resemble a CAS system, we try to provide functions that perform the oper-
ations that are given only as predicates in the theorem prover. This way the
formulas processed by the system can be in the “evaluation” form and not in
“verification” form.

Let us compare the ways in which one writes differentiation in the HOL
Light library and the way it is written in our CAS:

∀x. (f diffl (g x)) x → diff f = g
(f diffl (g x)) x → diff f x = g x

In HOL Light the diffl predicate takes three arguments: the function (on
the left of the predicate), the value of its derivative and the point. To write a
general derivative we need to generalize the point and replace the value with
the derivative function in this point. Even then it is still a binary predicate.

In most computer algebra systems there exists a simple diff operator, that
takes a function and returns its derivative. Using the Hilbert’s choice opera-
tor, we created a such function, defined: diff f = λx. εv. (f diffl v)
x. This means that diff f is defined and can be requested by the user, even
if f is not differentiable. We also created a conversion that is able to calculate
the derivative of a function, if HOL Light’s DIFF_CONV can.

Just like we defined a functional form of differentiation, we also defined a
functional integration operator. Using these we can then compute the following
expressions in the system. In the following dint (a,b) (λx.f(x)) denotes the
definite integral

∫ b
a
f(x)dx:

1.3. CAS-LIKE KNOWLEDGE 21

In9 := dint (&1,&2) sin
Out9 := – &1 * cos (&2) + cos (&1)
In10 := dint (&1,&2) (λx. x pow n)
Out10 := &1 / &(n + 1) * &2 pow (n + 1) +

– &1 * &1 / &(n + 1) * &1 pow (n + 1)
In11 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) (&2)
Out11 := exp (exp (&2)) * exp (&2) pow 2 + exp (exp (&2)) * exp (&2) +

– &12 * sin (&4)
In12 := diff (λx. dint (x,x + &2) (λx. x pow 3))
Out12 := λx. &6 * x pow 2 + &12 * x + &8

If a function is not differentiable, or the system does not know how to differ-
entiate it, then the conversion is not able to simplify it, and the input is returned
unchanged. These differentiation and integration definitions do not work well
with partial functions. An approach to defining them, so that partial functions
are handled in a way that resembles computer algebra, will be described in the
following chapter.

The file cas_basic_convs.ml includes a number of conversions that simplify
commonly found computer algebra expressions as well as the differentiation
mechanism. More precisely:

• Simplification of integer expressions and integer polynomials

• Computation of binomial coefficients

• Expansion of finite sums

• Computation of some common complex expressions

• Verification of primality

• Expansion of decimal notation

• A conversion for simplifying differentiation.

1.3.3 Numerical approximations
In complex calculations computer algebra systems provide users with numerical
approximations. They are usually implemented with an approximation algo-
rithm, which keeps an error bound with every calculation. In a proof assistant
a numerical approximation must have its semantics completely defined, and the
algorithm has to respect the approximation definition and theorems that specify
its properties.

The two main ways of rounding a real number are down to an integer and to-
wards the nearest integer. Both these operations are not computable functions
(see for example [Les01]). This is a problem since in computer algebra, calculat-
ing an approximation is an operation that always terminates. Vuillemin [Vui88]
shows that a function that computes non-deterministically either one of those
values is a computable function. We will use a conversion that calculates the
value rounded both down and to nearest value, that terminates when one of
those calculations terminate.

22 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

We define the numerical approximation of a given number x to a precision p
decimal points behind the dot as identical to the number itself: N x p = x. It
is only a hint for the system that the number has to be simplified to a decimal
fraction plus a rest. It is the rest, that determines in which form is the number
given: rounded down or rounded to the nearest. For rest defined in this way
we provide a theorem, that states that the approximation can be different from
the exact value only on the last digit, and the difference is less than one.

In the following HOL Light definitions, N is the numerical approximation of
a number to a precision (following the convention of Mathematica) and ... is
the rest of a number to the given precision with an additional argument that
specifies the form of the rest. T stands for rounding to nearest and F stands for
rounding down.

... x p F = x - floor (&10 pow p * x) / &10 pow p

... x p T = x - floor (&10 pow p * x + &1 / &2) / &10 pow p

We then prove a theorem that states the correctness of the definition of ...:

|- abs(... x p T - x) < &1 / &10 pow p

The system is able to compute some numerical approximations with this
scheme (it currently returns the approximation rounded to nearest only if the
original number is already decimal):

In13 := N (&1 / &3) 8
Out13 := #0.33333333 + ... (&1 / &3) 8 F
In14 := N (&1 / &2) 3
Out14 := #0.500 + ... (&1 / &2) 3 T
In15 := N (sqrt #5.123456789) 8
Out15 := #2.26350542 + ... (sqrt #5.123456789) 8 F
In16 := N (dint (#0.1,#0.4) exp) 7
Out16 := #0.3866537 + ... (– &1 * exp #0.1 + exp (&2 / &5)) 7 F

The implementation loads the file cas_evalf.ml with the following func-
tionality for approximations:

• The definitions of N, ... and the theorem that proves, that approxima-
tions are close enough to the approximated number.

• A conversion that is able to round numbers in a used-defined fashion. This
is used for simplification of floor(...).

• A conversion that tries to evaluate the N terms that returns the approxi-
mation and the rest.

1.3.4 Assumptions
In most CASs it is possible to make type assumptions or logical assumptions
about variables. Examples include assuming a variable to be greater than zero,
greater than another variable, natural or real. There are various methods of
introducing assumptions in computer algebra systems:

1.3. CAS-LIKE KNOWLEDGE 23

• Assumptions associated with a simplification
in Mathematica: Simplify[Sin[n Pi], Element[n,Integers]]

• Global list of assumptions
in Maple: assume(x>0); sqrt(x*x);

• Asking the user for conditions on variables (e.g. Maxima)

• Adding assumptions automatically and silently to the prover environment
(e.g. MathXpert)

In our system we keep a global list of assumptions, which are Boolean prop-
erties that may be used later to instantiate assumptions of rewrite rules and
ad-hoc rewrite rules. In a big CAS the number of rules that can be used is
so big that asking the user seems not to be a good choice. Also automated
assuming would not behave well with many possible assumptions.

An assumption can be introduced by the user either using assume, which
takes a Boolean, or assumetype which takes a typed variable. An assumption
associated with a single simplification of a sub-term may be also introduced us-
ing assuming. The latter method temporarily changes the assumptions list to
simplifying the sub-expression. The assumptions will be added to the assump-
tions of the theorem generated by the CAS conversion, which is why changing
the assumptions list is only useful at the top-level of the expression to simplify.

The global list of assumptions is used by the conversions from the knowledge
base, therefore we consider is a part of the latter. To ensure the usage of variables
with correct types, type checking has to have access to this list. When an
expression is typed in the system it is type-checked in a particular context. This
context includes types already assigned to all free variables from the assumptions
list, as well as all variables for which types have been assumed with assumetype.
To do this, the latter are kept in another global list.

For example,
√
x2 cannot be simplified to x, since we don’t know whether x

is positive or not. Also x
x cannot be simplified to 1, since it is possible that x = 0.

In17 := sqrt (x * x)
Out17 := abs x
In18 := x / x
Out18 := x * inv x

An assumption about x, which states that it is greater than 1, allows the
simplification to find and proving certain numeric properties of x; which in turn
allows both the above formulas to be simplified:

In19 := assume (x > &1)
Out19 := T
In20 := x > #0.5
Out20 := T
In21 := sqrt (x * x)
Out21 := x
In22 := x / x
Out22 := &1

24 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

There are two ways in which assumptions are used: directly and indirectly.
The first way is to use an assumption directly in the derivation in unchanged
form. It can be used to a prove a reflexive theorem or to fill the requirement
of a certain conditional rewrite rule (or a conditional ad-hoc rewrite rule). An
assumption may be used as an indirect step in the derivation, for example
simplifying abs(x) to x requires x ≥ 0, and the assumption x > 1 can be used
for this.

1.3.5 Manipulating assumptions
A CAS has to provide a mechanism for adding assumptions and listing defined
assumptions. In our prototype we added the assumptions and about com-
mands, which resemble their Maple equivalents.

Command: about Argument: x
‘x > &1‘

In any approach it is hard to handle errors that may be caused by incorrect
parsing and printing. We try to be as close as possible to the original HOL
Light’s parsing and printing mechanism. In fact, the system currently uses
HOL’s term printing (with special output for errors) but, when parsing, the
system has to add typing information and distinguish commands from terms.
Special output is added, so that the user always knows when a given string has
been interpreted as a command.

To further lower the risk of parsing and printing problems, we add the
theorems command. It allows printing all theorems defined in a session. The
standard HOL Light theorem printing function is used for this. It is especially
useful for conversions that use assumptions, since the assumptions that have
been actually used to prove the theorem will be included in its assumptions
and will be printed on the left side of |-. Below are the first five and last two
theorems proved by the examples from this chapter:

Command: theorems
|- (3 + 4 DIV 2) EXP 3 * 5 MOD 3 = 250
|- vector [&2; &2] - vector [&1; &0] + vec 1 = vector [&2; &3]
|- diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) =

(λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +
– &12 * sin (&2 * x))

|- N (exp (&1)) 10 = #2.7182818284 + ... (exp (&1)) 10 F
|- 3 divides 6 ∧ EVEN 12 <=> T
...
x > &1 |- sqrt (x * x) = x
x > &1 |- x / x = &1

The last loaded file in our prototype implementation, cas_add_convs.ml,
adds all the conversions defined in the previous sections to the knowledge of the
CAS conversion. We give below parts of the code provided in this file:

cas_pattern ‘SUC(NUMERAL n)‘ NUM_SUC_CONV;

1.4. CONCLUDING REMARKS 25

cas_pattern ‘PRE(NUMERAL n)‘ NUM_PRE_CONV;
cas_pattern ‘FACT(NUMERAL n)‘ NUM_FACT_CONV;
cas_pattern ‘NUMERAL m < NUMERAL n‘ NUM_REL_CONV;
...
cas_pattern ‘int_add x y‘ cas_int_conv;
cas_pattern ‘int_sub x y‘ cas_int_conv;
...
cas_pattern ‘diff f‘ diff_conv;
cas_pattern ‘sum range f‘ sum_conv;
cas_pattern ‘N x p‘ evalf_conv;
cas_pattern ‘binom (n,m)‘ binom_conv;
cas_pattern ‘n divides m‘ DIVIDES_CONV;
cas_pattern ‘prime n‘ prime_conv;;
...
cas_eq_thm POW_2_SQRT_ABS;
cas_eq_thm SQRT_0;
cas_eq_thm ETA_AX;
cas_eq_thm CX_DEF;
cas_eq_thm SELECT_LEMMA;
...
cas_impl_thm abs_thm;
cas_impl_thm abs_neg_thm;
cas_impl_thm REAL_MUL_LINV;

1.4 Concluding remarks
Our work integrates computer algebra and proof assistant technology. We will
now look at how our architecture compares with what one gets by just having
a CAS or a proof assistant.

Developing a system according to our architecture (i.e., where the algorithms
not only generate the results, but also generate certificates of the correctness of
those results) will be slower than the development of traditional CAS systems
(because that only has to generate the results). As far as the performance of
the system is concerned, our architecture will be slower than a traditional CAS
as well. This is mostly because generating the certificates for all simplifications
is time consuming. However, we expect this slow-down over traditional CAS
to only multiply the running time by a constant factor. Our expectation is not
experiment based, but based on the architecture, we trace what a traditional
CAS does and provide proofs for every step.

When we compare our architecture to the way that one normally does CAS-
like manipulations in an interactive theorem prover, the main difference is the
interaction model. Our CAS system does not interactively work on proposi-
tions that are to be proved, but instead takes an expression and automatically
simplifies it.

A feature that we plan to investigate are the coercions that many proof

26 CHAPTER 1. COMPUTER ALGEBRA IN HOL LIGHT

assistants use, like the embedding of the integers in the real numbers or the
real numbers in the complex numbers. Currently a user of our prototype needs
to use the ‘&’ and ‘Cx’ symbols for this (as is customary in the HOL Light
library). A small improvement to the current situation might be to overload
the ‘&’ operator, but we would rather not make the user write these functions
at all.

An issue that our approach does not cover is completeness of the conversions.
In the case of rewrite rules the completeness is clear. But in the case of arbitrary
algorithms, it is not guaranteed by our architecture that a given conversion will
always terminate and never fail.

We presented an architecture for a certified computer algebra system, and
addressed some issues that were encountered when using this architecture, like
numerical approximations and variable assumptions. We also presented the
details of a prototype of our architecture that was implemented on top of a
state-of-the-art proof assistant. Although the prototype is not a powerful CAS
at the moment, we believe it can be extended into one, by extending the knowl-
edge base that the system uses and by providing more automatic simplification
algorithms.

We believe that both computer algebra systems and proof assistants cur-
rently have a problem. In computer algebra the lack of explicit semantics and
the lack of verification of the results inside the system makes the systems less re-
liable than one would like them to be. In proof assistants the powerful symbolic
manipulations that are taken for granted in computer algebra often are missing
and, even when present, it takes work and expertise to make use of them.

We claim that the architecture that we present here solves both problems
simultaneously. The computer algebra systems get explicit semantics and cer-
tification and the proof assistants get CAS-like functionality that makes them
more powerful and easier to use than they are today.

Chapter 2

Automating the generation
and verification of side
conditions in formalized
partial functions

2.1 Introduction
2.1.1 Motivation
Partiality is an important and difficult issue in formalizing mathematics. Math-
ematicians tend not to write explicit proofs about partial functions having their
arguments in their domains. It is common to see expressions that include terms
like:

. . .
1
x
. . .

without defining what the variable x is or giving any assumptions about it. On
the other hand these assumptions are necessary in proof assistants. Since most
proof assistants are total frameworks, a similar formula expressed there usually
looks like:

∀x ∈ R.x 6= 0⇒ . . .
1
x
. . .

These assumptions are obvious for any mathematician, in fact they can be
generated by an algorithm. All names that have not been defined previously are
considered to be universally quantified variables and all applications of partial
functions give rise to precondition assumptions about their arguments. Inferring
the types of variables is something that proof assistants are already good at,
usually giving the type of just one of the terms in an expression is enough to
infer the types of the others1.

1Some proof assistants allow prioritizing a type, that gets inferred automatically.

27

28 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

There are many examples of statements in libraries of theorems for proof
assistants that include assumptions which are often omitted in mathematical
practice. In particular the HOL Light library part concerning real analysis
includes statements like EXP_LN:

∀x.0 < x⇒ exp(ln(x)) = x

Here the type of x is inferred automatically as real from the type of the func-
tions (the complex versions of the exponent and logarithm functions have differ-
ent names in the library), but the domain conditions are not taken care of. The
real logarithm is defined only for positive numbers, so the positivity assumption
is required in statements of the theorems that talk about the logarithm, as well
as in proofs every time the logarithm is used.

Computer algebra systems allow applying partial functions to terms and
some of them have assumptions about variables computed automatically. This
might be one of the reasons why computer algebra systems are usually more
appealing than proof assistants for mathematicians. Unfortunately the way
assumptions are handled in those systems is often approximate. This can be
for example since assumptions were added in the later stage of the development
of a particular CAS and the checking that assumptions hold is added on a per-
algorithm basis. This is one of the reasons computer algebra systems sometimes
give erroneous answers. Therefore handling assumptions cannot be done in the
same way in theorem proving.

Our work on implementing a prototype computer algebra system in HOL
Light presented in the Chapter 1 has shown that proof assistants are already
able to perform many simplifications that one would expect from computer
algebra. The prototype is able to perform many computations that involve
total functions, but even the simplest operations that require understanding
partiality fail, since HOL Light is a total framework:

In1 := diff (diff (\x. &3 * sin (&2 * x) + &7 + exp (exp x)))
Out1 := \x. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x)
In2 := diff (\x. &1 / x)

Out2 := diff (\x. &1 / x)

The problem with the above example is that the function 1
x

is partial and
not defined at zero in HOL Light. Still, computer algebra systems asked for the
derivative of it reply with −1

x2 , since the original function is differentiable on the
whole domain where it is defined, and its derivative has the same domain. Our
approach will let the framework compute correctly this kind of expressions.

Finding an approach to handling partiality in an automated way might be
useful not only in formalizing partiality but also in formalizing functions that
operate on more complicated data structures, such as formalizing multivalued-
ness.

2.1. INTRODUCTION 29

2.1.2 Approach
Our approach is to let the user type the partial functions as functions on the
option type and show them to the user as such, but to perform all operations on
the total functions of the underlying proof assistant while keeping the domain
predicate alongside with the function. To do this we will have two represen-
tations for functions and convert between them. The first representation is
as functions of option types and the second is as pairs of total functions and
domain predicates. We will show how higher order functions (differentiation)
can be defined in this framework and how terms involving it can be treated
automatically.

2.1.3 Related work
There are multiple approaches and frameworks for formalizing partial recursive
functions. Ana Bove and Venanzio Capretta [BC05] introduce an approach to
formalizing partial recursive functions and show how to apply it in the Coq proof
assistant. Normally recursive functions are defined directly using Fixpoint, but
that allows only primitive recursion. A general recursive definition gives rise to
an inductively defined predicate whose constructors characterize the allowable
recursive calls of the function. A total recursive function may then be defined
by Fixpoint by recursion on proofs of this predicate.

Alexander Krauss [Kra06] has developed a framework for defining partial
recursive functions in Isabelle/Hol, that formally proves termination by search-
ing for lexicographic combinations of size measures. William Farmer [Far99]
proposes a scheme for defining partial recursive functions and implements it in
IMPS. The main difference is that those approaches and frameworks compute
the domains of partial recursive functions whereas we concentrate on functions
in analysis which cannot be obtained by recursion and where the domain is
limited because there are no values of the functions that would match their
intuitive definition or that would allow properties like continuity. Therefore we
need to determine the domains of composed functions.

The existing libraries for proof assistants contain formalized properties of
functions in real and complex analysis. There are common approaches to par-
tiality in existing libraries. It is common to define every function total. This is
the case for the HOL Light [Har96a] library. Division is defined to return zero
when dividing by zero. The resulting theory is consistent, only some theorems
have to include additional assumptions. For example REAL_DIV_REFL:

∀x.x 6= 0⇒ x

x
= 1.

Another common approach is to require proofs that arguments applied to
partial functions are in their domains. This is the case for the CoRN li-
brary [CFGW04] of formalized real and complex analysis for Coq. There di-
vision takes three arguments, the third one is a proof that the second argument
is different from zero.

30 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

There are approaches to include partiality in the logic of the proof assistant.
Those unfortunately complicate the logic very much and are already complicated
for first order logics [WZ03]. Some proof assistants are based on logics that
support partial functions. An example is PVS [ORS92] where partial functions
are obtained by subtyping.

Olaf Müller and Konrad Slind [MS97] present an approach for lifting func-
tions with the option monad that is closest to the one presented here. Their
approach is aimed at partial recursive functions where computation of the do-
mains of functions is not possible. Our approach is similar to applying the
option monad to the real and complex values, but since particular functions
need to have their domains reduced, we will explicitly compute and keep the
domains of functions and be able to transform these values back to original ones.

2.1.4 Contents
This chapter is organized as follows: in Section 2.2 we give the basic definitions
of the two representations of partial functions and we define the operations used
to convert between those representations. We also show a simplified example
of a computation with partial functions. In Section 2.3 we present the design
decisions and the details of our formalization. We show the automation works
and show its limitations. Finally in Section 2.4 we present concluding remarks
about the results of the chapter.

2.2 Approach

2.2.1 Basic definitions
Our approach will involve two representations of partial functions. We will
represent partial functions either as pairs of a total extension of the original
function and a domain predicate or a function from an option type to an option
type. The first representation will be used in all automated calculations and
the latter will be used in the input and if possible in the output since it best
resembles mathematical notation.

An option type is a type built on another type that has two constructors:
one denoting that the variable has a value and one used for no value. In proof
assistants they are usually written as SOME α and NONE. We adopt the convention
to denote those with α and −. To simplify reading of the types, variables of the
option type will be denoted as z and real variables as x.

We will define two operations to convert between the two representations.
Creating operations that work on the option type from the operations on the
underlying proof assistant type is similar to applying the option monad (bind
composed with return) to the underlying type. In fact this is equivalent to our
approach for total functions. For partial functions we additionally require the
desired domain so we create our own operation that will additionally require
the domain predicate and check it in the definition. We define @ that converts

2.2. APPROACH 31

functions from the pair representation to the option representation (written
as papp in the HOL Light formalization) and @−1 that converts a function
on the option type to a pair (punapp in HOL Light). The definition of @ is
straightforward:

(f,D)@z =
{
fx if z = x ∧D(x)
− otherwise

The inverse operation can be defined using the Hilbert operator (which we
will denote as ε). This operator takes a property and returns an element that
satisfies this property. The inverse operation is defined as:

@−1f = (λx.εv.f(x) = v, λx.∃v.f(x) = v)

The @−1 function is the left inverse of @, (in fact we prove this in our
formalization)2:

@−1(λz.(f,D)@z) = (f,D)

With the two operations definitions of the translations of the standard arith-
metic operations are simple:

a+ b =def @(λxy.(x+ y), λxy.>)

We can also define higher order functions that operate on partial functions
by embedding the existing higher order operators from the proof assistant, first
in the pair representation:

(f,D)′ =def (f ′, λx.D(x) ∧ f is differentiable in x)
f ′(z) =def (@−1(f)′)@z

2.2.2 Example in mathematical notation
With the definitions from the previous section it is possible to automatically
simplify the side conditions in partial functions, we will first show it in the
example and then show the full HOL Light definitions and the algorithm for
simplification in Section 2.3.2.

We will show a simplified example of automatically computing a derivative of
a partial function in our framework. We will denote the derivative of a function
f(x) as f(x)′. The user types an expression:

(λz.πz2 + cz + 2
z
)′

The expression that the user sees is written with standard mathematical
operators. All the operator symbols are overloaded, and they are understood as
the operations on partial functions. In the above expression z is a variable of
the option type. Most constants and expressions are their translations from the

2The @−1 function is not the right inverse of @, since (@−1f)@NONE = NONE but it is
not true that f(NONE) = NONE for an arbitrary function f .

32 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

underlying total functions or constants. The only partial functions are division
and differentiation that are defined in a special way. The translation of all
operators and constants is unfolded, and a total function and its domain are
computed3:

(λz.〈λx.πx2 + cx+ 2
x
, λx.x 6= 0〉@z)′

We finally translate the derivative. For the obtained function we add the
requirement that the derivative of the original function exists in the given point,
otherwise a function defined in one point would always be differentiable there.
This domain condition will be often quickly combined with the assumptions
about the domain of the original function:

λz.(〈(λx.πx2 + cx+ 2
x

)′, λx.x 6= 0∧ (λx.πx2 + cx+ 2
x

)is differentiable in x)〉@z)

We can then apply the decision procedure for computing derivatives of total
functions in the underlying proof assistant. This is possible because the defi-
nition of @ ensures that the result does not depend on the function outside its
domain. Since we also know the set on which the reciprocal is differentiable the
domain can be simplified:

λz.(〈(λx.2πx+ c− 2
x2), λx.x 6= 0〉@z)

Finally we try to return to the partial representation. This is done by recon-
structing a partial function with the same symbols and recomputing its domain.

λz.2πz + c− 2
z2 = λz.(〈(λx.2πx+ c− 2

x2), λx.x 6= 0〉@z)

Since the domains agree we can convert back and display the left hand side of
the above equation as the final result to the user.

Returning from the representation of the function as a total function and
its domain to the option type representation is not always possible, since a
partial expression does not need to have an original form. On the other hand
the simplification is often possible and when it is possible it is desired since it
allows for greater readability. An example where it is not possible is:

λz.
1
z
− 1
z

= λz.(〈λx.0, λx.x 6= 0〉@z)

but it is not equal to the constant function zero, since it does not have a value
when x is zero. Furthermore for values of the option type even y−y is not equal
to zero if y does not have a value, therefore even after simplification to zero its
value will depend on the variable y.

There are two approaches of treating this kind of terms. One can either
simplify it to zero leaving the domain condition or not simplify the expression

3In some proof assistants all computation is really simplification done by rewrite rules.
This is the case in HOL Light in which we will be formalizing this example, but we will refer
to those simplifications as computation in the text.

2.3. THE FORMALIZATION 33

at all. We currently do not simplify expressions for which we cannot find a
valid partial representation to return to. This is to avoid showing the user the
complicated representation with the domain conditions. A possible approach
that allows those simplifications and displays results in the option representation
will be mentioned in Section 2.4.

2.3 The formalization
2.3.1 Design decisions
For our formalization we chose HOL Light. The factors that influenced our
choice were: a good library of real and complex analysis, as well as the possibility
to write conversions in the same language as the language of the prover itself.
HOL Light is written in OCaml and is provided as an extension of it. This is very
convenient for developing since it allows generating definitions and simplification
rules by a programs an immediately using them in the prover.

In the representation with option types we use the vector type Rn → R
instead of the curried types R→ R→ . . .→ R to represent functions. One can
convert between these two representations in most proof assistants and the latter
representation is often preferred since it allows partial application. The reason
why we chose to work with the vector representation is that HOL Light does not
have general dependent types. Instead it has a bit less powerful mechanism that
only allows proving theorems that reason about An for any n. We will use this
to prove theorems about n-ary functions. With this approach some definitions
(papp mentioned below and its properties) will have to be defined for multiple
arities. On the other hand the theorems that are hard to prove only have to be
proved once; if we used curried functions, they would have to be proved for all
versions of currified functions that occur.

2.3.2 HOL Light implementation details
In this section we will give the formalization details, and to understand them
the knowledge of basic HOL Light [Har96a] definitions is required. We will show
an example of automatically computing the derivative of the partial function

f(x) = πx2 + cx+ 2
x
.

When the user inputs this function in the correct syntax in the main loop of the
CAS, the system responds with the correct answer:

In1 := pdiff (\x. SOME pi * x * x + SOME c * x + & 2 / x)
Out1 := \x. & 2 * SOME pi * x + SOME c + --& 2 / (x * x)

The system computed this derivative automatically, but we will look at the
conversions performed step by step. First let us examine the types in the en-
tered expression. The variable x used in the function definitions is of the type

34 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

(real)option. We overload all the standard arithmetic operators to their ver-
sions that take arguments of the (real)option type and produce results of this
type. The coercion from naturals operator & creates values of this type. The
coercion from the real type still needs to be written as SOME, since further
overloading of & would lead to ambiguity.

The semantics of the standard arithmetic operations is to return a value if all
arguments have a value and NONE if any of the arguments is NONE. For real partial
functions we define an operation (called papp) that will create a partial function
of type (real)option→ (real)option→ . . .→ (real)option from a pair of a
HOL Light total function real→ real→ . . .→ real and a predicate expressing
its domain real → real → . . .→ bool. We show below the definitions of papp
for one and two variables. In the formalization we see them as papp1, papp2,
. . . , but in the text we will refer to all those definitions together as papp:

new_definition ‘(papp1 (f, d) (SOME x) = if (d (lambda i.x)) then
(SOME (f (lambda i.x))) else NONE) /\
(papp1 ((f:A^1->A), (d:A^1->bool)) NONE = NONE)‘

new_definition ‘(papp2 ((f:A^2->A), (d:A^2->bool)) (SOME x) (SOME y) =
if (d (lambda i.if i = 1 then x else y)) then

(SOME (f (lambda i.if i = 1 then x else y))) else NONE) /\
(papp2 (f, d) NONE v = NONE) /\ (papp2 (f, d) v NONE = NONE)‘;;

In the above definitions we see the usage of lambda and $. Those are used
to create vectors and refer to vector elements. The reasons for using the vector
types instead of curried type for functions was discussed in Section 2.3.1.

The total binary operations can be defined by applying a common operator,
that defines binary operators in terms of papp for two variables. The types of all
defined binary operations is (real)option→ (real)option→ (real)option.
We show only the definition of addition on partial values:

new_definition ‘pbinop (f:A->A->A) x y =
papp2 ((\x:A^2. (f:A->A->A) (x$1) (x$2)),(\x:A^2.T)) x y‘;;

new_definition ‘padd = pbinop real_add‘;;

The first partial function is division defined in terms of the reciprocal.

new_definition ‘pinv = papp1 (partial ((\x:real^1. inv (x$1)),
\x:real^1. ~((x$1) = &0)))‘;;

new_definition ‘pdiv x y = pmul x (pinv y)‘;;

pdiff is the unary differentiation operator. It takes partial functions of the
type (real)option→(real)option and returns functions of the same type.
Since the derivative may not always exist it is defined using the Hilbert opera-
tor. Given a (partial) function it returns a partial function being a derivative
of the given one on the intersection of its domain and the set on which it is dif-
ferentiable. We will again define it in terms of papp applied to a total function

2.3. THE FORMALIZATION 35

and its domain. Since we are given a function and need to find its underlying
total function and domain to apply the original differentiation predicate we will
define punapp that returns this pair. For our definition it returns a pair of
real→real and real→bool:

new_definition ‘punapp1 f = ((\x:real^1. @v:real. (f(SOME (x$1))) =
(SOME v)), (\x:real^1. ?v. (f (SOME (x$1))) = (SOME v)))‘;;

new_definition ‘pdiff_proto (f:real^1->real, d:real^1->bool) =
((\x:real^1. if d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)
then @v. ((\x. f (lambda i. x)) diffl v) (x$1) else &0) ,
(\x:real^1. d x /\ ?v. ((\x. f (lambda i. x)) diffl v) (x$1)))‘;;

new_definition ‘pdiff f = papp1 (pdiff_proto (punapp1 f))‘;;

The partial differentiation
conversion pdiff_conv

Other Simplif ications

Unfolding partial
definit ions
and facts

Applying
DIFF_CONV

and pdiff facts

Simplifying the
function and
its domain

Recurse on
CAS conversion

with different DB

Recurse on
CAS conversion

Try to guess
an original

part ial function

CAS conversion

Recurse on
CAS conversion

with different DB on
guessed function

Figure 2.1: A schematic view of the simplification performed by the partial
differentiation conversion.

The simplification of the term will be performed by a partial differentiation
conversion pdiff_conv (Fig. 2.1). This conversion is a part of the knowledge
base of the CAS and will be called by the CAS framework when the term has a
pdiff term in it. To simplify the implementation of the partial differentiation
conversion it will recursively call the CAS conversion to simplify terms. The
first step is a simplification performed by the main CAS conversion with the
database of theorems extended with above definitions of the partial operators
and some basic facts, that will be described below. The conversion proves:

|- pdiff (\x. SOME pi * x * x + SOME c * x + & 2 / x) =
papp1 ((\x. @v. ((\x. x pow 2 * pi + c * x + &2 * inv x) diffl v) (x$1)),
(\x. ~(x$1 = &0) /\ (?v. ((\x. if ~(x = &0)

36 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

then x pow 2 * pi + c * x + &2 * inv x else @v. F) diffl v) (x$1))))

All the partial operators and the pdiff operator were unfolded to their
definitions. We notice that the partiality included in division (reciprocal) and
differentiation have been propagated to the term. All occurrences of variables
are pulled inside the papp terms and consecutive papp applications are combined
by a set of reduction rules. This set includes a number of theorems, here we
give only single examples for one variable:

• rewrite rules that reduce the number of papp applications for SOME terms
for arbitrary numbers of variables. An example for the second of two
variables:

papp2_beta_right;;
val it : thm = |- papp2 (f, d) (a:(A)option) (SOME b) =

papp1 ((\x. f (lambda i. if i = 1 then x$1 else b)),
(\x. d (lambda i. if i = 1 then x$1 else b))) a

• rewrite rules that combine multiple occurrences of the same variable:

papp2_same;;
val it : thm =
|- papp2 (f, d) x x =

papp1 ((\x:real^1. f ((lambda i. x$1):real^2)),
\x:real^1. d ((lambda i. x$1):real^2)) x

• rewrite rules that combine consecutive applications of papp possibly with
different numbers of abstracted variables:

papp1_papp1;;
val it : thm = |- papp1 (f1, d1) (papp1 (f2, d2) (x:(A)option)) =

papp1 ((\x. f1 (lambda i.(f2 x))),
(\x. d2 x /\ d1 (lambda i.(f2 x)))) x

The next step performed by the partial differentiation conversion extracts
the function to which the diffl term is applied. The HOL Light DIFF_CONV is
applied to this term. For total functions it produces a diffl theorem with no
additional assumptions. For partial functions DIFF_CONV produces conditional
theorems that have additional assumptions about the domain. For our example:

DIFF_CONV ‘(\x. x pow 2 * pi + x * &c + &2 * inv x)‘;;
val it : thm = |- !x. ~(x = &0) ==>

((\x. x pow 2 * pi + x * &c + &2 * inv x) diffl
(((&2 * x pow (2 - 1)) * &1) * pi + &0 * x pow 2) +
(&1 * &c + &0 * x) + &0 * inv x + --(&1 / x pow 2) * &2) x

2.3. THE FORMALIZATION 37

Our formalization includes certain theorems about derivatives of partial
functions where the derivative exists depending on some condition. For the
example case the used theorem is about derivatives of functions that are not
differentiable in a single point. We provide some similar theorems for inequal-
ities which may arise in differentiating more complicated functions. The exact
statement of the theorem used here is:

pdiff_but_for_point;;
val it : thm = |- (!x. ~(x = w) ==> (f diffl (g x)) x) ==>

papp1((\(x:real^1). @v. ((\x:real. f x) diffl v) (x$1)),
(\(x:real^1). (~(x$1 = w) /\ d (x$1)) /\

?v. ((\x:real. if ~(x = w) then f x else @v. F) diffl v) (x$1))) =
papp1((\(x:real^1). g (x$1)), \(x:real^1). ~(x$1 = w) /\ d (x$1))

The partial differentiation conversion combines the above facts to prove:

|- pdiff (\x. SOME pi * x * x + SOME c * x + & 2 / x) =
papp1 ((\x. (((&2 * x$1 pow (2 - 1)) * &1) * pi + &0 * x$1 pow 2) +

(&0 * x$1 + &1 * c) + &0 * inv (x$1) + --(&1 / x$1 pow 2) * &2),
(\x. ~(x$1 = &0)))

The above function can be easily simplified, and this simplification is per-
formed by recursively calling the CAS conversion on the result (both on the
function and on the domain). For our example only the function can be re-
duced. For the recursive call to the CAS conversion we do not include the facts
about partiality to prevent looping. The conversion proves:

|- pdiff (\x. SOME pi * x * x + SOME c * x + & 2 / x) =
papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 * x$1)),
(\x. ~(x$1 = &0)))

The last part of pdiff_conv tries to convert the term back to the original
representation. As described is Section 2.3.1 this is not always possible, but
it will be possible in our case. The algorithm for computing the original form
examines the tree structure of the total function and reconstructs a partial
function with the same structure. In our case:

pconvert ‘(&2 * pi * (x:real^1)$1 + c + -- &2 * inv (x$1 * x$1))‘;;
val it : term = ‘& 2 * SOME pi * x + SOME c + --& 2 * pinv (x * x)‘

We now check if the domain of the guessed partial function is the same as
the original real one. To do this we apply the CAS conversion to the guessed
term with the partial function definitions and facts about them again:

cas_conv it;;
val it : thm = |- & 2 * SOME pi * x + SOME c + --& 2 * pinv (x * x) =

papp1 ((\x. &2 * pi * x$1 + c + -- &2 * inv (x$1 pow 2)),
(\x. ~(x$1 pow 2 = &0))) x

38 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

The domain of the converted function is the same as the domain of the
function we that was computed by differentiation4. Therefore we can compose
this theorem with the previous result arriving at the final proved theorem:

|- pdiff (\x. SOME pi * x * x + SOME c * x + & 2 / x) =
(\x. & 2 * SOME pi * x + SOME c + --& 2 / (x * x))

And the user is presented with the right hand side of the equation.

2.3.3 How to extend the system
In this section we will show examples that the system cannot handle automati-
cally. We will then show how the user can add theorems to the knowledge base
to add automation for simplification of those terms. Consider adding the real
square root as a new partial function:

new_definition ‘psqrt = papp1 ((\x. sqrt (x$1)), (\x. (x$1) >= &0))‘;;

The original HOL Light differentiation conversion DIFF_CONV is able to dif-
ferentiate the real square root producing a differentiation predicate with a con-
dition:

DIFF_CONV ‘\x. sqrt x‘;;
val it : thm =
|- !x. &0 < x ==> ((\x. sqrt x) diffl inv (&2 * sqrt x) * &1) x

The partial differentiation conversion cannot simplify the derivative of the
partial square root automatically without additional facts in its knowledge base.
This is because the result of the original differentiation conversion is only a
condition for the function to be differentiable. It does not prove that the function
is not differentiable elsewhere (namely in zero). To be able to simplify this
function the user needs to prove an additional theorem that would show that
the function is differentiable if and only if the variable is greater than zero,
namely:

|- (?v. ((\x. if x >= &0 then sqrt x else @v. F) diffl v) ((x:real^1)$1))
= x$1 > &0

Adding this to the knowledge base allows the partial differentiation conver-
sion to simplify automatically the partial square root function. This means that
the conversion asked for the derivative of

√
x returns the partial function 1

2
√
x

defined for x > 0, that is: (1
2
√
x
, x > 0).

4The two domains can be expressed in a slightly different way, thus there may be some
theorem proving involved to show that they are equal. In our implementation the only thing
performed is the CAS conversion, that internally tries HOL Light decision procedures for reals
and tautology solving.

2.4. CONCLUDING REMARKS 39

2.4 Concluding Remarks
The presented approach and formalized framework allow the automation of
small side-conditions. Simple expressions with partial functions can be sim-
plified transparently to the user. More complicated partiality conditions still
appear in the expressions. In this case the user can prove facts that would
simplify the expressions.

The approach allows to see expressions that resemble mathematics as done
by engineers in proof assistants. The language for writing equations and for
calculations (rewriting in HOL Light) becomes simpler.

It can be useful for formalizing partial functions that we encounter in engi-
neering books, for example in Abramowitz and Stegun [AS64] or in the NIST
DLMF project [Loz03].

It would be interesting to how easy our approach can be extended to more
complicated partial operations. For example with integration it is hard to check
whether the result is in the domain. Of course even then our approach gives a
response, but the existential expression in the result may be hard to simplify.

It is important to note, that the standard HOL Light equality is not aware
of the option type, so any objects that do not exist will be equal. Defining an
equality that is not true for NONE is possible, but leads to additional complexity
of the expressions and will not be compatible with original HOL Light any more.

We would like to add more automation. All the simplifications that we
perform can be done with functions of arbitrary number of variables. Those can
be proved on the fly by special conversions. Our formalization currently has all
simplifications rules proved for functions with at most two optional variables.
Also the papp definitions for more variables and facts about them are analogous
to their simpler version and their definitions can be created automatically by a
ML function that calls HOL Light’s definition primitives.

We are looking for a policy for simplifying expressions. Currently when
an expression is simplified in the total representation, but we cannot find an
original partial representation, the whole conversion fails and the expression
is returned unchanged. In a CAS environment with assumptions about the
domains of variables the same conversions would succeed. It would be therefore
desirable to suggest assumptions about variables that would allow for further
simplification of terms.

It would be most interesting to extend the presented approach to address
multivaluedness. Since multivalued functions are quite complicated and the un-
derlying definitions can get very big, they are rarely treated in proof assistants.
On the other hand, the treatment of multivalued functions tends to be one of
the common sources of mistakes performed by computer algebra systems [JN04].

40 CHAPTER 2. AUTOMATING PARTIALITY SIDE CONDITIONS

Chapter 3

Computing with classical
real numbers

3.1 Introduction
Coq is a proof assistant based on dependent type theory developed at IN-
RIA [CDT08]. By default, it uses constructive logic via the Curry-Howard
isomorphism. This isomorphism associates propositions with types and proofs
of propositions with programs of the associated type. This makes Coq a func-
tional programming language as well as a deduction system. The identification
of a programming language with a deduction system allows Coq to reason about
programs and allows Coq to use computation to prove theorems. Below in this
Chapter we will mention two important distinctions that are relevant to the
theory behind Coq, namely the Prop and Set universe distinction as well as the
proof vs computation distinction.

Coq can support classical reasoning by the declaration of additional axioms;
however, these additional axioms will not have any corresponding computational
component. This limits the use of computation to prove theorems, since Coq
cannot compute the normal form of an expression where the head is an axiom.
There are theories that allow program extraction from classical proofs, like A-
translation, but this has not been done for proofs involving real numbers.

At least two different developments of the real numbers have been created
for Coq. Coq’s standard library declares the existence of the real numbers
axiomatically. This library also requires the axioms for classical logic. It gives
users the familiar, classical, real numbers as a complete ordered Archimedian
field.

The other formalization of the real numbers is done constructively in the
CoRN library [CFGW04]. This library specifies what a constructive real number
structure is, and proves that all such structures are isomorphic. These real
numbers are constructive and there is one efficient implementation where real
numbers can be evaluated to arbitrary precision within Coq.

41

42 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

In this chapter we show how to connect these two developments of the theory
of the real numbers by showing that Coq’s real numbers form a real number
structure in CoRN. We do this by:

• Deriving some logical consequences of the classical real numbers (Sec-
tion 3.2). Specifically, we formally prove the well-known result that sen-
tences in Π0

1 are decidable. Bishop and Bridges [BB85] call it the principle
of omniscience and consider it the root of nonconstructivity in classical
mathematics.

• Using these logical consequences to prove that the classical real numbers
form a constructive real number structure (Section 3.3).

• Using the resulting isomorphism between classical and constructive real
numbers to prove some classical real number inequalities by evaluating
constructive real number expressions (Section 3.4).

3.1.1 The two universes of Coq
Coq has a mechanism for program extraction [Let02]. Programs developed in
Coq can be translated into Ocaml, Haskell, or Scheme. If these programs are
proved correct in Coq, then the extracted programs have high assurance of
correctness.

To facilitate extraction, Coq has two separate universes: the Set universe,
and the Prop universe (plus an infinite series of Type universes on top of these
two). The Prop universe is intended to contain only logical propositions and
its values are discarded during extraction. The types in the Set universe are
computationally relevant; the values of these types make up the extracted code.
In order to maintain the soundness of extraction, the type system prevents
information from flowing from the Prop universe to the Set universe. Otherwise,
vital information could be thrown away during extraction, and the extracted
programs would not run.

The Prop/Set distinction will play an important role in our work. The
logical operators occur in both universes. The following table lists some logical
operations and their corresponding syntax for both the Prop and Set universes.

Math Notation Prop Universe Set Universe
A ∧B A /\ B A * B
A ∨B A \/ B A + B
A→ B A -> B A -> B
¬A ~A not used
∀x : X.P (x) forall x:X, P x forall x:X, P x
∃x : X.P (x) exists x:X, P x { x : X | P x }

One might think that proving that classically defined real numbers satisfy
the requirements of a constructive real number structure would be trivial. It

3.2. LOGICAL CONSEQUENCES OF COQ REAL NUMBERS 43

seems that the constructive requirements be no stronger than the classical re-
quirement for a real number structure when we use classical reasoning. However,
Coq’s Prop/Set distinction prevents a naive attempt at creating such an iso-
morphism between the classical and constructive real numbers. The difficulty
is that classical reasoning is only allowed in the Prop universe. A constructive
real number structure requires a Set-level existence in the proof that a sequence
converges to its limit (see Section 3.3.1), but the theory provided by the Coq
standard library only proves a classical Prop-level existence. It is not allowed
to use the x given by the Prop existential:

exists x:X, P x

to fulfill the requirement of a set existential:

{ x : X | P x }.

There may be alternative ways to prove that the classical Coq reals form
a constructive real number structure by completely ignoring the classical exis-
tence and extracting a witness from CoRN, but it still remains to be seen if this
is feasible. We present our original solution that transforms the classical ex-
istentials provided by the Coq standard library into a constructive existential.
This solution uses Coq’s classical real number axioms to create constructive
existentials from classical existentials for any Π0

1 sentence (Section 3.2).

3.2 Logical Consequences of Coq real numbers
Coq’s standard library defines the classical real numbers axiomatically. This
axiomatic definition has some general logical consequences. In this section we
present some of the axioms used to define the real numbers and then show how
they imply the decidability of Π0

1 sentences. The axioms of the real numbers
cannot be effectively realized, so a decision procedure for Π0

1 sentences is not
implied by this decidability result.

3.2.1 The axiomatic definition of the real numbers
The definition for the reals in the Coq standard library asserts a set R, the
constants 0, 1, and the basic arithmetic operations:

Parameter R : Set.
Parameter R0 : R.
Parameter R1 : R.
Parameter Rplus : R -> R -> R.
Parameter Rmult : R -> R -> R.
...

A numeric literal is simply a notation for an expression, for example 20 is a
notation for:

44 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

(R1+R1)*((R1+R1)*(R1+(R1+R1)*(R1+R1)))

In addition to the arithmetic operations, an order relation is asserted.

Parameter Rlt : R -> R -> Prop.

Axioms for these operations and relations define their semantics. There
are 17 axioms. We show only some relevant ones; the entire list of axioms
can be found in the Coq standard library. The properties described by the
axioms include associativity and commutativity of addition and multiplication,
distributivity, and neutrality of zero and one.

Axiom Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1.
...

There are also several axioms that state that the order relation for the real
numbers form a total order. The most important axiom for our purposes will
be the law of trichotomy. We describe the reasons for its form (in particular
why it is Set-based) in next subsection:

Axiom total_order_T : forall r1 r2:R,
{r1 < r2} + {r1 = r2} + {r1 > r2}.

Finally, there is an Archimedian axiom (where IZR is the obvious injection
Z→ R) and an axiom stating the least upper bound property.

Parameter up : R -> Z.
Axiom archimed : forall r:R,

IZR (up r) > r /\ IZR (up r) - r <= 1.

Axiom completeness :
forall E:R -> Prop, bound E ->

(exists x : R, E x) -> sigT (fun m:R => is_lub E m).

3.2.2 Decidability of Π0
1 sentences

It is important to notice that the trichotomy axiom uses Set-style disjunctions.
This means that users are allowed to write functions that make decisions by
comparing real numbers. This axiom might look surprising at first since real
numbers are infinite structures and therefore comparing them is impossible in
finite time in general. The motivation for this definition comes from classical
mathematics where mathematicians regularly create functions based on real
number trichotomy. It allows one to define a step function, which is not definable
in constructive mathematics.

This trichotomy axiom can be used to decide any Π0
1 property. For any

decidable predicate over natural numbers P we first define a sequence of terms
that take values when the property is true:

3.2. LOGICAL CONSEQUENCES OF COQ REAL NUMBERS 45

an =def

{ 1
2n if P (n) holds
0 otherwise (3.1)

We can then define the sum of this infinite sequence, which is guaranteed to
converge:

S =def

∞∑
n=0

an (3.2)

The trichotomy axiom allows us to compare S with 2. It follows that if S = 2
then the predicate P hold for every natural number, and if S < 2 then it is not
the case (the case of S > 2 is easily ruled out). Furthermore, this distinction
can be made in Set universe.

We formalized the above reasoning in Coq and we obtained the following
logical theorem.

forall_dec
: forall P : nat -> Prop,

(forall n : nat, {P n} + {~ P n}) ->
{(forall n : nat, P n)} + {~ (forall n : nat, P n)}

This statement means that:

dec Σ0
n −→ dec Π0

n+1,

and since Σ0
0 is decidable this implies that Π0

1 is decidable. To see why this
implies the decidability of particular Π0

1 sentence, consider an arbitrary Π0
1

sentence ϕ. If ϕ is Π0
0, then it is decidable by the basic properties of Π0

0 sentences.
Otherwise, if ϕ is of the form ∀n : N.ψ(n) where ψ(n) is decidable.The above
lemma allows us to conclude that ϕ is decidable from the fact that ψ(n) is
decidable.

Constructive indefinite description

We can extend the previous result by using a general logical lemma of Coq.
The constructive indefinite description lemma states that if we have a decidable
predicate over the natural numbers, then we can convert a Prop based existential
into a Set based one. Its formal statement can be found in the standard library:

constructive_indefinite_description_nat
: forall P : nat -> Prop,

(forall x : nat, {P x} + {~ P x}) ->
(exists n : nat, P n) -> {n : nat | P n}

This lemma can be seen as a form of Markov’s principle in Coq. The lemma
works by doing a bounded search for a new witness satisfying the predicate.
The witness from the Prop based existential is only used to prove termination
of the search. No information flows from the Prop universe to the Set universe

46 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

because the witness found for the Set based existential is independent of the
witness from the Prop based one.

Classical logic (included by Reals) allows us to convert a negated universal
statement into an existential statement in Prop:

not_all_ex_not
: forall (U : Type) (P : U -> Prop),

~ (forall n : U, P n) -> exists n : U, ~ P n

By combining these theorems with our previous result, we get a theorem
whose conclusion is either a constructive existential or a universal statement:

sig_forall_dec
: forall P : nat -> Prop,

(forall n : nat, {P n} + {~ P n}) ->
{n : nat | ~ P n} + {(forall n : nat, P n)}

3.3 The construction of the isomorphism
In this section we briefly present the algebraic hierarchy present in CoRN (it
is described in detail in [GPWZ02] and [CF04]). We show that the Coq reals
fulfill the requirements of a constructive real number structure, and hence they
are isomorphic to any other real number structure.

3.3.1 Building a constructive reals structure based on Coq
reals

The collection of properties making up a real number structure in CoRN is bro-
ken down to form a hierarchy of different structures. The first level, CSetoid, de-
fines the properties for equivalence and apartness. The next level is CSemigroup
which defines some properties for addition. More structures are defined on top of
each other all the way up to a constructive ordered field structure — COrdField.
Up to this point trichotomy is not required. Finally, the CReals structure is
defined on top of the COrderedField structure. The full list of structures is
given below.

CSetoid – constructive setoid
CSemiGroup – semi group
CMonoid – monoid
CGroup – group
CAbGroup – Abelian group
CRing – ring
CField – field
COrdField – ordered field
CReals – real number structure

To prove that classical reals form a constructive real number structure, we
created instances of all these structures for the classical real numbers (called

3.3. THE CONSTRUCTION OF THE ISOMORPHISM 47

RSetoid, RSemigroup, etc.). For example, RSetoid is the constructive setoid
based on Coq real numbers. The carrier is R, while standard Coq equality
(equivalent to Leibnitz equality) and its negation are used as the equality and
apartness relations. The proofs of the setoid properties of these relations are
simple.

The basic arithmetic operations from Coq real numbers shown to satisfy all
the properties required up to COrdField. The proofs of these properties follow
straightforwardly from similar properties provided by Coq’s standard library.
For details, we refer the reader to CoRN source files [CoR09]. We present just
the final step, the creation of the CReals structure based on the ordered field.

Two additional operations are required to form a constructive real numbers
structure from a constructive ordered field: the limit operation and a function
that realizes the Archimedian property. The limit operation is the only step
where the facts about Coq reals cannot naïvely be used to instantiate the re-
quired properties. This is because the convergence property of limits for the
Coq reals only establishes that there exists a point where the sequence gets
close to the limit using the Prop based quantifier, whereas CReals requires such
a point to exist using the Set based quantifier. One cannot directly convert a
Prop based existential into a Set based one, because information is not allowed
to flow from the Prop universe to the Set universe.

The goal that remains to be proved in Coq is to show that if for any ε there
is an index in a sequence N such that all further elements in the sequence are
closer to the limit value than ε. The related property from the Coq library is
shown as hypothesis u.

e : R
e0 : 0 < e
u : forall eps : R, eps > 0 -> exists N : nat,

forall n : nat,
(n >= N)%nat -> Rfunctions.R_dist (s n) x < eps

______________________________________(1/1)
{N : nat | forall m : nat,

(N <= m)%nat -> AbsSmall e (s m[-]x)}

In order to prove this goal, we first reduce the Set based existential to a
Prop based one using the constructive_indefinite_description_nat.

Applying this lemma to the goal above reduces the problem to the following:

e : R
e0 : 0 < e
u : forall eps : R, eps > 0 -> exists N : nat,

forall n : nat,
(n >= N)%nat -> Rfunctions.R_dist (s n) x < eps

______________________________________(2/2)
exists N : nat, forall m : nat,

(N <= m)%nat -> AbsSmall e (s m[-]x)}

48 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

This now follows easily from the hypothesis. However, we are also required to
prove the decidability of the predicate:

______________________________________(1/2)
{(forall m : nat, (x0 <= m)%nat -> AbsSmall e (s m[-]x))} +
{~ (forall m : nat, (x0 <= m)%nat -> AbsSmall e (s m[-]x))}

This goal appears hopeless at first because we are required to prove the
decidability of a Π0

1 sentence. However, we can use the forall_dec lemma
from the previous section to prove the decidability of this sentence. This possible
since the property:

P(m) := (x0 <= m)%nat -> AbsSmall e (s m[-]x))

is decidable. This completes the proof that the classical real numbers form a
constructive real number structure.

3.3.2 The isomorphism
Niqui shows in Section 1.4 of his PhD thesis [Niq04] that all constructive re-
als structures are isomorphic, the proof is present in CoRN as iso_CReals.
The constructed isomorphism defines two maps that are inverses of each other
and proves that the isomorphism preserves the constants 0 and 1, arithmetic
operations and limits. More details can be found in [Niq04].

In order to use the isomorphism in an effective way, we need to show that
the definitions of basic constants and the operations are preserved. Since the
reals of the standard library of Coq are written as R and CoRN reals as IR,
we called the two functions of the isomorphism RasIR and IRasR. From Niqui’s
construction, one obtains the basic properties of this isomorphism:

• Preserves equality and inequalities:

Lemma R_eq_as_IR : forall x y, (RasIR x [=] RasIR y -> x = y).
Lemma IR_eq_as_R : forall x y, (x = y -> RasIR x [=] RasIR y).
Lemma R_ap_as_IR : forall x y, (RasIR x [#] RasIR y -> x <> y).
Lemma IR_ap_as_R : forall x y, (x <> y -> RasIR x [#] RasIR y).
Lemma R_lt_as_IR : forall x y, (RasIR x [<] RasIR y -> x < y).
...

• Preserves constants: 0, 1 and basic arithmetic operations: +, −, ∗. In the
properties listed below we do not show the dual theorems that state the
same facts for opposite translation IRasR. Those are easy to prove using
the properties of RasIR.

Lemma R_Zero_as_IR : (RasIR R0 [=] Zero).
Lemma R_plus_as_IR : forall x y,

(RasIR (x+y) [=] RasIR x [+] RasIR y).
...

3.3. THE CONSTRUCTION OF THE ISOMORPHISM 49

An important difference between the definition of real numbers in the Coq
standard library and in CoRN is the way partiality is handled. Partial functions
are defined as total functions for the Coq reals, but their properties require
proofs that the function parameters are in the appropriate domain. For example,
division is defined as a total operation on real numbers; however, all the axioms
that specify properties of division have assumptions that the reciprocal is not
zero. This means that the term 1

0 is some real number, but it is not possible to
prove which one it is.

In CoRN, partial functions require an additional argument, the domain con-
dition. Division is a three argument operation; the third argument is a proof
that the divisor is apart from zero. Other partial functions, such as the loga-
rithm, are defined in a similar way. We prove that this isomorphism preserves
these partial functions. These lemmas require a proof that the arguments are in
the proper domain to be passed to the domain conditions of the CoRN functions.

• Preserves the reciprocal and division for any proof:

Lemma R_div_as_IR : forall x y (Hy : Dom (f_rcpcl’ IR) (RasIR y)),
(RasIR (x/y) [=] (RasIR x [/] RasIR y [//] Hy)).

Niqui’s theorem proves the basic arithmetic operations and limits are pre-
served by the isomorphism. However, the real number structure does not spec-
ify any transcendental functions. The existence of the transcendental functions
follows from the axiomatization, but the actual definitions used in the axiom-
atizations do not need to be the same. Therefore it is necessarily to manually
prove that these functions are preserved by the isomorphism. This is easy if the
Coq and CoRN definitions are similar, but becomes difficult if the two systems
choose different definitions for the same function. We thus prove some more
properties that the isomorphism preserves:

• Preserves infinite sums:
The proof that the values of the sums are the same requires the decidability
of Π0

1 sentences and constructive_indefinite_description_nat. The
term prf is the proof that the series converges.

Lemma R_infsum_as_IR : forall (y: R) a,
Rfunctions.infinit_sum a y -> forall prf,
RasIR y [=] series_sum (fun i : nat => RasIR (a i)) prf.

• Preserves transcendental functions: exp, sin, cos, tan, ln

Lemma R_exp_as_IR : forall x,
RasIR (exp x) [=] Exp (RasIR x).

Lemma R_sin_as_IR : forall x,
RasIR (sin x) [=] Sin (RasIR x).

Lemma R_cos_as_IR : forall x,
RasIR (cos x) [=] Cos (RasIR x).

50 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

Lemma R_tan_as_IR : forall x dom,
RasIR (tan x) [=] Tan (RasIR x) dom.

Lemma R_ln_as_IR : forall x dom,
RasIR (ln x) [=] Log (RasIR x) dom.

We finally prove that the isomorphism preserves the constant π. This was
more difficult because the π in Coq is defined as the infinite sum

πCoq =def

∞∑
i=0

(−1)i

2i+ 1
, (3.3)

while in CoRN π is defined as the limit of the sequence

pin =def

{
0 if n = 0
pin−1 + cos(pin−1) otherwise (3.4)

πCoRN =def lim
n→∞

pin. (3.5)

Both libraries contain proofs that the sine of π is equal to zero, and addi-
tionally that it is the smallest positive number with this property. Using these
properties it is possible to show that indeed the two definitions describe the
same number:

Lemma R_pi_as_IR : RasIR (PI) [=] Pi.

3.4 Computation with classical reals
3.4.1 Solving ground inequalities
O’Connor’s work on fast real numbers in CoRN includes a semi-decision proce-
dure (a decision procedure that may not terminate) for solving strict inequalities
on constructive real numbers. With the isomorphism it is possible to use it to
solve some goals for classical reals.

Consider the example of proving eπ − π < 20 for the classical real numbers.
The difference between these numbers is very small, so the proof is hard without
using numeric approximations:

______________________________________(1/1)
exp PI - PI < 20

Our tactic first converts the Coq inequality to a CoRN inequality by using
the fact that the isomorphism preserves inequalities. Then it recursively applies
the facts about the isomorphism to convert the Coq terms on both sides of
the inequality and their corresponding CoRN terms. This is done with using a
rewrite database and the autorewrite mechanism for setoids. The advantage of
using a rewrite database is that it can be easily extended with new facts about
new functions being preserved under the isomorphism. The disadvantage of this
method is that the setoid rewrite mechanism is fairly slow in Coq 8.1.

3.4. COMPUTATION WITH CLASSICAL REALS 51

______________________________________(1/1)
Exp Pi[-]Pi[<](One[+]One)[*]

((One[+]One)[*](One[+](One[+]One)[*](One[+]One)))

(Recall that, in Coq, the real number 20 is simply notation for (1 + 1) ∗ ((1 +
1) ∗ (1 + (1 + 1) ∗ (1 + 1))).)

Once the expression is converted to a CoRN expression, the semi-decision
procedure from CoRN can be applied (which itself uses another rewrite database
to change the representation again). This semi-decision procedure may not
terminate. If the two sides of the inequality are different, it will approximate
the real numbers accurately enough to either prove the required inequality (or
fail if the inequality holds in the other direction). If the two sides are equal,
then the search for a sufficient approximation will never terminate.

The decision procedure for CoRN takes an argument which is used for the
starting precision of the approximation. Setting it to an appropriate value can
make search faster, if the magnitude of difference between the sides is known a
priori. Our decision procedure also takes this an argument and passes it on to
the CoRN tactic.

We have shown the intermediate step above for illustration purposes only.
The actual tactic proves the theorem in one step:

Example xkcd217 : (exp PI - PI < 20).
R_solve_ineq (1#1)%Qpos.
Qed.

Automatic rewriting is not enough to convert partial functions like division
and logarithm. The additional parameters needed in CoRN are the domain con-
ditions. The tactic itself could be called recursively to generate the assumptions.
Unfortunately Coq 8.1 cannot automatically rewrite inside dependent products,
making the recursive tactic more difficult to create. The Coq 8.2’s new setoid
rewriting system will allow rewriting in dependent products, and we expect this
to greatly simplify the creation of a recursive tactic.

3.4.2 Using facts about Coq reals in CoRN
The standard library of Coq contains more properties of real numbers than
CoRN. It also contains more tactics, like fourier for solving linear constraints.
By using the isomorphism the other way, it is possible to apply these tactics
while working with CoRN. Using the isomorphism this way is controversial
because using the classically defined real numbers means that the axioms of
classical logic are assumed.

We will show how a goal that would normally be proved by the fourier
tactic in Coq reals can be done in CoRN. We will show it on a very simple goal,
but the example is illustrative:

x ≤ y ⇒ x < y + 1. (3.6)
The goal written formally in Coq is:

52 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

Goal forall x y:IR, (x [<=] y) -> (x [<] y [+] One).

After introducing the assumptions we can apply the isomorphism to the
inequalities both in the assumptions and in the goal:

intros x y H; rapply IR_lt_as_R_back.
assert (HH := R_le_as_IR_back _ _ H).

This shows the following goal:

1 subgoal
x : IR
y : IR
H : x[<=]y
HH : IRasR x <= IRasR y
______________________________________(1/1)
IRasR x < IRasR (y[+]One)

Since the isomorphism preserves all the functions in the goal and assump-
tions, we can apply the facts to change the terms that include the isomorphism
on the top of the term to terms that include the application of the isomorphism
only on variables.

replace RHS with (IRasR y + IRasR One)
by symmetry; rapply IR_plus_as_R.

replace (IRasR One) with 1. 2: symmetry; apply IR_One_as_R.

1 subgoal
x : IR
y : IR
H : x[<=]y
HH : IRasR x <= IRasR y
______________________________________(1/1)
IRasR x < IRasR y + 1

Now the fourier tactic is applicable:

fourier.

Proof Completed.

A similar transformation can be performed to use other facts and tactics
from the Coq library.

3.5 Related Work
Melquiond has created a Coq tactic that can solve some linear inequalities over
real number expressions using interval arithmetic and bisection [Mel08]. This

3.6. CONCLUDING REMARKS 53

tactic is currently limited to expressions from arithmetic operations and square
root, but could support transcendental functions via polynomial approxima-
tions. It has the advantage that it can solve some problems that involve con-
strained variables.

Many other proof assistants include facts about transcendental functions
that could be used for approximating expressions that involve them. However
there are few mechanisms for approximating real numbers automatically since to
compute effectively this has to be done either by constructing the real numbers
with approximation in mind, or by using special features of the proof assistant.
The latter approach is used effectively for example in HOL Light, due to a close
interplay between syntax and semantics. The way a real number expression
is described in HOL Light can be analyzed and it can be used to prove an
approximation.

The construction of HOL Light real numbers is described in [Har98]. The
approximation mechanism of HOL Light is provided in calc_real (part of
the distribution of the prover) as the REALCALC_REL_CONV conversion. This
conversion uses the fact that terms are transparent and decomposes a term or
goal into subterms, looking for underlying underlying real number operations
or constants. Implementing approximation as a conversion means that it is not
available as a function inside statements of theorems, but instead while proving
a goal about real number expression it is possible to ask for an approximation of
a particular closed term. The conversion uses rewriting to generate a theorem
that approximates a particular term.

Obua developed a computing library for Isabelle. In his PhD [Obu08] he
shows examples of computing bounds on real number expressions using compu-
tation rather than deduction.

Lester implemented approximation of real number expressions in PVS [Les08].
Results of real number functions are proved to have fast converging Cauchy se-
quences when their parameters have fast converging Cauchy sequences. Cauchy
sequences for many real number functions are effective and can be evaluated
inside PVS.

3.6 Concluding remarks
In this chapter we have formalized a proof that the axioms of Coq’s classical real
numbers imply the decidability of Π0

1 statements. We used this fact to prove
that these classical real numbers form a constructive real number structure.
Then we used the fact the all real number structures are isomorphic to use
tactics designed for one domain to solve problems in the other domain. In
particular, we showed how to automatically prove a class of strict inequalities
on real number expressions.

The lemmas showing the decidability of Π0
1 statements have been added to

the standard library and are made available in the 8.2 release of Coq. The
isomorphism and the tactics used to prove inequalities over the Coq reals have
been added to the CoRN library. They will are available with the version of

54 CHAPTER 3. COMPUTING WITH CLASSICAL REAL NUMBERS

CoRN compatible with Coq 8.2.
We wish to extend our tactics to solve inequalities over terms that involve

partial functions. This should be easier to do when CoRN uses the new setoid
rewrite mechanisms available in Coq 8.2. Currently CoRN uses the old setoid
rewrite mechanism which means that the translation of expressions from one
domain to another is quite slow. We would like to investigate ways that this
could be made faster. We would also like to automate the translation from
CoRN expressions to Coq expressions so that CoRN can have its own fourier
tactic assuming classical logic.

Part II

Interactive formalized math
on the web

55

Chapter 4

Web Interfaces for Proof
Assistants

4.1 Introduction

4.1.1 Motivation
Nowadays people are more and more accustomed to having a connection to
the Internet all the time. Thus the network and the machines on the network
become a part of the computer one uses. There is a tendency to make services
available just by accessing certain web pages. In this way people do not need to
install software on their computers any more. Examples include web interfaces
to e-mail, calendars, chat clients, word processors and maps.

Commercial services are often available through web-interfaces. On the other
hand, in the scientific domain, examples are not so abundant. In particular there
were no real implementations of web interfaces for proof assistants.

To use a proof assistant, one needs to install some software. Often the
installation process is complicated. For example to install Isabelle [NPW02],
which is one of the most popular proof assistants, on a Linux system, one needs
a particular version of PolyML, a HOL heap and Isabelle itself. To use an
interface to access the prover, one needs ProofGeneral [Asp00] and one of the
supported Emacs versions. Installing additional libraries for proof assistants is
often even more complicated; in particular getting a version of Coq that will
work with CoRN [CFGW04] requires compilation from sources of both.

It happens that computer scientists prefer to stick with installed old versions
of provers, not to go through the same process to upgrade. Mathematicians may
even stay away from computer assisted proving altogether, just because of the
complexity of installation.

We want a fast interface, that is available with a web browser. We want to
access various proof assistants and their versions, in a uniform manner, without
installing anything, not even plugins. The interface should look and behave like

57

58 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

local interfaces to proof assistants.
We want the possibility to create web pages, that show tutorials and proofs,

where the user can interact with the real system. The provider of the server
may install patched versions of provers, allowing an easy way for the users to
try out particular features. We want libraries for proof assistants to be available
centrally, so that users who want to see them do not need to download or install
anything. The interface should allow developing proofs and libraries centrally,
in such a way that it could be used in a wiki-like [Dav04] environment.

4.1.2 Our Approach
The solution is a client-server architecture with a minimal lightweight client
interpreted by the browser, a specialized HTTP server and background HTTP
based communication between them. The key element of our architecture is the
asynchronous DOM modification technique (sometimes referred to as AJAX -
Asynchronous JavaScript and XML or Web application) [W3C08]. The client
part is on the server, and when the user accesses the interface page, it is down-
loaded by the browser, which is able to interpret it without any installation.

The user of the interface, accessing it with the browser, does not need to
do anything apart from reloading the page when a modification is done on the
server. Every time the user accesses a prover, the version of the prover that is
currently installed on the server is used. The user can access any of the provers
installed on the server, even a prover which does not work on the platform from
which the connection is made.

Saving the files on the central server allows accessing them from any location,
by just accessing the interface’s page with a web browser. A central repository
simplifies cooperation in proof development, by replacing versioning systems like
CVS, which keeps a remote and a local copy, by a wiki-like mechanism, where
the only copy is the remote one.

Our approach is presented as an architecture to create web interfaces to proof
assistants, but it is not limited to them. The problems solved are relevant to
creating web interfaces programs that have a state, include an undo mechanism,
and their interfaces can be buffer oriented. Our architecture may be applied for
example to buffer oriented programming languages, like Epigram [McB04].

4.1.3 Related work
There have been some experiments with providing remote access to a prover.
None of them allowed efficient access without installing additional software.

LogiCoq [Pot99] is a web interface to Coq [CDT08]. It offers a window where
one can insert the contents of whole Coq buffer and submit them for verification.
It sends the whole buffer with standard HTTP request and refreshes the whole
page. Therefore one can work efficiently only with tiny proofs.

The web interface to the Omega system [BCF+97], requires the Mozart
interpreter to be installed on the user’s machine. The use of the web browser

4.1. INTRODUCTION 59

is minimal, the whole interface is written in Mozart. Installation of Mozart is
possible only for certain platforms which also makes the solution limited.

There are Java applets having built-in proof assistant functionality. Ex-
amples may include G4IP [Urb98] or Logic Gateway [Got05]. We believe that
limiting provers to Java applets is undesirable. First, requiring users to have
working Java applet functionality adds another dependency. Second, most of
the current proof assistants are implemented in functional programming lan-
guages, and make use of the features provided by them, so allowing only Java
would seriously limit the implementers.

Web interfaces related to proof assistants and displaying mathematics on
the web are worth mentioning. In particular:

• Helm [APCS01] - (Hypertextual Electronic Library of Mathematics) A
web interface that allows visualisation of libraries available for proof as-
sistants.

• Whelp [AGC+04] - A content based search engine for finding theorems in
proof assistants libraries, that supports queries requiring matching and/or
typing.

• ActiveMath [MBG+03] - A web-based framework for learning mathemat-
ics that uses Java applets to communicate with a central server using
OMDoc [Koh00].

There are many commercial web interfaces and frameworks that use asyn-
chronous DOM modification in non scientific domains, examples of which were
mentioned in the introduction.

The novelty of our architecture in comparison with existing web interfaces
for theorem provers is that it permits the creation of an interface to a prover,
that can look and behave very much like the ones offered by state-of-the-art
local interfaces, but is available just by accessing a page with a web browser
without installing any additional software, not even plugins. Because of the
architecture, the network used to transfer information does not slow down the
interaction. The experiment to use asynchronous DOM modification to create
an interface to a proof assistants has never been tried before.

4.1.4 Contents
In the rest of the chapter we present the techniques for creation of web interfaces,
that we will use (Section 4.2) and the internals of a local prover interfaces which
we try to imitate (Section 4.3), followed by the presentation of the new architec-
ture (Section 4.4) and a description of its security and efficiency (Section 4.5).
We present our prototype (Section 4.6) and give more details about how the
implemetation has been performed (Section 4.7). Finally we present some con-
cluding remarks and present a vision of a complete system built according to
our architecture (Section 4.8).

60 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

4.2 Asynchronous DOM Modification
As the web is becoming more commonly used, web page designers and browser
implementers add new functionality to web pages. Text files have been replaced
by hyper-linked files, later including images, language-specific and mathemat-
ical characters, styles and dynamic elements. The W3C Consortium, which is
the organization responsible for the standardization of the Web, defines these
elements in standards, and consequently they are implemented in a similar ways
in all browsers.

Since the late nineties browsers have started supporting the following tech-
nologies relevant to ProofWeb: JavaScript, DOM [LHLHW+04] (Document Ob-
ject Model) and XmlHttp [Web08]. Combined use of these three technologies
has become popular in recent years, since they allow one to create responsive
web interfaces. In this chapter we refer to the combined usage of these three
technologies as “Asynchronous DOM Modification.” One can find other names
describing this technique, like AJAX or Web Application.

JavaScript is a scripting programming language, created by Netscape in
1995, for adding certain dynamic functionality to pages written in HTML. It
has been quickly adopted by most browsers and nowadays it is supported even
by some text mode browsers like w3m and Links, and mobile phone browsers.
It is very often used on Internet websites.

DOM (Document Object Model) [LHLHW+04] is an API (Application pro-
gramming interface) for managing HTML and XML documents that allows
modifications of their structure and content. Recent browsers support W3C
DOM accessibility by JavaScript. It is often used on web pages to add dynamic
elements, for example drop-down menus or images that change when the mouse
moves over them.

XmlHttp [Web08] is an API accessible by web browser scripting languages
to transfer data to and from a web server. It internally uses HTTP requests.
XmlHttp requests are sent to the server without the knowledge of the user of
the web browser. For every XmlHttp request a callback has to be provided, to
be executed when the response from the server is received. The sending of the
request can be optionally asynchronous. XmlHttp has been available in most
browsers for some time, and has been recently described in a W3C specification
draft.

Asynchronous DOM modification is a web development technique that uses
the three technologies described above to create responsive web interfaces. Such
interfaces are web pages, where particular events (key presses and mouse move-
ment) are captured by JavaScript events. The minimal client part encoded in
JavaScript processes the local events, like menu opening or typing in a buffer.
Events that require additional information from the server are sent as asyn-
chronous XmlHttp requests. Since the request is done in the background, it
does not interrupt the user from working locally. When the response arrives, it
is used to modify the DOM of the page.

In comparison with classical web pages, the usage of asynchronous DOM
modification makes it possible to send minimal information to the server, to

4.3. GENERIC INTERFACE FOR PROOF ASSISTANTS 61

receive only the information required, and to refresh small parts of the web page.
Network overhead and page refreshing are minimized, thus creating interfaces
which work many times faster than classical web-based ones. This way, the
interface can closely resemble local interfaces if network latency is reasonable.
In case of high network latency, asynchronous requests allow the user to work
locally, while additional data is requested.

Examples of usage of the asynchronous DOM modification are: web emails
and calendars which operate within a single page, maps which download re-
quired parts as they are dragged, and web chat clients. Such web interfaces are
supported by all standard web browsers, in particular all Gecko based browsers,
Microsoft Internet Explorer versions from 5, Opera from version 8, Konqueror
from version 3.2, Safari from version 1.2 and even Nokia S60 browser from ver-
sion 3. It is not supported by text mode browsers and browsers for visually
impaired people.

4.3 Generic Interface for Proof Assistants
In this section we describe the internals of local interfaces for proof assistants.
We chose for this ProofGeneral [Asp00] for two reasons. First, it is a prover-
independent interface to proof assistants. Second, it is popular, since it is uni-
versal and since it is built on the highly configurable Emacs text editor. There
is an ongoing effort to make it available also with the Eclipse environment, but
the usability of the new version is limited to a subset of Isabelle.

ProofGeneral’s interface provides the user with two buffers: an editable
buffer containing the proof script and the prover state buffer. ProofGeneral
relies on the proof assistant to process the commands incrementally. It does not
distinguish tactic-mode proofs from declarative-mode proofs. State changing
and non-state-changing prover commands are distinguished to select only the
relevant ones as a part of the proof script and to allow queries.

The interface colors keywords according to the above distinctions, and ad-
ditionally marks parts of the buffer with a background color, to indicate the
status of verification. There are three parts of the buffer. Possible states in-
clude: Expression that has been accepted by the prover, expression that is now
being verified, and editable non-verified expression.

ProofGeneral provides the users with a proof replaying mechanism. The
prover itself has to provide an undo mechanism. Users may choose a point in
the buffer to go to, and ProofGeneral issues a number of proof steps and undo
steps to the prover in order to reach that point. This is necessary since some
provers forget the intermediate steps of older proofs.

ProofGeneral is responsible for providing the proof script from files on the
disc to the prover and saving the proof script. Other disc operations that exist in
some provers, like proof compilation, program extraction or automated creation
of documentation are not handled by ProofGeneral.

ProofGeneral is implemented mostly in Emacs Lisp, and is strongly tied with
the editor itself. It is easy to adapt ProofGeneral to new proof assistants, by

62 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

setting a number of variables. If this is not sufficient ELisp code can be used.
Other interfaces to provers offer mostly similar functionality. In some in-

terfaces, like PCoq [ABPR01] or IsaWin, additional visualisation mechanisms
are available, for example term annotations. Some of these mechanisms are not
available in ProofGeneral; this limitation comes from the Emacs editor.

4.4 General Architecture
In this section we describe how we imagine a complete web interface for proof
assistants. The part implemented in our prototype as well as the additional
experiments that we did with it are described in Section 4.6. The two core
elements of our architecture are: a specialized Web server and a communication
mechanism (Fig. 4.1).

Figure 4.1: General architecture.

The Web server serves normal files and it is able to respond to special HTTP
requests (see 4.4.2). The main interface is available as a normal HTML file on the
server. When a user accesses the page with a browser, the page requires certain
JavaScript files, which are then downloaded and interpreted by the browser.
This serves as the client part.

The communication between the client part and the server is done with
the mechanism described in Section 4.2. HTTP requests are created in the

4.4. GENERAL ARCHITECTURE 63

background. The results are used to update the page in place. Only a small
amount of information is transferred between the client and the server. The
transfer is done asynchronously, making the interface responsive.

4.4.1 The Client Part
The client part offers a web page that initially presents the user with an editable
buffer and an empty response buffer. (Also a menu or a toolbar is necessary
for interaction, but they are normal elements of web pages). Buffers are im-
plemented as HTML IFrames. An IFrame is an HTML tag that includes a
floating frame within a page, that can be optionally editable. All keys that
modify the IFrame are assigned to a special function. Locking of parts of the
buffer is implemented by disallowing changes to locked parts of the buffer in
this function.

When the user wants to verify a part of the buffer, this part is locked and sent
to the server. Since the request is a background one, even if it takes a moment
the user may continue working. When the response arrives, the contents of the
two buffers are modified. The response may be a success, and then the part of
the editable buffer is marked ‘verified’ and the response buffer shows the new
prover state. If the command failed, the part of editable buffer is unlocked and
the error shown. Parts of the editable buffer are marked, as their state changes,
by using background colors, as it is done in ProofGeneral.

The interface includes a proof replaying mechanism, which behaves in a
similar way to the one present in local interfaces. When the user wants to
go to a particular place in the buffer, this information is passed to the server.
The server sends the commands to the client’s prover session and informs the
interface about the results. In a similar way the interface includes a break
mechanism that allows stopping the prover’s computation.

The interface includes functionality for file interaction. Files can be loaded
and saved on the server. For interoperability it is convenient if users can down-
loading files and uploading files from the local computer. For proof development
efficiency, templates and queries may be inserted.

4.4.2 The Server Part
The server includes standard HTTP file serving functionality. With it the user’s
browser downloads the client part. The server can also handle special messages
available for users, that have logged in. Session mechanism is used to support
multiple clients even from the same IP address. A session is created when a
user logs in to the system and is sustained with a cookie mechanism. Every
user’s session is associated with a particular prover session. The server runs
provers as subprocesses and communicates with them through standard input
and output. Prover sessions are terminated after a long period of inactivity (if
the user did not close the page, the client part can replay the proof script from
the beginning).

64 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

The special messages, mentioned above, include all communication that
needs to be performed with the server. The necessary ones are: passing a
given complete expression to verify to the prover, issuing an undo command in
the prover, saving a file, loading a file, and break (stopping the prover compu-
tation). The commands from the client for the prover are passed first to the
server, which transmits them to the prover. Prover replies are analysed by the
server and only state changes are sent to the client. The state changes consist
of two parts: changing of the markings of the edit buffer and the new contents
of the prover state buffer.

Replies from the server are passed back to the client in an asynchronous
way. This means, that the server does not answer HTTP requests from the
client immediately, but when an answer from the prover is received or a timeout
is reached. The server keeps a pool of provers that have been asked to process
data, and waits for an answer from any of them. The waiting process does
not block the server, that is, other clients’ requests can be processed in the
meantime.

4.5 Security and Efficiency

4.5.1 User side
All code that the user runs is interpreted within the web browser. Thus a
malicious or virus infected prover can influence the client only by exploiting
system or browser errors.

The efficiency of code execution on the user’s side is dependent on the ef-
ficiency of the browser’s internal web page and scripts interpretation, and the
speed of HTML rendering.

Our experiments show that client-side DOM changes with Internet Explorer
6 are approximately twice as fast as with Mozilla Firefox 2 (still usually invisible
for the user) both performed under Windows. It is hard to say whether this
is due to less security checks or the worse quality of the rendered page (no
anti-aliasing) in Internet Explorer.

4.5.2 Server side
In any centralized environment security, availability and efficiency of the server
are important. Standard security measures include a backup server prepared to
take over network traffic in case of a primary server failure and regular backing
up of user files. In this subsection we will describe only the issues and solutions
particular to a server that runs a web interface to a prover.

Three kinds of issues arise: security, availability and equal sharing of re-
sources. First, exploiting bugs in our architecture could lead crackers to take
control of the server. Second, in a centralized environment the only copy of files
is on the server. Unavailability of the server makes users not only unable to
work, but also unable to access their files. Last, when users access the same

4.6. PROTOTYPE 65

server its resources are shared. If a particular prover uses all the memory or
CPU other users are unable to work.

To provide security, the server is run in a chrooted environment (chroot is a
Unix system call preventing a process to access any files outside of a special root
directory), as a non-privileged user. The permissions include only reading server
files and executing the provers. Every prover type is run as a different user (using
the file setuid mechanism), that is allowed to read only the prover’s library
and has privileges to write only in a directory where the prover’s proof scripts
are stored. To disallow storing overly large amounts of data, filesystem quota
may be used. All of those mechanisms are implemented in our prototype. We
experimented with further virtualization using Xen [BDF+03], but the overhead
of starting Xen domains was too big to be used practically. We expect that a
non-trivial approach that uses virtualization may add to the security of the
server.

For provers that allow system interaction, this functionality can be some-
times disabled. In particular, for ML based provers, dropping to the toplevel
can be disabled. If the server administrator doesn’t trust the prover’s imple-
mentation, a secure version of the kernel can be used to disable irrelevant system
calls. In this case even a system that is implemented inside ML like HOL Light
can be available without changes to the prover itself.

To ensure equal sharing of resources, prover processes can be run with CPU
quota and memory quota mechanisms. The scheduling policy can be changed
(for example with the nice system call) to provide the server process with
priority over prover processes. Different provers have different CPU and memory
requirements, which should be taken into account while setting the limits.

When many users want to access the interface, the resources of a single
server may be insufficient. It is simple to run the server on a set of machines,
by calling provers as subprocesses through ssh on separate computers. A load
balancing mechanism can be implemented.

The communication between the server part and the client part can be se-
cured by providing the interface through HTTPS.

4.6 Prototype
We have implemented a prototype of a web interface according to the described
architecture. The interface facilitates the use of Coq proof assistant with just
a web browser, but it looks and behaves (Fig. 4.2) like the interfaces offered by
CoqIde and ProofGeneral.

Our server is a 30kB OCaml program, that serves two HTML files and a
number of JavaScript files. It additionally supports special POST requests for
verifying and for undoing commands as well as for loading and saving of files.
It uses the OCamlHttpd library, for web-server functionality.

Our client consists of 15kB of JavaScript and 3kB of HTML. Most of the
client-side code is responsible for the locking of the buffer and recognition of
Coq expressions.

66 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

Figure 4.2: Screenshot of the prototype, that shows working with a Coq proof.
The verified part of the edit buffer is colored and locked. The state buffer shows
the state of the proof, there are no Coq warnings.

To secure our prototype the server is run as nobody in a minimal chrooted
environment. The prover sub-processes are reniced not to interfere with the
main server process. Dropping from Coq to OCaml toplevel is disabled. The
access to the interface was initially password protected to avoid creating prover
sessions for web-spiders. Limiting the number of sessions per IP address is
sufficient to avoid opening too many idle sessions for web-spiders.

Our prototype includes a 1kB file, that is supposed to create a uniform layer
that works with different browsers. We have not yet made it as portable, as
the asynchronous DOM modification allows. In particular our prototype works
well with Gecko-based browsers (Mozilla, Firefox, Galeon, . . .), KHTML based
browsers (Konqueror, Safari) and Opera 9. It works with Internet Explorer
6 with minor problems, for example some key-bindings are missing because
they are assigned to internal functions. It does not yet work with any older
versions of the above. We have tested our implementation’s efficiency, by trying
to use the server from other locations. Although measuring responsiveness to
user’s actions is hard to be done objectively, our experiments show, that with
reasonable network latency, its responsiveness is very good.

The prototype is a Coq web interface, but there is not much code specific
to Coq. The client part includes recognition of Coq comments and whole ex-

4.7. IMPLEMENTATION 67

pressions to send. The server part includes recognition of successes and failures
as well as the undo mechanism. For all ELisp code from ProofGeneral equiv-
alent JavaScript code can be written and regular expressions provided. Thus
adapting these three things to other provers should be simple, which is why we
believe that implementing an interface according to our architecture that would
support different provers can be easily done.

The client part has to overcome the minor differences between browsers. In
particular it includes functions that create a uniform layer for XmlHttpRequest
creation, event binding, and DOM that work the same way on all currently
supported browsers.

4.6.1 Possible Uses

Our interface can be used to create interactive tutorials presenting proof assis-
tants. We have created a special proof script, that includes a slightly modified
version of the official Coq tutorial. The descriptive parts have been put inside
comments (including the HTML formatting), and commands to the proof assis-
tant have been left outside comments. A user that enters such a page may just
read the tutorial and execute the commands in Coq environment, but may also
do own experiments with it.

Non-trivial proof scripts that use tactics are unreadable without intermedi-
ate proof states. Thus proofs presented on the web are usually accompanied
with some of the proof states often automatically generated by Coqdoc or TeX-
macs [AR04]. A web interface can be used (even in a read-only mode) to present
such proofs interactively. In this way, the user reading the proof chooses which
proof states to see.

External proof assistant libraries can be included on the server. With our
server we included C-CoRN [CFGW04] (Constructive Coq Repository at Ni-
jmegen) and Berkeley contribs [O’C05] (Goedel incompleteness theorem verified
in Coq). Such libraries can be developed on the server. In such an approach
visitors can always see and test the current version, without downloading and
compiling the library.

Modified and experimental versions of provers usually require patching a
particular version of the source of the proof assistant. Presenting such a modified
version to others is easily possible with the given infrastructure. The server
offered the C-zar declarative proof language extension for Coq [Cor08] before it
was included in mainline branch.

4.7 Implementation

In this Section we describe the details of how our prototype has been imple-
mented.

68 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

4.7.1 The server process
We implemented the server process as a complete web server. We used the
OCamlNet [Oca] library for a basic HTTP web server that instead of processing
HTTP requests sends them to our function. This function checks the parameters
of the request. If the request includes a session number, the request is processed
further by this session, otherwise if it is a login request, we try to authenticate
and spawn a session. If it is not the case, the user is redirected to the login
page.

A session provides a number of operations:

• Adding a piece of prover text to the queue

• Undoing to a particular location in the text (which can be in particular
used to stop the prover)

• Checking whether there is new processed text from the prover

• Restarting a session (may be faster than undoing till the beginning, and
may be additionally useful for ensuring resynchronization)

• Deleting a session

A particular session keeps a prover process as well as a queue of requests
awaiting to be sent to it. The file implementing sessions also keeps a thread
that checks every minute for sessions that have been contacted by the users web
browser for longer than an hour and kills them.

We implemented a general interface to provers, that keeps a subprocess and
is able to send input to it and read information from it. For every prover there
is a number of different specialized behaviors that a particular prover module
implements:

• Detecting the prompt. This allows knowing when output has ended and
the prover is ready for reading new commands.

• Knowing whether a command has succeeded or returned an error. This
allows knowing what is the current state of the prover in relation to the
position in the buffer.

• Issuing undo commands. This works differently in different provers.

• Not allowing disabled commands.

4.7.2 The server environment
The machine that runs the server runs the standard Apache HTTP server. It
is configured to redirect the special requests (requests to a particular file) to a
proxy, which is the other HTTP server. This allows for keeping the main web
server constantly running even with trouble with the specialized server.

4.7. IMPLEMENTATION 69

The specialized server is put in a special chroot environment. This envi-
ronment contains only the server, the files it needs (logins and a log file) and
the proof assistant. The necessary system libraries are minimal. The standard
library and other desired libraries of the proof assistant should be provided as
well.

The server process is run as root in the chroot environment, and after binding
the port it immediately drops root privileges. It switches to the user nobody,
which doesn’t include a home directory. The chroot includes a directory for
user files, which is the only place the nobody user is able to write. The server is
equipped with a special firewall that doesn’t allow the user to open any network
connections. Standard Unix user limits for this user are set appropriately to
prevent crashing the server.

4.7.3 Client side
The client normally starts with a login page, which is a normal HTML page.
When the user fills in the login, it is sent as a POST request to the specialized
server. If the credentials were correct, a new specially generated HTML page
is sent to the user. This page includes all necessary variables like the session
number or the prover type. It also requests the other necessary Javascript files
to be included: a number of common files and a file for the particular prover.

The first part of the implementation handles the buffer and the operations
on it. The buffer includes four regions:

• The green region is the text already processed by the prover

• The blue region is the text that is currently being processed

• The yellow region with text that is to be processed but has not yet been
sent to the prover

• The non-locked region which the user is able to edit.

Implementation takes care that the verified regions stay in this order and are
not changed by the user.

The second part is responsible for taking care about the prover operations.
It implements the following functions (each is a JavaScript function):

• Sending one command from the script to the prover,

• Sending all the script to the prover,

• Undoing one command,

• Restarting the session,

• Going to a particular point in the buffer.

• A general callback for processing information that came back from the
prover that also tries to send more information from the yellow region of
the buffer.

70 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

The last part of the client side are the prover specific scripts. For a particular
prover finding the end of the next expression may not be a trivial task. For
example for Coq, a single dot is an end of an expression, but two dots are not.
Three dots end an expression, but a dot inside comments or inside quotes or
after a module name does not.

Additionally for particular provers mapping between some of the sequences
and Unicode symbols allows for nicer display.

4.8 Concluding Remarks
We presented an architecture to create simple, lightweight and fast web in-
terfaces to proof assistants. Such interfaces are a novelty in the domain. Our
solution works with modern web browsers without installing any additional soft-
ware. The installation and updating of provers is done only on the server, the
users do not need to do anything. It is therefore completely platform indepen-
dent.

The communication mechanism uses the network minimally, making the
interface comparably responsive to local ones. In comparison with other client-
server solutions, the only limitation is the dependency on the web browser.
Fortunately web browsers include full scripting languages, allowing implemen-
tation of nearly all possible functionality of the interface on the client side. In
particular the browser’s internal editors are weak in comparison with local ed-
itors. One can implement in JavaScript the handling of more key bindings to
make the editor similar to a local one. Most features of state-of-the-art local
interfaces for proof assistants can be imitated this way. The efficiency of an
editor implemented in JavaScript would depend on the browser interpreting it.
We have not been able to find any such editor.

We believe that a centralized environment, with provers accessible through a
web interface, is not limited in comparison with local interfaces, and that the ar-
chitecture we have presented is in the spirit of the current trends of development
in computer science.

We will look at extending the architecture to a complete wiki-like architec-
ture in Chapter 7. This requires a versioning mechanism and merging of users’
changes on the server. Additionally proof displaying and searching mechanisms
are mandatory. Editing conflicts can be resolved in similar way as it is done in
wiki software. For example if the file was changed and a user wants to save over
it, differences are presented.

The protocol we use for communication between the client side and the server
side is an ad-hoc protocol. We considered using the general prover interaction
protocol PGIP [ALW05], but it was not designed with network operation in
mind. Still it is XML-based, so parts of it may even be passed by the server di-
rectly to browsers, since they are already able to parse XML. On the other hand
the protocol may include too much information causing unnecessary overhead,
since it was designed as a local protocol.

Other implementation features that would require significant amounts of

4.8. CONCLUDING REMARKS 71

work, but that would give rise to a much better interface include: providing
more provers, making the interface compatible with all browsers that support
asynchronous DOM modifications, implementing the break mechanism, adding
syntax highlighting, and providing better security.

72 CHAPTER 4. WEB INTERFACES FOR PROOF ASSISTANTS

Chapter 5

Teaching logic using a proof
assistant

5.1 Introduction

5.1.1 Motivation
At most European universities, part of the undergraduate computer science
curriculum is an introductory course that teaches the rules of propositional and
predicate logic. At the Radboud Universiteit (RU) in Nĳmegen this course is
taught in the first year and is called ‘Beweren en Bewĳzen’ (Dutch for ‘Stat-
ing and Proving’). At the Vrĳe Universiteit (VU) in Amsterdam this course
is taught in the second year and is called ‘Inleiding Logica’ (‘Introduction
to Logic’). Almost all computer science curricula have similar undergraduate
courses.

For learning this kind of elementary mathematical logic it is crucial to work
many exercises. Those exercises can of course be done in the traditional way,
using pen and paper. The student is completely on his own, and in practice
it often happens that proofs that are almost-but-not-completely-right are pro-
duced. Alternatively, they can be made using some computer program, which
guides the student through the development of a completely correct proof. A
disadvantage of the computerized way of practising mathematical logic is that a
student often will be able to finish proofs by random experimentation with the
commands of the system (accidentally hitting a solution), without really having
understood how the proof works. Of course, a combination of the two styles of
practicing formal proofs seems to be the best option. Computer assistance for
learning to construct derivations in mathematical logic is desirable. Currently
the most popular program that is used for this kind of ‘computer-assisted logic
teaching’ is a logical framework called Jape [BS96], developed by Surin and
Bornat at the University of Oxford.

Besides exercises there is also the issue of examination. It would be good

73

74 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

if the student has the opportunity to do at any moment a (part of the) logic
exam by logging in to the system and be presented with a set of exercises from a
database that have to be solved within a certain time. This may require human
supervision to prevent cheating. We did not yet work on this, but just mention
it as a possible interesting application of computer-assisted logic teaching.

5.1.2 Our contribution
This chapter describes our development, named ProofWeb. It provides function-
ality much like Jape (it might be considered to be an ‘improved Jape-clone’).
The two main innovations that our system offers over Jape and other similar
systems are:

• The students work on a centralized server that is accessed through a web
interface. The proof assistant will not run on their computer, but instead
will run on the server.

A first advantage is flexibility. The web interface is light: the student will
not need to install anything to be able to use it, not even a plug-in. When
designing our system we tried to make it as low-threshold as possible.
Additionally since there is no installation required there is no danger of
computer viruses. The student can work from any internet-connection at
any time.

A second advantage is that the student does not need to worry about
version problems with the software or the exercises. Since everything is on
the same centralized server, the students have at any time the right version
of the software, exercises, and possibly solutions to exercises available, and
moreover the teachers know at any time the current status of the work of
the students.

• The system makes use of the proof assistant Coq. This means that stu-
dents have access to all the currently available formalizations in Coq. We
chose Coq because both at the RU and at the VU it is already used in
research and teaching.

An advantage of using a state-of-the-art proof assistant is again flexibil-
ity. The same interface can be used (possibly adapted) for teaching more
advanced courses in logic or proof assistants.

We also include in ProofWeb:

• A large collection of logic exercises. The exercises range from very easy
to very difficult, and are graded for their difficulty. The exercise set is
sufficiently large (presently over 200 exercises) that the student will not
soon run out of practice material. More about the exercise set can be
found in Section 5.5.

5.2. EXPERIENCES IN THE PROJECT 75

• Course notes, with a basic presentation of propositional and predicate
logic, and a description of how to use the system. We choose the presen-
tation of the proofs in the system to be the same as the presentation of
the proofs in textbooks. Therefore we developed both the ‘Gentzen-style’
and the ‘Fitch-style’ natural deduction variants.

5.1.3 Related work
There are already numerous systems for doing logic by computer, of which Jape
is the best known. A relatively comprehensive list is maintained by Hans van
Ditmarsch [vD07]. Of course many of these systems are quite similar to our
system (as well as to each other). For instance, quite a number of these systems
are already web-based.

The distinctive features of our system are the use of a serious proof assistant,
together with a centralized ‘web application’ architecture. The work of the
students remains on the web server. It can be saved and loaded back in, and
the progress of the student is at all times available both to the student, the
teacher and the system (i.e. the system has at all times an accurate ‘user model’
of the abilities of the student).

Our system has been developed for teaching logic in the natural deduction
style. There also exists a school of teaching logic due to Dĳkstra and Gries,
called ‘Calculational Logic’, in which reasoning is done through rewriting with
equations. The Coq system is powerful enough to support this kind of reasoning
as well, but we have not developed this style of logic in our system.

5.1.4 Contents
In this chapter we present both our project and the system. We start with a
short description of our project experiences in Section 5.2. Next, in Section 5.3
we present the architecture of the interface. Section 5.4 is concerned with the
supporting infrastructure of tactics and exercises, and Section 5.5 with the pre-
sentation of the collection of exercises. Finally, in Section 5.6 we give an outlook
on future work.

5.2 Experiences in the project
In the beginning of the project, ProofWeb was developed as a web-interface for
using Coq on a centralized server. As such, the system was already used in
three master courses on type theory using Coq:

1. In fall 2006: the course ‘Logical Verification’ at the VU [LV], taught by
Femke van Raamsdonk. This is a computer science master’s course about
the type theory of the Coq system. The course is meant for more mature
students but also recapitulates some undergraduate logic. It is therefore
suitable for testing a first version of ProofWeb. Natural deduction is

76 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

taught in Gentzen style, that is, proofs have a tree-like structure, and
grow upward from the conclusion of the proof.

2. In spring 2007: the course ‘Type Theory’ at the RU, taught by Freek
Wiedĳk and Milad Niqui. This course is also a master’s level course about
the type theory of the Coq system, and corresponds to the Logical Verifi-
cation course at the VU.

3. In spring 2007: the course ‘Type Theory and Proof Assistants’ in the
‘Master Class Logic 2006-2007’, taught by Herman Geuvers and Bas Spit-
ters. This course is similar to the previous ones, but is aimed at master’s
students from all over the Netherlands.

These courses were opportunities to test the interface of ProofWeb on mature
students. Since the students were not using tactics that involve automation, the
efficiency of the server turned out not to be a problem. At peak times around
sixty students use about 2Gb memory and a fraction of a CPU.

During these courses there was not yet support for visualizing proofs. Instead
the students had to do their proofs using the customary Coq proof style, which
consists of building a tactic script using the standard Coq tactics. This was not
problematic, since one of the aims of the courses is to learn Coq.

Initially we did not have a dedicated server, so the prototype was running on
one of the group servers of the research group in Nĳmegen on a non-standard
port. One of the issues then was that the web-proxy at the VU did not allow the
students to access pages running on non-standard ports, so they were required
to turn the proxy off.

One of the assignments in the course ‘Logical Verification’ at the VU involves
program extraction. For security reasons we did not allow running the extracted
programs on the server, and therefore a mechanism allowing the students to
obtain the extracted program was implemented.

In 2007, ProofWeb was used in two different undergraduate logic courses. In
both courses the students used the special tactics, the display, and the database
with exercises to practice natural deduction proofs.

1. In spring 2007: the course ‘Beweren en Bewĳzen’ at the RU [Bew] taught
by Hanno Wupper and Erik Barendsen. This is a computer science under-
graduate course in logic using Gentzen style ‘tree’ proofs. See Chapter 6
for a more elaborate discussion about ProofWeb and Gentzen style natural
deduction.

2. In fall 2007: the course ‘Inleiding Logica’ at the VU [Inl] taught by Roel
de Vrĳer. This is a computer science undergraduate course in logic, with
natural deduction in Fitch style (see next chapter), that is, proofs have a
structure of nested boxes, which structure a sequential list of proof steps.
Another name for this kind of proofs is ‘flag-style proofs’, because often
the assumptions of a subproof are written in the shape of ‘flags’.

5.3. ARCHITECTURE OF THE INTERFACE 77

The second course in which ProofWeb was used was the course ‘Type Theory’
in spring 2007 at the RU. The first half of this course is basically an accelerated
clone of the ‘Logical Verification’ course. As it turned out that initially there
were only very few students who wanted to follow this course, it was decided
that there would be no lectures, and that the students just would be given the
course notes of ‘Logical Verification’ together with access to the server. They
then would work on their own, with an opportunity to call for help if needed.
It turns out that this worked unexpectedly well. The students just studied
the lecture notes and did the exercises of the course. And even without much
pressure on them in the form of requiring them to meet deadlines, they managed
to keep on schedule reasonably well. The only thing that at some point confused
them (after which a lecture was organized to make things clear) was the part
of the course that did not correspond to Coq work: derivations in Pure Type
Systems.

All in all our experience is that the system ProofWeb seems to work very well
in teaching. Indeed, hardly any students used more traditional Coq interfaces
like Proof General or CoqIDE.

5.3 Architecture of the interface
The interface is an implementation of the architecture for creating responsive
web interfaces for proof assistants described in the Chapter 4. The architecture
described there was designed as a publicly available web service. Using it for
teaching required the creation of groups of logins for particular courses. The
students are allowed to access only their own files via the web interface, and
teachers of particular courses have access to students’ solutions through the
admin interface.

An example of the use of the interface in the ‘Logical Verification’ course
can be seen in Figure 5.1.

5.4 Natural deduction for first-order logic
A first aim in the development of ProofWeb was to have an exact correspon-
dence between the derivations on paper and the derivations in the system. The
student should then work with a set of dedicated tactics, because the standard
Coq tactics are too powerful. (For instance, one could solve the exercises in
propositional logic using the tactic tauto instead of building the actual deriva-
tion.)

The standard way of working with Coq is with backward proofs, so we first
naturally arrived at a set of backward tactics: every proposition (the current
goal) is deduced from another proposition (the new goal) using a deduction rule.
The display style that fits most naturally to this kind of proof is a proof tree
(flag-style proofs are described in the next chapter). This imposes a strict way
of working. The proof trees have to be constructed from ‘bottom to top’. On

78 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

Figure 5.1: A propositional logic exercise in ProofWeb.

the one hand, this makes the construction of a deduction more difficult than
on paper, because there is no possibility of building snippets of the proof in a
forward way, using what is known from the hypotheses and their consequences.
But on the other hand, the method forces the student to ponder the general
structure of the proof before deciding by what step he will eventually end up
with the current proposition. And the imposed rigidity is congenial with the aim
of a logic course to encourage rigorous analytical thinking. Moreover, it becomes
very clear where ingenuity comes in, such as with the disjunction elimination
rule. The student is supposed to prove some proposition C. It is a creative
step to find a disjunction A∨B, prove this, and also prove that C follows from
both A and B separately. The same goes for the introduction and elimination
of negation.

As an example we present the tactic for disjunction elimination, which gives
a good impression of the way additional tactics are implemented:

Ltac dis_e X H1 H2 :=
match X with
| (_ \/ _) =>
let x := fresh "H" in
assert (x : X);
[idtac | elim x; clear x; [intro H1 | intro H2]]

end
|| fail "(the argument is not a disjunction

or the labels already exist)".

If the current goal is C, the tactic dis_el (A \/ B) G H will create the
following three new goals:

5.4. NATURAL DEDUCTION FOR FIRST-ORDER LOGIC 79

1. A ∨B;

2. C, with the extra assumption A with label G;

3. C, with the extra assumption B with label H.

Also, the tactic gives a nice and understandable error message. All natural de-
duction tactics have been given a name by using three letters of the connective’s
name and indicating whether the tactic implements an introduction rule or an
elimination rule (and if necessary, if that is a left or a right variant or whether
it is the forward tactic). We give a small example of a proof with our set of
tactics (The forward tactics are denoted with the f_ prefix and allow using the
natural deduction tactic with the goal to be closed):

Theorem pred_076 : all x, exi y, (P(x) \/ P(y)) -> exi x, P(x).
Proof.
imp_i H.
insert G (exi y, (P(x0) \/ P(y))).
f_all_e H.
exi_e (exi y, (P(x0) \/ P(y))) y0 J.
ass G.
dis_e (P(x0) \/ P(y0)) K K2.
ass J.
f_exi_i K.
f_exi_i K2.
Qed.

5.4.1 Visualization
A second aim is a visual presentation of proofs as in Jape. This meant requesting
the proof information from Coq and converting it to a graphic format. Coq
internally keeps a proof state. This proof state is a recursive OCaml structure,
that holds a goal, a rule which allows to obtain this goal from the subgoals, and
the subgoals themselves. It is not just a tree structure, since a rule can be a
compound rule that contains another proof state. Tactics and tacticals modify
the proof state. Coq includes commands that allow inspecting the proof state.
Show with a number allows the user to see in detail a goal that is not currently
being worked on, Show Tree shows the succession of conclusions, hypotheses
and tactics used to obtain the current goal and Show Proof displays the CIC
term (possibly with holes).

The output of these commands was not sufficient to build a natural deduction
tree for the proof. We added a new command Dump Tree to Coq that allows
exporting the whole proof state in an XML format. An example of the output
of the Dump Tree command for a very simple Coq proof:

<tree><goal><concl type="A -> A"/></goal>
<cmpdrule><tactic cmd="intro x"/>

<tree><goal><concl type="A -> A"/></goal>

80 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

<cmpdrule><tactic cmd="intro x"/>
<tree><goal><concl type="A -> A"/></goal>

<rule text="intro x"/>
<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>
</cmpdrule>
<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>
</cmpdrule><tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>

ProofWeb is able to parse the XML trees dumped by Coq and generate natural
deduction diagrams (see Figure 5.2). The diagrams are rendered as HTML ta-
bles with fixed with Unicode ASCII characters, so that they can be transferred
over the network efficiently. Those diagrams may be requested by the user’s
browser in special query requests (as described in 4.4). The diagrams are dis-
played in a separate frame in the interface along with the usual Coq proof state.
If the user switches on the display of the diagrams, the client side requests them
when no text is being processed.

Figure 5.2: A natural deduction tree as seen on the web page.

5.5 The exercise set
As a part of the project a set of over 200 exercises was developed. If a student
logs in via the web interface as a participant to a specific course, he sees the list
of exercises for the course (see Figure 5.3). It gives for each exercise the name
of file that holds the exercise, an indication of the difficulty, the current status
of the exercise, and a button for resetting the exercise to its initial state.
The four possibilities for the status of an exercise are:

– Not touched (in grey)
– Incomplete (in red)
– Correct (in orange)
– Solved (in green)

5.5. THE EXERCISE SET 81

The colors are meant to resemble the colors of a traffic light.

• The status Not touched means that an exercise has not been opened, or
has been opened but has not been saved.

• The status Incomplete means that the file is incomplete or wrong. If one
want to know why ProofWeb thinks there is an error in the solution, one
can click the why? link next to the status. The system shows a new window
that shows the error message of Coq.

• The status Correct means that the file is a correct Coq-file. However,
the file is not accepted as a solution for the exercise in the course. This
happens for instance if more automation (present in Coq) is used than
intended for the course, for instance: by proving a propositional formula
with the tactic tauto instead of using the tactics corresponding exactly
to the logical rules used in the course. It also happens if the file is empty.
If the status is Correct one can click on the why? link to find out which
steps are not allowed in the course.
This is a feature of ProofWeb is meant as a service for the teacher, but of
course in addition manual verification may be required, for instance if the
exercise is to give the definition of a certain object in type theory.

• The status Solved means that the file is correct Coq and moreover is
accepted as a solution in the course.

Figure 5.3: Tasks assigned to students and their status.

The verification tool lexes the original task and the student’s solution in parallel.
The original solution includes placeholders that are valid Coq comments. An
example task file on the server looks like:

82 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

(* Exercise 118 *)

Require Import ProofWeb.

Variables A B C : Prop.

Theorem prop_118 :
~~(A \/ B) -> (~~A -> ~~C) -> (~~B -> ~~C) -> ~~C.

(*! prop_proof *)
Qed.

Those placeholders mean that a particular place needs to contain a valid Coq
term or a valid proof. For proofs the kind of proof determines the set of allowed
tactics. For proofs and terms of given types the automatic verification is enough.
However, there are tasks where students are required to give a definition of a
particular object in type theory. For this kind of tasks manual verification by a
teaching assistant of a course is required.

Below we list the tactics allowed in courses:

• Type theory and Coq courses:

intro, intros, apply, exact, unfold, fold, elim,
split, left, right, assumption, simpl, elimtype,
inversion, induction, exists, reflexivity, absurd,
inversion_clear, clear, constructor, rewrite, assert,
destruct, replace, symmetry

• Basic logic courses:

con_in, con_ell, con_elr, dis_inl, dis_inr, dis_el,
imp_in, imp_el, equ_in, equ_el, neg_in, neg_el, efq,
ass, neg_els, tnd_axiom, dn, dn_axiom, all_in, all_el,
exi_in, exi_el, equ_eli, rewrite

• Constructive proofs:

con_in, con_ell, con_elr, dis_inl, dis_inr, dis_el,
imp_in, imp_el, equ_in, equ_el, neg_in, neg_el, efq,
ass, all_in, all_el, exi_in, exi_el, equ_eli

• Propositional logic courses:

ass, copy, exact, insert, con_i, con_e1, con_e2,
dis_i1, dis_i2, dis_e, imp_i, imp_e, neg_i, neg_e,
fls_e, tru_i, negneg_i, negneg_e, LEM, PBC, MT,
b_con_i, b_con_e1, b_con_e2, b_dis_i1, b_dis_i2,
b_dis_e, b_imp_i, b_imp_e, b_neg_i, b_neg_e, b_fls_e,

5.6. OUTLOOK 83

b_tru_i, b_negneg_i, b_negneg_e, b_LEM, b_PBC, b_MT,
f_con_i, f_con_e1, f_con_e2, f_dis_i1, f_dis_i2,
f_imp_e, f_neg_e, f_fls_e, f_tru_i, f_negneg_i,
f_negneg_e, f_LEM, f_MT, f_dis_e, f_exi_e

• Predicate logic additionally allows:

all_i, all_e, exi_i, exi_e, equ_i, equ_e, equ_e’,
b_all_i, b_all_e, b_exi_i, b_exi_e, b_equ_i, b_equ_e,
b_equ_e’, f_all_e, f_exi_i, f_equ_i, f_equ_e

5.6 Outlook
A final version of the course notes is available [KRW+08].

Some of the issues that can be worked on are the following.

• The teacher web interface allows to manage students logins and inspect
the work of the students. Managing the set of exercises is at the moment
only possible by logging on to the server through an ssh connection, and
then listing and editing files manually. Clearly, a proper web interface for
this is necessary.

• The deduction trees are currently rendered as text or HTML in IFrames,
and can be optionally opened in a separate browser window to allow easy
printing as PostScript or PDF. However students may need to use the
trees in texts, and for that a dedicated TEX or image rendering of the
trees could be implemented.

• The interface uses some web technologies that are not implemented in the
same way in all browsers. It includes a small layer that is supposed to
abstract over incompatible functionalities. Currently this works well with
Gecko based browsers (like Mozilla, Firefox, Galeon, Epiphany and Net-
scape), Webkit based browsers (like Safari and Konqueror), and the Opera
browser. Also, some effort has been made to make the system work rea-
sonably well with common versions of Internet Explorer (see Section 4.6).
However, it needs further attention.

• The documentation of how to install and maintain the server is in a rudi-
mentary state. Our server currently is available to everyone who wants to
experiment with our system, but a good guide that explains how to install
a server would be useful.

• The system keeps a log of each interaction of each student session, is al-
ready stored on the server. Using these logs, it is possible to develop soft-
ware for ‘replaying’ student sessions. We are currently discussing whether
it is useful to develop such an extension of the system.

84 CHAPTER 5. TEACHING LOGIC USING A PROOF ASSISTANT

• The system was designed to be used in standard university courses. It
might be useful to create a more complete online environment that would
include introductory explanations and adaptive user profiles, therefore al-
lowing students to learn logic without teacher interaction.

5.6.1 Beyond the project
If the development of ProofWeb is finished, a possibility is to integrate it with
a system that supports the development of more serious proofs with the Coq
system. One of the other projects being pursued is the creation of a so-called
‘math wiki’ described in Chapter 7. Here, traditional wiki technology is inte-
grated with the same proof assistant front end that our system is based on.
Combining it with en educational environment might be a long-standing goal.

Chapter 6

Merging procedural and
declarative proof

6.1 Introduction
6.1.1 Procedural versus declarative proof assistants
Proof assistants are computer programs for constructing and checking proofs.
In these systems one can distinguish between two quite different kind of entities
that both might be considered the ‘proofs’ that are being checked:

• First there are the low level proofs of the logic of the system. In type
theoretical systems these are the proof terms. In other systems they are
built from tiny proof steps called basic inferences. Generally such proof
objects are huge and constructed from a small number of basic elements.

• Then there also are the high level proof texts that the user of the system
works with. Often these texts are scripts of commands from the user to
the proof assistant. These texts are of a size comparable to traditional
mathematical texts, and contain a much larger variety of proof steps. For
instance both the Coq and HOL systems have dozens of tactics that can
occur in this kind of proof.

The proof assistant does two things for the user. First it translates high level
proofs into low level proofs, and secondly it checks the low level proofs obtained
in this way with respect to the rules of the logic of the system.

As an example, the following ‘high level’ Coq proof script:

Lemma example : forall n : nat, n <= n.
intros.
omega.
Qed.

85

86 CHAPTER 6. MERGING PROOF STYLES

is translated to the following ‘low level’ proof term:
fun n : nat =>
Decidable.dec_not_not (n <= n) (dec_le n n)
(fun H : ~ n <= n =>
ex_ind

(fun (Zvar1 : Z) (Omega5 : Z_of_nat n = Zvar1 / (0 <= Zvar1 * 1 + 0)%Z) =>
and_ind

(fun (Omega3 : Z_of_nat n = Zvar1) (_ : (0 <= Zvar1 * 1 + 0)%Z) =>
let H0 :=

eq_ind_r (fun x : Z => (0 <= x + -1 + - Z_of_nat n)%Z -> False)
(eq_ind_r (fun x : Z => (0 <= Zvar1 + -1 + - x)%Z -> False)

(fast_Zopp_eq_mult_neg_1 Zvar1
(fun x : Z => (0 <= Zvar1 + -1 + x)%Z -> False)
(fast_Zplus_comm (Zvar1 + -1) (Zvar1 * -1)

(fun x : Z => (0 <= x)%Z -> False)
(fast_Zplus_assoc (Zvar1 * -1) Zvar1

(-1) (fun x : Z => (0 <= x)%Z -> False)
(fast_Zred_factor3 Zvar1 (-1)

(fun x : Z => (0 <= x + -1)%Z -> False)
(fast_Zred_factor5 Zvar1

(-1) (fun x : Z => (0 <= x)%Z -> False)
(fun Omega4 : (0 <= -1)%Z =>
Omega4 (refl_equal Gt))))))) Omega3) Omega3 in

H0 (Zgt_left (Z_of_nat n) (Z_of_nat n) (inj_gt n n (not_le n n H))))
Omega5) (intro_Z n))

which then is type checked and found to be correct.
A good proof assistant should hide low level proofs from the user of the

system as much as possible. Just like a user of a high level programming lan-
guage should not need to be aware that the program internally is translated
into machine code or bytecode, the user of a proof assistant should not have to
be aware that internally a low level proof is being constructed.

It depends much on the specific proof assistant what the high level proofs
look like. There are two basic groups of systems, as first introduced in [Har96b]:

The procedural systems such as Coq, HOL and PVS. These systems gen-
erally are descendants of the LCF system. The proofs of a procedural
system consist of tactics operating on goals. This leads to proofs that can
naturally be represented as tree shaped derivations in the style of Gentzen.
For instance, the example Coq proof then looks like:

 ────────────── omega

 n:nat ⊢ n <= n

──────────────── intros

⊢ ∀n:nat, n <= n

The above is a screenshot from the display of our ProofWeb system. In
practice it is more useful to have ProofWeb display the tree without con-
texts:

 ────── omega

 n <= n

────────────── intros

∀n:nat, n <= n

6.1. INTRODUCTION 87

The declarative systems. The main two systems of this kind are Mizar and
Isabelle (when used with its declarative proof language Isar), but also
automated theorem provers like ACL2 and Theorema can be considered
to be declarative. There are experimental declarative proof languages, like
the C-zar for Coq by Pierre Corbineau [Cor08] and by John Harrison for
HOL Light [Wie01]..
The proofs of a declarative system are block structured. They basically
consist of a list of statements, where each statement follows from the
previous ones, with the system being responsible for automatically con-
structing the low level proof that shows this to be the case. Apart from
these basic steps declarative proofs have other steps, like the assume step
which introduces an assumption.
In declarative systems these proof steps are grouped into a hierarchical
structure of blocks, just like in block structured programming languages.
In declarative proofs these blocks are delimited by keywords like proof
and qed.

Some systems might be considered not to be fully declarative in the sense
that they still require the user to indicate how a statement follows from
earlier statements. For instance this holds for Isabelle, where the user can
(and sometimes must) give explicit inference rules. Indeed, it is common
among the users of Isabelle to refer to the Isar proofs not as ‘declarative’
but ‘structured’. However, for the purposes of this paper this distinction
does not matter. In fact, the declarative proofs that we generate with
our ProofWeb system also have the property that they contain an explicit
tactic at each step in the proof.

Declarative proofs are similar (although more precise and, with current tech-
nology, much more fine-grained) to the language that one finds in mathematical
articles and textbooks.

The contribution of this chapter is a generic method for converting a proce-
dural proof to a declarative proof. For Coq this method has been implemented
in the ProofWeb system. ProofWeb can display a high level Coq proof as a block
structured list of statements. Here is how it will display the example proof:

1 n: nat assumption

2 n <= n omega

3 ∀n:nat, n <= n intros 1-2

The rest of the chapter details the algorithms used for this.
In Chapter 5 we described theWeb deduction for education in formal thinking

project in which we built ProofWeb. One of its features is that it allows the
students to both work in Gentzen style and in Fitch style. Proofs are displayed
in (almost) exactly the same way that they are shown in the textbook. We
decided to have our system be exactly compatible with a popular logic textbook
by Michael Huth and Mark Ryan [HR04].

88 CHAPTER 6. MERGING PROOF STYLES

The ProofWeb system can present the tree shaped proof that corresponds
to the Coq proof script as a Fitch style proof. This means that it converts a
procedural proof (the Coq proof script) to a declarative proof (the Fitch display).
The method that it uses to do this is generic. It will work for converting any
procedural proof to any declarative proof text, independent of the specific proof
assistants involved or their logical foundations.1

We decided against presenting the conversion method that we used generi-
cally. Here we present just the method for the very specific situation of natural
deduction proofs for first order predicate logic with equality. However, the
method is perfectly generic. Also, our implementation already is not restricted
to the small set of tactics that the users of ProofWeb are supposed to use. It
will work with any Coq proof, providing a block structured Fitch style display
of that proof.

The specifics of the first order logics that ProofWeb uses can be found in the
ProofWeb manual [KRW+08]. We here just show an example for both logics in
Figure 6.1. In ProofWeb flags are rendered as boxes (like in Huth and Ryan),
with the right hand border of the boxes omitted to conserve space.

Declarative proofs are much more robust than procedural proofs, and for
this reason can be expected to have a longer useful lifetime than procedural
proofs. For this reason, development of the technology presented here might
mean current formalizations get a longer useful lifetime. A current version
of the procedural system can be used to export a formalisation declaratively.
Keeping the declarative proof instead of the procedural one gives a much higher
chance of the proof being accepted by future versions of the proof assistant.

The conversion algorithm presented here also works on proofs that have not
been completed yet. In that case one gets a declarative proof with gaps. For
instance in ProofWeb, the Fitch style display of the proof before the omega tactic
is executed will be:

1 n: nat assumption

 ...

2 n <= n

3 ∀n:nat, n <= n intros 1-2

ProofWeb users often use the system through this feature. They do not look
at the Coq proof state (which is also available to them), but just think in terms
of the incomplete Fitch style proof.

This leads us to propose a new kind of prover interface. We call it a luxury
declarative proof assistant (after a private suggestion by Henk Barendregt).
In a luxury system, the user does not see goals, but works on an incomplete
declarative proof. This proof then can be modified in two ways:

• Either the user just edits the text, the common way to work in a declarative
1The proof might contain some statements that have no good equivalent in the target

system, and the automation of the target system might not always be able to bridge the gaps
between the steps, but apart from those issues, a good starting point for a formalization in
the target system can always be generated.

6.1. INTRODUCTION 89

[∃x(P (x) ∨ ¬Q(a))]H1

[P (b) ∨ ¬Q(a)]H3

[P (b)]H4

∃xP (x)
∃i

[¬Q(a)]H5 [Q(a)]H2

⊥
¬e

∃xP (x)
⊥e

∃xP (x)
∨e [H4, H5]

∃xP (x)
∃e [H3]

Q(a)→ ∃xP (x)
→i [H2]

∃x(P (x) ∨ ¬Q(a))→ Q(a)→ ∃xP (x)
→i [H1]

1 ∃x(P (x) ∨ ¬Q(a))

2 Q(a)

3 b P (b) ∨ ¬Q(a)

4 P (b)

5 ∃xP (x) ∃i 4

6 ¬Q(a)

7 ⊥ ¬e 6,2

8 ∃xP (x) ⊥e 7

9 ∃xP (x) ∨e 3,4–5,6–8

10 ∃xP (x) ∃e 1,3–9

11 Q(a)→ ∃xP (x) →i 2–10

12 ∃x(P (x) ∨ ¬Q(a))→ Q(a)→ ∃xP (x) →i 1–11

Figure 6.1: Example derivation in Gentzen’s and Fitch’s systems.

90 CHAPTER 6. MERGING PROOF STYLES

proof assistant. This is flexible but gives the user no help in writing the
proof.

• Alternatively the user executes a tactic at a step in the proof that has not
been sufficiently justified yet, i.e., for which the system has not yet gener-
ated a low level proof. The ‘goal’ that this tactic sees has the statement
of this step as the conclusion, and all the statements before it that are in
scope as the assumptions. The tactic then will generate subgoals, which
will be added to the proof text as new steps in, if needed, new sub-blocks.
Modifying a proof in this style (by executing a tactic at a not yet justi-
fied step), needs exactly the same algorithms that the conversion from a
procedural proof to a declarative proof needs.
If one ‘grows’ a declarative proof in such a way, it basically will consist
of a merged version of all the subgoals that the proof would have gone
through in the procedural system.

It is desirable that in a luxury system both ways of working are available
simultaneously. It should not be required to use tactics to modify a proof.

A simple version of this luxury concept is the following. In a declarative
prover the user has to formulate the appropriate assume steps himself, while
in a procedural prover he just can type intros. However in a luxury prover,
the intros command will be available, which then will generate all the needed
assume steps automatically. Similarly, appropriate statements in the case of
an induction or application of a lemma can be generated automatically by the
system.

6.1.2 Approach
The conversion from a tree style proof to a block structured proof is straight-
forward. It consists of two phases:

• First the tree is converted to a series of nested blocks in a naive way. This
is trivial. However, it does not lead to a proof that a user will want to
see, as there are many duplicate lines and boxes that are not necessary.

• The second phase is to reduce the proof. We use a rewrite system for this
that eliminates various unwanted structures from the proof:

– If a subproof has no new assumptions nor new variables, the block
for it is not needed and can be flattened into the main proof.

– Lines that are copies of earlier lines can generally be removed, as
references to those lines can be replaced by references to the earlier
lines.

– ‘Cuts’ also can be removed from the proofs, as the declarative proofs
really have a cut (in the Gentzen sense) at every line.

6.1. INTRODUCTION 91

Below we will give the details of this rewrite system for proofs for the specific
case of first order logic. We prove it to be terminating and confluent.

Our method is designed to convert proofs preserving the level of detail
present in the original proof. When building a proof using automated tac-
tics (decision procedures), the user might be curious after the proof that those
tactics constructed internally. This is analogous to the rare occasion that a
compiler user wants to see the machine code that was generated by the com-
piler. Our method does not work well for obtaining information on this level.
However, Coq allows decomposition of tactics into smaller tactics using the info
prefix, which means that getting such information is possible even when using
our approach.

6.1.3 Related Work
There have been various projects for translating proofs from a procedural proof
assistant into a declarative presentation, most notably the HELM system by
Asperti et al., which was further developed in the MoWGLI project [APC+03,
AW02]. However, those systems almost always work on the level of proof terms
and not on the level of tactics. For this reason the declarative proofs that these
systems produced tend to be too convoluted for human consumption.

An exception is the system by Guilhot, Naciri and Pottier where Coq proofs
are considered on the level of the tactics, by converting Coq proof trees just like
we do [GNP03]. However in this work the generated text is only considered a
presentation – they call it an explanation – and not a proof in a formal system
like Fitch-style natural deduction in its own right.

Geuvers and Nederpelt [GN04] define a translation of natural deductions in
Fitch style to simply typed λ-terms (i.e., their translation goes the opposite
way from ours). They present reduction relations for Fitch-style deductions
that allow simpler λ-terms to be obtained. These reductions remove unnecessary
subproofs, remove repeats and unshare shared subproofs. They prove that Fitch
deductions are mapped to the same λ-term if and only if they are equal under
these relations; which shows that there is an isomorphism between these classes.

Proof nets [Gir87] allow representing proofs in a geometrical way where
the order of the application of rules as well as irrelevant features of regular
natural deduction proofs can be eliminated. Geuvers and Loeb [GL06] show the
correspondence between deduction graphs and proof nets and give translations
from minimal propositional logic to proof nets via context nets. They also shows
how an operation of cut elimination in deduction graphs can be performed after
the translation to a context net.

6.1.4 Contents
The rest of the chapter is organized as follows: In Section 6.2 we define and
present a translation of minimal logic tree style proofs to flag style proofs. Then
in Section 6.3 we present extending our translation to more complicated logical
systems. In Section 6.4 we show how obtained proofs can be optimized and what

92 CHAPTER 6. MERGING PROOF STYLES

additional simplifications can be performed when translating forward proofs
(Section 6.5). We then describe our implementation of the translation and
show rendered proofs in both styles in Section 6.6. Finally, in Section 6.7 we
present a conclusion and future work.

6.2 Translating minimal logic tree style proofs
to flag style proofs

We first will restrict ourselves to minimal propositional logic. We introduce a
translation operation (7→) that translates a tree style proof G of a proposition
A to a flag style proof F. An example of such a translation is:

∅ :
[A]x

B → A
→i[y]

A→ B → A
→i[x] 7→

1 A

2 B

3 A copy 1

4 B → A →i 2–3

5 A→ B → A →i 1–4

This operation always preserves the conclusion, and the conclusion will be most
often the part of the proof that we match, so we write it explicitly:

Γ : (
...G

A
7→

...F

A
)

The translation operates in a context Γ. This context is a list of assumptions
accompanied by labels that can be used in the proofs G and F. The assump-
tions that are discharged in the proof are no longer in the context. Sometimes
for clarity we will mark assumptions available in particular branches of proofs
and discharged after by additional brackets. Below we give an example of a
translation of proof styles in a non-empty context:

[A]x, [B]y :
[A]x [B]y

A ∧B
∧i 7→ A ∧B ∧i x, y

We define the translation operation inductively via the translation rules in
Figure 6.2. The translation rules match the conclusion and the rule used and
give a rule to build the flag style proof. All new labels introduced by the
translation operation are fresh identifiers. The usual presentation of flag style
proofs is with line numbers and rules that reference those numbers, but in our
translation we will use identifiers. An implementation may render such proofs
with lines numbered in the customary way, and we do indeed provide this in
our ProofWeb implementation as described in Section 6.6.

6.2. TRANSLATING MINIMAL LOGIC TREE PROOFS 93

Γ, [A]x : [A]x 7→ A copy x

Γ, [A]x :
...G
B 7→

...F
B

Γ :

([A]x)
...G
B

A→ B
→i[x]

7→

x A
...F

n B

A→ B →i x–n

Γ :
...G1

A→ B 7→
...F1

A→ B
Γ :

...G2

A 7→
...F2

A

Γ :

...G1

A→ B

...G2

A

B
→e 7→

...F1

i A→ B
...F2

j A

B →e i, j

Figure 6.2: The translation rules for minimal propositional logic.

94 CHAPTER 6. MERGING PROOF STYLES

The first rule translates the use of an assumption. We replace the use of an
assumption with a copy line, and label this line with the name of the assumption
variable.

If the derivation ends with implication introduction we translate it to the
implication introduction rule in the flag style. We use the name of the introduced
assumption in the tree style as the label of assumption line in the flag style. The
assumption [A] is not in the context since it is discharged, but for readability
we mark it in brackets in the tree style proof. This means that the proof G can
use this assumption. We provide fresh identifiers for new lines.

Implication elimination is analogous. We do not need to introduce a flag for
the subtree of the tree style proof. This is what makes the depth of flag proofs
much lower then the depth of tree style proofs.

6.3 Translating proofs in more complicated log-
ical systems

To translate a proof in tree style of an arbitrary deduction system we will first
translate it to a non-optimized proof.

We often need to open a number of flags depending on a list of assumptions.
This is why we introduce a shorthand notation. We will write flags with a list
above the assumption line to denote opening a number of flags. The last flag is
opened with the rule provided in the shorthand notation, while all other flags
are introduced one by one using implication introduction:

i A1, A2, . . . , An...F

j B

C R i–j

This stands for:

6.4. SIMPLIFICATION OF OBTAINED PROOFS 95

i A1

j A2

. . .

k An...F

l B

An → B →i k–l

m . . .

n A2 → A3 → . . .→ An → B →i j–m

C R i–n

For a list with just one assumption this is equivalent to opening one flag
with just the given rule. For a flag with an empty list of assumptions no flags
need to be opened:

i ∅
...F

j B

C R i–j

stands for:

...F

i B

C R i

We show the translation of a given tree style proof in terms of a general
schema. This schema will be instantiated for every rule of the logic. Given
a rule R that proves the formula B from the tree style proofs G1, G2, . . . , Gn
that have conclusions A1, A2, . . . , An, which discharge assumption lists (possibly
empty) S1, S2, . . . , Sn we recursively translate all subproofs to generate the final
flag style proof (Figure 6.3). The subproofs A1, . . . , An can use the assumptions
from their appropriate lists and this is marked in the schema by brackets. An
example of instantiation of the schema for a rule for is given in Figure 6.4.

6.4 Simplification of obtained proofs
We can remove many of the copy lines by ‘path compression’, i.e., if a copy line
is not the last line under a flag, the copy line can be removed and all further
references should be renumbered to refer to the line that was copied:

96 CHAPTER 6. MERGING PROOF STYLES

Γ,
S

1
:

. . .G
1

A
1
7→

. . .F 1 A
1

Γ,
S

2
:

. . .G
2

A
2
7→

. . .F 2 A
2

..
.

Γ,
S
n

:
. . .G

n

A
n
7→

. . .F n A
n

Γ
:

([S
1]

)
. . .G

1

A
1

([S
2]

)
. . .G

2

A
2

..
.

([S
n
])

. . .G
n

A
n

B
R

[S
1
∪
..
.
∪

S n
]
7→

i 1
S

1 . . .F 1
j 1

A
1

i 2
S

2 . . .F 2
j 2

A
2

. . .
i n

S
n . . .F n

j n
A
n

B
R
i 1
–j

1,
i 2
–j

2,
..
.,
i n
–j
n

Figure 6.3: The general schema for translating a rule of the logic.

6.4. SIMPLIFICATION OF OBTAINED PROOFS 97

Γ :
...G1

A ∨B 7→
...F1

A ∨B
Γ, A :

...G2

C 7→
...F2

C
Γ, B :

...G3

C 7→
...F3

C

Γ :
...G1

A ∨B

([A]x)
...G2

C

([B]y)
...G3

C

C
∨e[x, y]

7→

...F1

i A ∨B

j A
...F2

k C

l B
...F3

m C

C ∨e 1,2–3,4–5

Figure 6.4: Example of the general schema instantiated for ∨-elimination.

i A
...

j A copy i
...... . . . j

B

i A
......... . . . i

If the copy line is the only line under a flag and is the copy of the assumption
introduced under this flag, the copy line can be removed. This creates proofs
that resemble customary Fitch deduction drawing style:

i A

A copy i B A

Theorem 6.4.1 The use of the translation followed by performing the above
simplifications on a correct Gentzen style natural deduction proof results in a
flag style proof that is a correct Fitch style natural deduction proof with the same
conclusion and the same rules.

Proof [Sketch] The conclusion and the rules are preserved by all steps of trans-
lation and simplification. The simplifications do not change any of the rules or
lines they operate on. The translation of any correct Gentzen rule is a correct

98 CHAPTER 6. MERGING PROOF STYLES

Fitch rule. The proof proceeds by verifying the correctness of the translation of
all natural deduction rules from [KRW+08]. �

6.5 Simplification of forward proofs
One of the main advantages of flag style proofs over tree style proofs, is that the
flag proof is typically almost linear, with very little nesting and therefore much
easier to present on paper. For completed natural deduction derivation the proof
that we obtain by translation is mostly flat, with nesting introduced only for
assumptions. Our translation is also able to work with incomplete proofs. For
incomplete proofs done in a backwards manner (starting from the conclusion)
the tree style proof corresponds naturally to the flag style proof. This is not the
case for forward proofs. For example in tree style:

i A

j B

k A ∧B ∧i i, j
...
C

The line labeled k is obtained by ∧-introduction from lines i and j. To
represent this proof in Gentzen style natural deduction we need a cut with a
branch where A ∧B is an assumption:

[A] [B]
A ∧B

∧i

([A ∧B]x)
...
C

A ∧B → C
→i[x]

C
→e

The cut in the above proof cannot be eliminated until the proof is completed.
However, this is not the case for flag style proofs, where this kind of cut can be
eliminated without influence on the rest of the proof (assuming the rest of the
proof is translated as well).

We want to give a mechanism that allows translating the above tree style
proof with a cut to a flag style proof without a cut. The use of cut is a general
technique; it is often used for inserting a subgoal that can be used further in
the proof. This is why we will eliminate all the implication cuts that could have
been obtained in this way. To do this we present the rewrite rule in Figure 6.5,
which can be applied only if line l is not used further in the proof.

Theorem 6.5.1 The rewrite system including the above rewrite rule termi-
nates.

6.6. IMPLEMENTATION FOR COQ PROOFS 99

...
i A

j A
...

k B

l A→ B →i j–k

B →e i, l

B

...
i A . . .

...
B . . .

Figure 6.5: Rewrite rule for eliminating explicit cuts from a Fitch deduction.

Proof [Sketch] By induction on the number of flags. �

Theorem 6.5.2 The rewrite system including the above rewrite rule is conflu-
ent.

Proof [Sketch] If it is possible to apply a rule at two places in a proof, the two
places are associated with two flags. Either one of the flags is under the other or
they are in separate parts of the proof and thus independent. If one of the flags
is under the other, it has to be inside the incomplete proof part of the rewrite
rule. In that case the rewrite only moves the whole incomplete proof and thus
the rewrites also are independent. �

We see in Figure 6.6, how the application of this rewrite rule makes the
translation of a Coq proof from a Gentzen tree style proof into a flag style proof
with a small number of nested flags.

6.6 Implementation for Coq proofs
The implementation of Coq keeps a proof tree. This is a recursive OCaml
structure, that holds a goal, a rule to obtain this goal from the subgoals, and
the subgoals themselves. It is not just a tree structure, since a rule can be a
compound rule that contains other proof states. Tactics and tacticals modify
the proof state. Coq includes commands for inspecting the proof state. Show
Tree shows the succession of conclusions, hypotheses and tactics used to obtain
the current goal and Show Proof displays the CIC term (possibly with holes).
The output of these commands was not sufficient to transform the proof state
in other formats. We added a new command Dump Tree to Coq that allows
exporting the whole proof state in an XML format. An example of the output
of the Dump Tree command for the Coq example from Section 6.1.1 is:

<tree><goal><concl type="forall n : nat, n <= n"/></goal>
<cmpdrule><tactic cmd="intros"/>

100 CHAPTER 6. MERGING PROOF STYLES

 ...

 ───────

 ∃x, P x [∀x, ∃y, (P x ∨ P y)]F

──────────────────────────── →i[F1] ────────────────────── ∀e

(∃y, (P x0 ∨ P y)) → ∃x, P x ∃y, (P x0 ∨ P y)

── →e

 ∃x, P x

── →i[F]

 ∀x, ∃y, (P x ∨ P y) → ∃x, P x

1 F: ∀x, ∃y, (P x ∨ P y) assumption

2 F1: ∃y, (P x0 ∨ P y) ∀e 1

 ...

3 ∃x, P x

4 ∀x, ∃y, (P x ∨ P y) → ∃x, P x →i 1-3

Figure 6.6: An incomplete proof in Gentzen natural deduction and its transla-
tion to a Fitch deduction, as rendered by the implementation.

<tree><goal><concl type="forall n : nat, n <= n"/></goal>
<cmpdrule><tactic cmd="intros"/>

<tree><goal><concl type="forall n : nat, n <= n"/></goal>
<rule text="intro n"/>
<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree></cmpdrule>
<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>
</cmpdrule><tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>

This is the proof tree that corresponds to the incomplete Fitch proof on page
88.

The communication between ProofWeb and Coq is very narrow. The Dump
Tree command is all that had to be added to Coq to allow our system to convert
proofs, and its implementation only took a small amount of OCaml code. This
code has now been integrated into the Coq code base, which means that the
Dump Tree command is standardly available in Coq from version 8.2.

6.6.1 Transforming Coq proof state in a flag style proof
Our system is intended to be used with simple tactics that correspond to the
inference rules of first order logic, so currently we forget the information gener-
ated by automated tactics (the content of compound rules). We first transform
the tree to a non-optimized flag proof. For every node of the Coq tree we create
a new flag. This flag first contains all the assumptions. The notation presented
in the previous sections where a flag is allowed to have an arbitrary number of

6.7. CONCLUDING REMARKS 101

assumptions is also used in the implementation; at a later step this gets trans-
lated according to the meaning of the notation. Then if a tree has subgoals, the
transformed subgoals are attached. Otherwise, if the goal is not proved ellipses
are attached. Finally the flag contains a line for the conclusion of the Coq node.

When rendering a flag style proof that was translated from a tree style proof
done with the Coq tactics, the tactic names are printed in a special way. For
tactics that match natural deduction rules, the names are changed to their
natural deduction names. Furthermore we add the consecutive line numbers on
the left of assumption lines and conclusion lines. We then replace references to
labels with the appropriate numbers.

As an example of a flag style version of a serious Coq proof, consider the
following proof from the Coq standard library:

Lemma leb_complete : forall m n:nat, leb m n = true -> m <= n.
Proof.

induction m. trivial with arith.
destruct n. intro H. discriminate H.
auto with arith.

Qed.

This proof is rendered by ProofWeb as:

6.7 Concluding Remarks
The future work of this chapter is to develop a luxury proof interface, as de-
scribed in Section 6.1.1, for a serious proof assistant. The main difference with
the ProofWeb system will then be that the system can also input a declarative
proof. The declarative proofs then becomes the text that the user works on.

We implemented a rough prototype of a luxury proof language for the HOL
Light system, and the approach seems to work quite well there. Currently we are
redoing this system in a more systematic and structured manner. This experi-
ment shows that our approach to converting procedural proofs into declarative
proofs is not tied to any Coq specifics. It works just as well, and in exactly the
same way, in a HOL environment.

A difference with ProofWeb will be to have one further rewrite rule for proofs.
In the declarative language of the Mizar system there exists the consider state-
ment that is used for existential elimination. If one knows that there exists an
x that satisfies P [x], one can write:

102 CHAPTER 6. MERGING PROOF STYLES

proof
. . . 1
consider x being A such that P [x] by . . . 2;
. . . 3
thus Q by . . . 4;

end;

This can be seen as a condensed version of

proof
. . . 1
proof

let x be A;
assume P [x];
. . . 3
thus Q by . . . 4;

end;
thus Q by . . . 2;

end;

In the case of the ProofWeb system we did not want the system to rewrite
the latter to get the structure the former, as it would not leave Fitch-style proofs
the way that student users would expect them to be. However, in a system for
significant formalizations, an optimization like this will be essential.

We claim that a luxury proof interface – that is, an interface in which the user
edits a declarative proof, but also can ask the system to extend that proof by
executing tactics – combines the best of the procedural and declarative worlds.
We expect that it will be straight-forward to implement such an interface using
the methodology presented in this chapter.

Chapter 7

Cooperative repositories for
formal proofs - a wiki based
solution

7.1 Introduction
7.1.1 Motivation
Nowadays, most proof assistants follow the interactive paradigm: the user en-
ters the statement of a theorem; the system checks the well-formedness of the
statement. The user then enters a proof commands and the systems responds by
validating the command and returning the remaining goals to be proven. This
process is then iterated until the proof is complete. Thus, the resulting sequence
of commands, normally called a proof script, has barely any meaning without
the succession of proof states it yields. However, most formal developments only
consist of the bare proof script, maybe with some comments.

Two solutions are available for people who want to understand the proofs
better: HTML rendering and local execution. With web rendering, the proof
scripts are processed by a documentation tool that turns the files into HTML
documents and provides some facilities such as hyperlinks from symbols to their
definition, indexes of symbols and searching. Some even provide pretty-printing
of comments, rendering of mathematical formulae.

But to understand the proof script itself, one has to first locate and download
the files containing the proofs, then install the proof assistant, and finally run
the proof assistant on the file to inspect the sequence of proof states. When
doing this, one loses the ability to browse the code using hyperlinks, and it can
sometimes be complicated to get the proof assistant to run on one’s computer
in the first place.

Our work presented in Chapter 4 shows that the Asynchronous DOM Mod-
ification web technology (sometimes referred to as AJAX or Asynchronous

103

104 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

Javascript and XML [Pau05]) can be used to build a web interface for interac-
tive proof assistants: ProofWeb. This means that users can use their favorite
web browser to run proof assistant sessions, so they can themselves perform the
checking of the formal proof. However this work still lacks essential features: it
is not designed to support multi-file developments properly, no proper HTML
rendering is implemented and there are no tools to store and retrieve multiple
versions of files.

A popular web architecture which supports all those features is called a
wiki [Cun06]. The wiki concept actually covers many implementations, but all
are aimed toward a cooperative authoring of knowledge repositories. The key
feature of a wiki system is the ability to follow an ‘edit’ link and be able to
immediately modify and publish a new version of the page being viewed.

The popularity of wiki based solutions made us think of integrating the web
interface for proof assistants within a wiki repository: the web interface would
be used as the viewing and editing window for files containing proof scripts. The
main difference between our work and common wiki usage is that our frame-
work handles formal content that requires a consistent environment (i.e. file
dependencies) to run interactive sessions. Thus (semi-)automated maintaining
of cross-file consistency is crucial.

7.1.2 Related Work
Most proof assistants already have a more or less user-friendly way of rendering
formalisations as a set of interlinked web pages. Some provide a standalone
tool that allows users to render their own files: this is the case for Coq. Is-
abelle [NPW02] can create a rendered version of a theory while processing it
and it also provides a way to navigate the dependency graph of multi-file devel-
opments.

The Mizar [Muz93] system has a proof repository called the MML (Mizar
Mathematical Library) [BR03]. This repository is modified by human editors:
duplicates are eliminated, results are moved to appropriate sections, new sec-
tions are created. This gives the MML a monolithic and consistent look [RT03]:
it is handled as an encyclopedia, where new content is added with many au-
thors but one central editing committee. There is a project of gathering the
definitions and theorems from the MML to create an even smaller and more
organized Encyclopedia of Mathematics in Mizar (EMM). The rendering tools
provided for the library are not available for the common user to work with his
local development. The MML (and its associated journal JML) is the de facto
standard way to publish a Mizar proof.

The Logiweb System [Gru06] provides a way to submit and retrieve articles
from a network of distributed repositories. It allows reliable cross-references to
fixed versions of already published articles. However it still relies on a locally
installed checker to verify articles before submitting them.

The HELM [APCS01] (Hypertextual Electronic Library of Mathematics)
and the Whelp [AGC+04] search engine give users a good rendering of dis-
tributed formal libraries along with a powerful search engine. The Matita [ACTZ07]

7.1. INTRODUCTION 105

proof assistant offers native support for queries and browsing of these libraries.
The Logosphere [SPK+] project aims at presenting developments from dif-

ferent proof assistants (Nuprl, PVS, . . .) using a unified framework.
The Mizar and Coq proof assistants already have wiki web sites for their

documentation. The Mizar wiki [Miz08] is an official, general purpose web site
whereas the Coq wiki, called Cocorico [Niq08], is a community website more
dedicated to the sharing of specific knowledge about Coq usage, hints and tips.

7.1.3 The future of proof interfaces
The aim of this new web-based cooperative proof environment is to provide a
complete solution for the development of formalized mathematics or software
verification. It brings together the availability of a web-interface with the ac-
cessibility of a web-rendered archive.

The unique feature of this environment is that, beyond the separation be-
tween the raw editable and rendered read-only versions of the files (a charac-
teristic of wiki environments), both of those versions can be processed by the
proof assistant at the request of the user, giving him more information as to
how the proof script works. Standard online formal libraries tend to treat proof
scripts as unimportant (many of the rendering tools completely ignore proofs),
whereas with interaction the proof contents can give the user insights on how
the proof was made. This way the proof script is not any longer write-only.

Therefore, this environment provides a useful tool for specialists to commu-
nicate about proofs with a broader audience: non-specialists, general audience.
It provides a simple way for article writers to give referees easy access to their
formal development.

The repository is also a convenient way for proof authors to work from
everywhere simply using a network access, and to learn from others’ proof id-
iosyncrasies.

The repository can also be used for education about proof assistants and
formal logics as a further extension of the system presented in Chapter 5. A
permissions system can allow students to cooperate on multi-files projects and
their supervisor to provide guidance.

7.1.4 Chapter contents
In the rest of the chapter we present the technologies relevant for creating a
wiki for proof assistants (Section 7.2), and the components that are relevant.
Then we present the global architecture of our system and discuss our library
consistency policy (Section 7.3). We describe our current prototype of the wiki
(Section 7.4) and discuss performance and security issues. Finally, we give our
road map towards a more stable system and present our conclusion (Section 7.5).

106 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

7.2 Web Technologies
In this section we will describe what wikis are and what advantages they offer
in comparison with static web pages. Our development also depends on asyn-
chronous DOM modifications technique, that was already used for the creation
of the interactive interface and was described in Chapter 4.2.

7.2.1 Wikis
Wikis are dynamic web sites that behave as static ones: they contain a number
of fixed pages that can link to each other. The unique feature of wikis is that
each of those pages includes an ‘edit’ link that displays the contents of the
page in an editable textbox (or in an editable WYSIWYG box in advanced
implementations). This page allows the user to actually modify the contents
of the box and publish the new version on the web site, simply using a web
browser.

This is what makes wikis dynamic: this online edition feature requires files
to be served in a different way than just static HTML files. Usually they are
stored in a database system rather than in a filesystem. Unfortunately, current
proof assistants do not include the functionality to access such databases.

The wiki technology is now very popular, especially for documentation of
software tools: one uses a very small, general (and somewhat imprecise) docu-
mentation which is then improved by visitors when finding inconsistencies, er-
rors and missing items. The most famous wiki is obviously the Wikipedia web
site, which aims at being an online encyclopedia where information is added by
visitors. In the 14 most popular languages on Wikipedia, there are more than
100,000 articles available in each. This shows that the wiki architecture can
support large amounts of data and heavy activity.

The file format used by wikis is usually a simplified markup and formatting
language, tailored to make references to other pages simple to add. Wikis usually
have a permissions system to forbid reading or writing for particular users. Most
of them also allow modification by unregistered users. In that case the IP address
of the client is used as an identifier.

Wikis also offer the possibility to explore the history of any article: what was
modified, when. They allow renaming of pages, and provide indexes of available
pages. They usually include tools that allow searching the page database.

Those features match our requirements for a content management system to
be usable with the ProofWeb framework.

7.3 Architecture
7.3.1 Main Components
The system uses proof assistants with some of their companion utilities and
some web serving utilities. The first element we need is the interactive toplevel

7.3. ARCHITECTURE 107

of a prover. It is required on the server side to be able to verify the input of the
user in an incremental manner and to go to particular positions in them.

For efficiency reasons some provers allow compilation of their input files.
Such files can then be quickly reused, without verifying all proofs contained in
them again. For such provers we want to use the compiler on the server to
generate a compiled version of proofs that are saved.

Many provers include documentation generators, that process raw prover
input files and generate rendered output. The output of a documentation gen-
erator is usually HTML or PDF format. Links between files are created, differ-
ent conceptual elements of the prover input are colored in different color, and
sometimes mathematical formulas are rendered in a graphical way.

We need to keep a history of versions for every prover file. Usually, collabo-
rative developments are done using version control systems. The source files are
kept in the repository and each user has to build compiled or rendered versions
him/herself.

Not only would we like the source prover files to be stored for all versions, but
also the rendered and the compiled files (for provers that include this concept).
This way users can see a rendered version of older versions of files. Referring to
older versions of compiled files will be discussed in section 7.3.3.

Wikis already include some kind of versioning of the files they contain. Gen-
erally file versions are numbered in sequence. For every change, the user that
made the change is stored with the file, and viewing changes is possible. The
history mechanism is more limited than the ones provided by file versioning
systems, but the simplicity can also be an advantage: in particular wikis do
not include branches, tags, etc and the casual user does not have a good under-
standing of it.

A wiki infrastructure will be used for tracking changes done by users and
allowing them to see the history of files and changes. It needs to store files in a
way that is accessible by the prover toplevel. The wiki should allow generating
indexes and searching for terms. Most wikis generate text indexes and allow
searching for text only, whereas prover scripts are highly contextual.

Finally we need a web part that allows interactive edition of a proof script
in a way that resembles local work. Additionally we would like to be able to
step interactively over the proof regardless of whether we are in view or edit
mode. The ProofWeb framework can be modified to allow those two modes.

7.3.2 Global Design
Our architecture is composed of a web server running a modified version of a
wiki that redirects some requests to a ProofWeb server (Fig. 7.1).

Editors of most wikis are standard HTML textboxes, and the flat text in-
cludes special markup for marking links and elements that should be formatted
in a special way in the read-only version. Recent wikis allow WYSIWYG editing
in an editable IFrame. The HTML formatting introduced by user’s browsers is
combined with wiki links to create the read-only version. In our architecture we
embed the ProofWeb editor as the editor of the wiki. This way, the user can edit

108 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

Figure 7.1: Our architecture.

the script in an interactive way seeing the output of the prover. Additionally we
include a readonly version of the ProofWeb interface for the read-only version
to allow examining the prover state at any point in the buffer.

The next necessary change is the way the wiki stores users files. For every
saved file the wiki tries to compile it and to make a rendered version of it. The
rendered version should be linked with the original, and is therefore stored in
the same way the wiki stores the original in its database. Whenever the user
requests the file for viewing or editing one of those two versions is used. The
compiled version is stored as a standard file in the filesystem in order to make
it available to the compiler and to the toplevel used in prover sessions on files
that refer to this compiled file.

This change in the wiki behavior should not prevent users from storing and
editing standard wiki pages in the repository. Those would include textual de-
scription of the formal content, discussions, tutorials with hyper-links to formal
content.

The documentation generators of provers have to be able to generate a wiki
compatible output. The format that a wiki displays is usually very close to
HTML which many prover documentation generators already support. The
important difference with respect to HTML is that since we will process the
rendered version of the script we need to be able to distinguish active parts of
the file from comments.

7.3.3 Consistency Issues
In ordinary wikis, links to a nonexistent page lead to a new editable page.
This is perfectly acceptable for the usual informal content but not for a formal

7.3. ARCHITECTURE 109

development referring to another: think of it as a program missing libraries.
Moreover, we need to make sure that dependencies are always consistent.

Files in the database can depend on each other, sometimes in an indirect (tran-
sitive) way. First of all, we want to require all saved files to be valid (compilable);
they can still contain incomplete proofs terminated with the Coq Admitted key-
word or its equivalents for other provers. For a valid saved file we want to ensure
that the current version remains valid after changes to the files it relies on. Some
provers already include compatibility verification mechanisms. Coq stores the
checksums of files to ensure binary compatibility between compiled proofs. To
solve the problem, we have to consider the static and the dynamic approach.

The dynamic approach is the convention that a file always refers to the lat-
est versions of other files. It means that saving any change to a file will induce
a costly recompilation of all files that depend on it. Another problem is that
changing definitions deep inside a library will make many developments incom-
patible and correct files will stop working. Saving only valid files does not solve
this problem since the objects they contain (their interface) might be modi-
fied too. This approach also makes older versions of existing files immediately
obsolete.

The opposite approach is static linking, where a saved file always refers to the
same version of other files. In other words, we never change a file, but rather
add a new version of that file, with a fresh name. This means that the user
will have to manually update the version number of files that are referred to if
newer versions of those become available. The main advantage of this approach
is that of integrity: provided you can safely assign new version numbers, you can
enable concurrent access. Moreover, changing a file will never break another file.
However, when changing a file deep in the library, one has to manually modify
all the files in the dependency chain between that file and the files in which the
changes should be reflected, which can sometimes be quite heavy.

7.3.4 Towards a hybrid approach
We believe that the static approach is a more adequate way to store older (his-
torical) versions of a given file, whereas up-to-date files should use the dynamic
dependency approach. This way, older versions of files still make sense by stat-
ically referring to older versions of files they depend on. The latest versions
can remain up-to-date with their immediate dependencies by being dynami-
cally linked to them, i.e. recompiled when new versions of those files are saved.
It might happen that such a file might not be valid anymore because of changes
made to its dependencies: to keep validity we have to make it link statically to
the suitable previous version.

To help with this version compatibility issue, one may use a three-colour
scheme (it is not implemented in our prototype):

• A file is labelled as red (i.e. outdated) if it depends statically on an older-
than-latest version of another file.

110 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

• A file is labelled as yellow (i.e. tainted) if it depends only on the latest
versions of other files, and one or more of those files have a yellow or red
status. Yellow status thus tracks the files which are indirectly lagging
behind.

• A file is labelled as green (i.e. up-to-date) if it depends only on the latest
versions of other files, and all those files are also labelled as up-to-date
(green status).

The separation between the yellow and red files comes from the fact that
red files have to be manually updated to become green again (i.e. by creating a
new version of them), whereas yellow files might be fixed by updating the red
files that taint them.

The switching to red status can be automated by rewriting Require state-
ments on-the-fly to make them refer statically to the last suitable version of the
file depended on. This means that fixing a red file can give red status to yellow
files that it was tainting, thus pushing the problem upwards in the dependency
tree.

We imagine two ways in which renaming files can be implemented: If the
user wants to export a file together with its dependencies from the repository, a
mechanism can be used to convert long file names (with version number) to short
ones. The case might arise where a file would refer, directly or by transitivity,
to an old version of itself. We can either forbid this or generate fresh file names
using standard suffixing techniques.

The procedure of updating the prover itself, although intended to be rare,
will be critical. Here a decision will have to be made whether to port all possible
versions or only the newest versions of each files and their dependencies. The
current system is clearly not yet designed to enable such updates without putting
it offline and porting files manually, but such a feature should definitely be
designed and implemented.

7.4 Prototype
7.4.1 Implementation
To experiment with our idea, we have created a prototype implementation based
on off-the-shelf components as much as possible. We chose Coq as our target
proof assistant. We used the MediaWiki code-base, the coqdoc documentation
generator for Coq and ProofWeb for Coq (Fig. 7.2). The coqdoc tool was
modified to generate wiki format rendered pages.

When the user opens a page of our wiki, he/she is presented with a viewing
page where the usual contents area is replaced by three subframes. One frame
shows the rendered version of the current document, the second one shows the
current proof state and the third one displays the Coq error messages.

The user may press the ‘up’ and ‘down’ buttons to step over the proof and
examine both the proof state and Coq messages. The background coloring

7.4. PROTOTYPE 111

scheme described in Section 4.7 allows the user to keep track of the part of the
script that was already processed.

The proof is rendered, that is identifiers are colored and linked to their
definition, mathematical LATEX comments are rendered, links to internal wiki
pages lead to those wiki pages and links to Coq standard library objects lead
to the documentation on the Coq website (Fig. 7.3).

.v Coq source file

.vo Coq compiled proof

.dep File dependencies

.wiki Rendered proof

Figure 7.2: Data flow diagram for our prototype wiki

The page also includes standard wiki elements, one of which is the ‘edit’
button. When the user starts editing the page, a similar page is presented, but
with the raw proof script (no rendering) in a modifiable text box. The user may
modify the script and use the ‘up’ and ‘down’ buttons to step over the proof in
a similar way as in the view mode (Fig. 7.4). The processed part of the buffer
is frozen.

When satisfied with his work, the user can save the proof. The contents of
the buffer are processed in three ways:

• The raw script is saved in the database, to be used by following edits.

• The file is compiled and the corresponding .vo file is stored in the filesys-
tem for processing of files that would include it using Require statements.

• A rendered version is generated by coqdoc and saved in the database to
be displayed in view mode.

The data is being duplicated for the rendered version. We need all of these
three versions stored. The original version is needed for further editing and
feeding to the proof assistant, the rendered version is needed to be able to

112 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

Figure 7.3: Screenshot of the prototype showing the rendered version of a a Coq
file. The verified part of the edit buffer is colored. The state buffer shows the
state of the prover, there are no Coq warnings.

Figure 7.4: Screenshot of the prototype showing the editing of the corresponding
source file. The verified part of the edit buffer is colored and frozen.

7.4. PROTOTYPE 113

access it fast and the compiled version is necessary to be able to use the finished
theory in other developments.

The user can see the history of any page as well as display the differences
between the sources of any versions, using built-in MediaWiki routines. The
textual search mechanism allows to query the source Coq files for any terms.

7.4.2 Security and Efficiency
The security and efficiency of the server are crucial since unavailability of the
proof wiki would make the users not only unable to work, but also unable to
access their own files. The security and efficiency of the architecture relies on
the security of ProofWeb, the underlying wiki, the compilation and rendering
processes and the communication mechanism.

The security and efficiency of ProofWeb are described in detail in Chapter 4.
The solution adopted there is sandboxing: the ProofWeb server process is run in
a chrooted environment as a non privileged user without network access. Here
we add some features inside the sandbox while keeping the wiki infrastructure
out of it.

The sandboxing which is a part of the ProofWeb architecture makes it rea-
sonably safe. The efficiency is divided by the number of users, but it is straight-
forward to distribute prover sessions over a set of machines. In a wiki environ-
ment we are additionally running a Coq dependency generator, compiler and
renderer. We run these processes in the same sandbox as the prover toplevel,
so we expect them to be comparably secure. However for big formalizations
performing the compilation can be costly. Especially when many files depend
on each other, modification of one of them may require recompiling numerous
proofs. We expect this to be the main bottleneck of a wiki for proofs. Although
this can also happen with local proof interfaces, here multiple parallel sessions
might overload the system for a longer period.

The proof text verification that ProofWeb does is independent from page
serving performed by the web server and MediaWiki, so we can analyse the
latter separately. Wikis are quite secure and efficient. At the time of writing
this chapter, Wikipedia provides more than 350 servers that have more than
3 million users and 1.6 million articles without significant efficiency issues. An
issue that is often a problem in wikis is vandalism. Disallowing editing by
particular users or IP addresses is a common practice, and is already supported
in MediaWiki. Discovering vandalism in our framework may sometimes be easier
than in standard wikis, since incorrect proofs no longer compile.

The data that is being transferred to and from the wiki is usually public,
still the communication mechanism can be secured by configuring the web server
that serves the wiki to use HTTPS.

If the wiki is secured properly we do not expect crackers to be an important
issue. However the efficiency seems to be quite fragile, in particular it seems
that our architecture is quite vulnerable to denial-of-service attacks.

114 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

7.4.3 How to integrate other provers
Although our prototype has been implemented for Coq, we do not rely on any
specific Coq feature. We think that extending the wiki to other provers is feasible
provided the following functionalities are available: a wiki compatible documen-
tation renderer, a dependency generator, ProofWeb support and optionally an
index generator.

The renderer does not need to be sophisticated, the only mandatory feature
of the renderer is distinction between active proof script from comments. Other
features like syntax highlighting and links are not necessary, although they allow
a more wiki-like interaction.

The wiki needs to know how to call the dependency generator of the prover,
to know what files need to be updated if a particular file is modified. If the
prover has a compiler, the wiki needs to know how to compile proofs. The wiki
also needs to be able to identify statements that refer to other files during the
interactive session.

An optional element is an index generating utility. It is needed for the wiki
to distinguish concepts from the added prover’s syntax. This allows not only
nice index pages in the wiki, but also searching for particular prover objects,
like only definitions or theorems.

Finally ProofWeb needs to be able to interact with the prover. It already
provides a limited support of a number of additional provers. To extend it to a
new one, the client part needs to know how to find the ends of complete prover
commands and the server part needs to know how to interface with the prover
process, in particular it needs to know how to check if commands succeed and
how to undo. The details of extending ProofWeb to a new prover are described
in Chapter 4.

7.5 Concluding Remarks
The current architecture of the prototype is not satisfying since it relies on a
double storage of files: in the database, and on the disk. We are also limited
by the way MediaWiki handles its name space. If we adopt the static system
where files are never modified, it can be worthwhile to consider moving all the
data to the file system, and adopting an architecture where we can have a better
control of the name space.

The static naming will require to implement a versioning system for the
substitution of Require statements and the distributed generation of version
numbers, then the three colour scheme will be added. A mechanism for import-
ing and exporting parts of the library will also be necessary, to allow users to
have a local copy on which to work without Internet access.

A milestone in this development will be the ability to actually import the
Coq standard library and official users contributions to our repository. Only
then will we be able to get user feedback and report on the suitability of the
repository for Coq users.

7.5. CONCLUDING REMARKS 115

The coqdoc tool is able to generate index files that contain all constants
occurring in the library. We could use such a feature to generate such wiki
pages.

The basic textual search is very limited and proof assistants users often use
query types that are far beyond the scope of textual search: find theorems
about a given object or do pattern matching on theorem statements. This is
sometimes implemented inside particular proof assistants, but might be achieved
more generally by adapting the Whelp search engine to search our database: it
will require a customisation of the indexing technology.

We could also experiment with more advanced rendering tools such as Helm
and consider using MathML instead of (currently) HTML with LATEXimages.

Although our prototype is still at a very early stage of development, our
idea of combining a wiki web site with the ProofWeb interface looks definitely
promising. Surprisingly, we could achieve the current result without many mod-
ifications neither to the wiki code-base, nor to ProofWeb. Most of the work was
devoted to database modification and rendering.

We believe that formalising mathematics in a wiki system will foster more
cooperation both within prover specific communities and between users of dif-
ferent provers, especially if we can make several provers coexist in the same
repository. We also believe that such a project can act as a display of the work
on formal proofs for a wider audience.

116 CHAPTER 7. REPOSITORIES FOR FORMAL PROOFS

Chapter 8

Towards an Integrated
Environment for Computer
Mathematics

8.1 Vision
We started this research with a vision of formalizing the mathematics as done by
engineers. We hoped that this would lead to formally verified statements from
analysis and to the integration of the environments of people using mathematics
and people stating theorems precisely and proving them. This was the reason to
start investigating computer algebra systems. Our work has shown that this is
indeed feasible, and also has also suggested that it is possible to create a system
that would combine the features of computer algebra and proof assistants.

Through the course of the research our vision has changed. We now imagine
that users will have a single framework for doing computer mathematics. This
framework will allow computing as well as defining and proving and will be
available universally via a thin client solution.

This means that all the tasks performed today with the help of computer
algebra systems can be performed within this framework. The use of reflection
makes it possible to effectively use computation in a certified environment. One
can prove correct algorithms for computing or simplifying expressions as well as
more sophisticated visualization mechanisms provided in computer algebra like
graphing functions.

We also believe that access to computer mathematics should be provided
universally and new results should be visible automatically. With informal
steps this is done in wiki systems. We would like our system to provide all
mathematical knowledge while behaving wiki-like. We think this is possible
while accepting only mechanically checked proofs.

We imagine such an environment to be accessed via a thin client solution.

117

118 CHAPTER 8. ENVIRONMENT FOR COMPUTER MATHEMATICS

In the course of this thesis we investigated web-browser based environments
for doing computer mathematics. This already allows users to use the full
server environment without needing to care about any changes locally. Still the
interface provided with a current web browser is a bit cumbersome and leaves
wishes in terms of rendering of mathematics. The concurrent development of
web technologies (MathML, mathematical fonts, etc) will make it possible to
display mathematics in the notations users are used to.

8.2 Progress of this thesis towards the vision
The first part of this thesis presents a usable minimal framework for doing com-
puter algebra inside a proof assistant. This shows that the decision procedures
present in modern proof assistants are strong enough to build a computer alge-
bra system that ensures absolute correctness of performed simplifications. The
system is not only able to do basic computations and simplifications but is also
able to handle some forms of partiality in a way similar to computer algebra.
We also show how completely certified infinite precision real arithmetic can be
performed in a classical setting.

The second part of the thesis aims at providing the universal access to cer-
tified mathematics repositories. We first investigated the current state of web
technology and showed that it is sufficient to create a reasonably good interface
to proof assistants. We explore the advantages of using a web interface instead
of a local interface for showing proof assistants by providing a number of non-
common provers, libraries and extensions. We then show that such an interface
can be used well not only for research but also for teaching purposes.

One of the main aspects of our vision is that in the future formalizing math-
ematics should be done in a collaborative way. We tried to create a version of
a wiki for formalizing Coq. The created prototype is quite cumbersome, but
we addressed a number of important issues that come up when trying to create
such an environment. We allow users to edit parts of the same repository con-
currently, have schemes for tracking dependencies and provide rendered proof
scripts.

8.2.1 Multivaluedness
One of our focuses was also to provide multivaluedness as expressed in computer
algebra in a formal setting. We were not able to achieve it in the scope of this
thesis, but we believe that a knowledge base of a computer algebra system can
be extended with a formalization of multivalued functions. This would allow
handling more complicated expressions like the Maple example of a complex
function with multiple branches given in the introduction of Chapter 1.

Our first experiences in formalizing multivaluedness was the framework for
handling partiality shown in Chapter 2. We would like to see whether a repre-
sentation of multivalued functions could be done in a similar way as partiality
is done in our approach. Testing this will require a lot of formalization since

8.3. FUTURE WORK TOWARDS OBTAINING THE VISION 119

there are not too many theorems in prover libraries that concern multivalued
functions.

8.3 Future Work towards obtaining the Vision
We imagine the nearest future work towards a combined environment for certi-
fied computer mathematics to go in three directions:

8.3.1 Computer Algebra with Strong Semantics
First, the creation of a full-featured environment that connects the usability
of computer algebra with the certifications provided by proof assistants. The
prototype that we created has very few actual certified algorithms implemented
as well as they come from basic fields of mathematics. Giving explicit semantics
to all objects found in computer algebra and providing certified algorithms to
operate on those will be a big task.

8.3.2 MathWiki
Second, the creation of a so-called ’MathWiki’. We would like to bring together
the open nature of wikis with expertise in proof assistants and semantic web
technologies. This would allow for building a new wiki for mathematics that
would support content creation, search and retrieval of mathematical texts.
The documents would have different levels of details, from high-level semanti-
cally annotated pages to detailed formalized proof scripts containing definitions,
theorems and proofs in various proof assistants.

We imagine a standardized interface which supports both the high-level con-
tent and the corresponding proof assistant semantics. The background mecha-
nism will maintain the repository in a consistent state as articles are added and
revised. Searching and retrieval will be available for the whole repository using
both standard text search as well as semantic searching. The MathWiki will
provide an advanced environment for the collaborative creation of formalized
mathematics and verified programs available simply through a web interface.

We believe that MathWiki would be very useful for various communities
by providing much more coherent and precise view on high-level mathematical
content for ordinary users of mathematics, as well as to popularise formally
verified mathematics and facilitate cooperation between different communities
by being able to make cross-links between notions in different formal systems.

8.3.3 Using a web interface for software
Many of the problems encountered when creating a wiki for proof assistants are
similar to the creation of a wiki for programs. Concurrent editing of documents
that depend on the theorems provided by other documents is similar to editing
programming language source files that provide APIs. The issues of handling

120 CHAPTER 8. ENVIRONMENT FOR COMPUTER MATHEMATICS

dependencies, compilation as well as providing consistency of such a repository
are definitely similar.

This will allow for providing a wiki for a number of programming languages
that will allow comparing algorithms provided in different ones. A first step
to creating such a repository, would be adding to MathWiki the programming
languages that are closer to proof assistants, like the ones with dependent types
and termination, for example Epigram and Agda.

8.4 Conclusion
To conclude, we believe that we have made significant progress in the subject
of understanding the differences between proof assistant and computer algebra
and bringing these two worlds together. We also investigated the relevant web
technology to allow for a much wider availability of proof assistants by providing
access to these via the web. The vision of a uniform environment for computer
mathematics may still be too complicated to be practical, but we believe we
have identified the key issues that allow for much more unified systems.

Bibliography

[ABPR01] A. Amerkad, Y. Bertot, L. Pottier, and L. Rideau. Mathematics
and proof presentation in PCoq. Rapport de Recherche 4313,
Inria, Sophia Antipolis, November 2001.

[ABT04] A. Asperti, G. Bancerek, and A. Trybulec, editors. Mathematical
Knowledge Management, Third International Conference, MKM
2004, Bialowieza, Poland, September 19-21, 2004, Proceedings,
volume 3119 of Lecture Notes in Computer Science. Springer,
2004.

[ACTZ07] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. User
interaction with the matita proof assistant. J. Autom. Reasoning,
39(2):109–139, 2007.

[ADG+01] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin,
and S. Owre. Computer algebra meets automated theorem prov-
ing: Integrating Maple and PVS. In R. J. Boulton and P. B. Jack-
son, editors, Proceedings of the 14th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2001), vol-
ume 2152 of Lecture Notes in Computer Science, pages 27–42,
Edinburgh, Scotland, UK, September 2001. Springer-Verlag.

[AGC+04] A. Asperti, F. Guidi, C. Sacerdoti Coen, E. Tassi, and S. Zacchi-
roli. A content based mathematical search engine: Whelp. In J.-
C. Filliâtre, C. Paulin-Mohring, and B. Werner, editors, TYPES,
volume 3839 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2004.

[Agd] Agda: An interactive proof editor. http://agda.sf.net/.

[ALW05] D. Aspinall, C. Lüth, and D. Winterstein. A framework for inter-
active proof. In D. Aspinall, editor, Proceedings of the ETAPS-05
Workshop on User Interfaces for Theorem Provers (UITP-05),
Edinburgh, page 15, 2005.

[APC+03] A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and
I. Schena. Mathematical Knowledge Management in HELM. An-

121

http://agda.sf.net/

122 BIBLIOGRAPHY

nals of Mathematics and Artificial Intelligence, Special Issue on
Mathematical Knowledge Management, 38:1–3, 2003.

[APCS01] A. Asperti, L. Padovani, C. Sacerdoti Coen, and I. Schena. Helm
and the semantic math-web. In R.J. Boulton and P.B. Jackson,
editors, TPHOLs, volume 2152 of Lecture Notes in Computer
Science, pages 59–74. Springer, 2001.

[AR04] P. Audebaud and L. Rideau. Texmacs as authoring tool for for-
mal developments. Electr. Notes Theor. Comput. Sci., 103:27–48,
2004.

[AS64] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathemat-
ical Functions With Formulas, Graphs, and Mathematical Tables,
volume 55 of National Bureau of Standards Applied Mathematics
Series. United States Department of Commerce, Washington,
D.C., June 1964. 9th Printing, November 1970, with corrections.

[Asl96] H. Aslaksen. Multiple-valued complex functions and computer
algebra. SIGSAM Bulletin (ACM Special Interest Group on Sym-
bolic and Algebraic Manipulation), 30(2):12–20, June 1996.

[Asp00] D. Aspinall. Proof General: A generic tool for proof development.
In S. Graf and M. I. Schwartzbach, editors, TACAS, volume 1785
of Lecture Notes in Computer Science, pages 38–42. Springer,
2000.

[AW02] A. Asperti and B. Wegner. MOWGLI – A New Approach for
the Content Description in Digital Documents. In Proceedings
of the Nineth International Conference on Electronic Resources
and the Social Role of Libraries in the Future, volume 1, 2002.

[AZ00] A. Armando and D. Zini. Towards interoperable mechanized
reasoning systems: the logic broker architecture. In A. Corradi,
A. Omicini, and A. Poggi, editors, WOA, pages 70–75. Pitagora
Editrice Bologna, 2000.

[BB85] E. Bishop and D. Bridges. Constructive Analysis, chapter 1.3.
Springer-Verlag, Berlin, October 1985.

[BC01] H. Barendregt and A. M. Cohen. Electronic communication of
mathematics and the interaction of computer algebra systems
and proof assistants. J. Symb. Comput., 32(1/2):3–22, 2001.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development, Coq’Art:the Calculus of Inductive Con-
structions. Springer-Verlag, 2004.

BIBLIOGRAPHY 123

[BC05] A. Bove and V. Capretta. Modelling general recursion in
type theory. Mathematical Structures in Computer Science,
15(4):671–708, 2005.

[BCC+02] S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaëtano,
and M. Kohlhase. The OpenMath Standard, version 2.0, 2002.
http://www.openmath.org/cocoon/openmath/standard/.

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler,
X. Huang, M. Kerber, M. Kohlhase, K. Konrad, A. Meier,
E. Melis, W. Schaarschmidt, J. H. Siekmann, and V. Sorge.
Omega: Towards a mathematical assistant. In W. McCune, edi-
tor, CADE, volume 1249 of Lecture Notes in Computer Science,
pages 252–255. Springer, 1997.

[BCGH99] P. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specifi-
cation and integration of theorem provers and computer algebra
systems. Fundam. Inform., 39(1-2):39–57, 1999.

[BCZ98] A. Bauer, E.M. Clarke, and X. Zhao. Analytica - an experi-
ment in combining theorem proving and symbolic computation.
Journal of Automated Reasoning, 21(3):295–325, 1998.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, 2003.

[BDJ+00] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Naka-
gawa, D. Vasaru, and W. Windsteiger. The Theorema Project:
A Progress Report. In M. Kerber and M. Kohlhase, editors,
Symbolic Computation and Automated Reasoning (Proceedings
of CALCULEMUS 2000, Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning), Natick, Mas-
sachusetts, 2000. A.K. Peters.

[Bew] Beweren en Bewĳzen.
http://www.cs.ru.nl/~wupper/B&B/index.html.

[BHC95] C. Ballarin, K. Homann, and J. Calmet. Theorems and algo-
rithms: an interface between isabelle and maple. In ISSAC ’95:
Proceedings of the 1995 international symposium on Symbolic
and algebraic computation, pages 150–157, New York, NY, USA,
1995. ACM Press.

[BP99] C. Ballarin and L.C. Paulson. A pragmatic approach to extend-
ing provers by computer algebra - with applications to coding
theory. Fundam. Inf., 39(1-2):1–20, 1999.

http://www.openmath.org/cocoon/openmath/standard/
http://www.cs.ru.nl/~wupper/B&B/index.html

124 BIBLIOGRAPHY

[BR03] G. Bancerek and P. Rudnicki. Information retrieval in MML.
In MKM ’03: Proceedings of the Second International Confer-
ence on Mathematical Knowledge Management, pages 119–132,
London, UK, 2003. Springer-Verlag.

[BS96] R. Bornat and B. Sufrin. Jape’s quiet interface. In N. Mer-
riam, editor, User Interfaces for Theorem Provers (UITP ’96),
Technical Report, pages 25–34. University of York, 1996.

[CDT08] The Coq Development Team. The Coq Proof Assistant Refer-
ence Manual, version 8.2. LogiCal project, 2008. Distributed
electronically at: http://coq.inria.fr/doc-eng.html.

[CF04] L. Cruz-Filipe. Constructive Real Analysis: a Type-Theoretical
Formalization and Applications. PhD thesis, University of Ni-
jmegen, April 2004.

[CFGW04] L. Cruz-Filipe, H. Geuvers, and F. Wiedĳk. C-CoRN, the con-
structive Coq repository at Nĳmegen. In Asperti et al. [ABT04],
pages 88–103.

[CFW03] J. Carette, W. Farmer, and J. Wajs. Trustable communica-
tion between mathematics systems. In CALCULEMUS 2003
(11th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning), pages 55–68, Rome, Italy, 2003.
Aracne.

[CGG+91] B.W. Char, K.O. Geddes, G.H. Gonnet, B.Leong, M.B. Mona-
gan, and S.M. Watt. Maple Library V Reference Manual. Spring-
er-Verlag, Berlin, Germany / Heidelberg, Germany / London,
UK / etc., 1991.

[CGGG83] B.W. Char, K.O. Geddes, W.M. Gentleman, and G.H. Gonnet.
The design of Maple: A compact, portable and powerful computer
algebra system. Springer-Verlag London, UK, 1983.

[CIMP03] D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathemati-
cal Markup Language (MathML) Version 2.0 (Second Edition),
2003.

[CK07] P. Corbineau and C. Kaliszyk. Cooperative repositories for for-
mal proofs. In Kauers et al. [KKMW07], pages 221–234.

[Cor08] P. Corbineau. Declarative proof language for Coq, 2008.
http://www-verimag.imag.fr/~corbinea/mmode.en.html.

[CoR09] Constructive Coq Repository at Nĳmegen, 2009.
http://corn.cs.ru.nl/.

http://coq.inria.fr/doc-eng.html
http://www-verimag.imag.fr/~corbinea/mmode.en.html
http://corn.cs.ru.nl/

BIBLIOGRAPHY 125

[Cun06] W. Cunningham. Design principles of wiki: how can so little do
so much? In D. Riehle and J. Noble, editors, Int. Sym. Wikis,
pages 13–14. ACM, 2006.

[Dav04] J. Davies. Wiki brainstorming and problems with wiki based
collaboration. Master’s thesis, University of York, 2004.

[DS97] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets
computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

[Far99] W.M. Farmer. A scheme for defining partial higher-order func-
tions by recursion. In A. Butterfield and K. Haegele, editors,
IWFM, Workshops in Computing. BCS, 1999.

[FS06] U. Furbach and N. Shankar, editors. Automated Reasoning,
Third International Joint Conference, ĲCAR 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture
Notes in Computer Science. Springer, 2006.

[Gir87] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[GL06] H. Geuvers and I. Loeb. From deduction graphs to proof nets:
Boxes and sharing in the graphical presentation of deductions.
In R. Kralovic and P. Urzyczyn, editors, MFCS, volume 4162 of
Lecture Notes in Computer Science, pages 39–57. Springer, 2006.

[GN04] H. Geuvers and R. Nederpelt. Rewriting for Fitch style natu-
ral deductions. In V. van Oostrom, editor, RTA, volume 3091
of Lecture Notes in Computer Science, pages 134–154. Springer,
2004.

[GNP03] F. Guilhot, H. Naciri, and L. Pottier. Proof explanations: using
natural language and graph view, 2003. Slides for a talk at a
MoWGLI presentation.

[Gon06] G. Gonthier. A computer-checked proof of the Four Colour
Theorem, 2006. http://research.microsoft.com/~gonthier/
4colproof.pdf.

[Got05] C. Gottschall. Logic gateway, 2005.
http://logik.phl.univie.ac.at/~chris/gateway/.

[GPWZ02] H. Geuvers, R. Pollack, F. Wiedĳk, and J. Zwanenburg. A con-
structive algebraic hierarchy in Coq. Journal of Symbolic Compu-
tation, Special Issue on the Integration of Automated Reasoning
and Computer Algebra Systems, 34(4):271–286, 2002.

[Gru06] K. Grue. Logiweb - a system for web publication of mathematics.
In A. Iglesias and N. Takayama, editors, ICMS, volume 4151
of Lecture Notes in Computer Science, pages 343–353. Springer,
2006.

http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf
http://logik.phl.univie.ac.at/~chris/gateway/

126 BIBLIOGRAPHY

[Hal05] T.C. Hales. Introduction to the flyspeck project. In T. Coquand,
H. Lombardi, and M.-F. Roy, editors, Mathematics, Algorithms,
Proofs, volume 05021 of Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.

[Har96a] J. Harrison. HOL light: A tutorial introduction. In M. Srivas
and A. Camilleri, editors, Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design (FM-
CAD’96), volume 1166 of LNCS, pages 265–269. Springer-Verlag,
1996.

[Har96b] J.R. Harrison. Proof Style. In E. Giménez and C. Paulin-
Möhring, editors, Types for Proofs and Programs: International
Workshop TYPES’96, volume 1512 of LNCS, pages 154–172,
Aussois, France, 1996. Springer-Verlag.

[Har98] J. Harrison. Theorem Proving with the Real Numbers. Springer-
Verlag, 1998.

[Har06] J. Harrison. Towards self-verification of hol light. In Furbach
and Shankar [FS06], pages 177–191.

[Hol] HOL 4. http://hol.sourceforge.net/.

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2nd
edition, 2004.

[HT98] J. Harrison and L. Théry. A skeptic’s approach to combining
HOL and Maple. Journal of Automated Reasoning, 21:279–294,
1998.

[Inl] Inleiding Logica. http://www.cs.vu.nl/~tcs/il/.

[Jac95] P.B. Jackson. Enhancing the nuprl proof development system
and applying it to computational abstract algebra. Technical
report, Cornell University, Ithaca, NY, USA, 1995.

[JN04] D.J. Jeffrey and A.C. Norman. Not seeing the roots for the
branches: multivalued functions in computer algebra. SIGSAM
Bull., 38(3):57–66, 2004.

[Kal] C. Kaliszyk. Prototype computer algebra system in hol light.
http://www.cs.ru.nl/~cek/holcas/.

[Kal07] C. Kaliszyk. Web interfaces for proof assistants. In S. Autexier
and C. Benzmüller, editors, Proceedings of the FLoC Workshop
on User Interfaces for Theorem Provers (UITP’06), Seattle, vol-
ume 174[2] of Electr. Notes Theor. Comput. Sci., pages 49–61,
2007.

http://hol.sourceforge.net/
http://www.cs.vu.nl/~tcs/il/
http://www.cs.ru.nl/~cek/holcas/

BIBLIOGRAPHY 127

[Kal08] C. Kaliszyk. Automating side conditions in formalized partial
functions. In S. Autexier, J. Campbell, J. Rubio, V. Sorge,
M. Suzuki, and F. Wiedĳk, editors, AISC/MKM/Calculemus,
volume 5144 of Lecture Notes in Computer Science, pages 300–
314. Springer, 2008.

[KKMW07] M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors.
Towards Mechanized Mathematical Assistants, 14th Symposium,
Calculemus 2007, 6th International Conference, MKM 2007, Ha-
genberg, Austria, June 27-30, 2007, Proceedings, volume 4573 of
Lecture Notes in Computer Science. Springer, 2007.

[KM96] M. Kaufmann and J.S. Moore. ACL2: An industrial strength
version of nqthm. In Compass’96: Eleventh Annual Conference
on Computer Assurance, page 23, Gaithersburg, Maryland, 1996.
National Institute of Standards and Technology.

[KO08] C. Kaliszyk and R. O’Connor. Computing with classical real
numbers. Journal of Automated Reasoning, 2008. Submitted.

[Koh00] M. Kohlhase. Omdoc: Towards an internet standard for the ad-
ministration, distribution, and teaching of mathematical knowl-
edge. In J.A. Campbell and E. Roanes-Lozano, editors, AISC,
volume 1930 of Lecture Notes in Computer Science, pages 32–52.
Springer, 2000.

[Kra06] A. Krauss. Partial recursive functions in higher-order logic. In
Furbach and Shankar [FS06], pages 589–603.

[KRW+08] C. Kaliszyk, F. van Raamsdonk, F. Wiedĳk, H. Wupper, M. Hen-
driks, and R. de Vrĳer. Deduction using the ProofWeb system.
Technical Report ICIS–R08016, Radboud University Nĳmegen,
September 2008.

[KW07] C. Kaliszyk and F. Wiedĳk. Certified computer algebra on top
of an interactive theorem prover. In Kauers et al. [KKMW07],
pages 94–105.

[KW08] C. Kaliszyk and F. Wiedĳk. Merging procedural and declara-
tive proof. In S. Berardi, F. Damiani, and U. de’Liguoro, edi-
tors, TYPES, volume 5497 of Lecture Notes in Computer Science,
pages 203–219. Springer, 2008.

[Ler06] X. Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 42–54.
ACM Press, 2006.

128 BIBLIOGRAPHY

[Les01] D.R. Lester. Effective continued fractions. In Proceedings 15th
IEEE Symposium on Computer Arithmetic, pages 163–170. IEEE
Computer Society Press, June 2001.

[Les08] D. R. Lester. Real number calculations and theorem: Proving
validation and use of an exact arithmetic. In O. Ait-Mohamed,
editor, TPHOLs, volume 5170 of Lecture Notes in Computer Sci-
ence, pages 215–229. Springer, 2008.

[Let02] P. Letouzey. A new extraction for Coq. In H. Geuvers and
F. Wiedĳk, editors, TYPES, volume 2646 of Lecture Notes in
Computer Science, pages 200–219. Springer, 2002.

[LHLHW+04] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie,
M. Champion, and S. Byrne. Document Object Model (DOM)
Level 3 Core Specification, Version 1. W3C Recommendation,
2004.

[Loz03] D.W. Lozier. Nist digital library of mathematical functions. Ann.
Math. Artif. Intell., 38(1-3):105–119, 2003.

[LV] Logical Verification. http://www.cs.vu.nl/~tcs/lv/.

[Map95] Maple form interface, 1995.
http://www.cecm.sfu.ca/organics/help/nmpform.html.

[MBG+03] E. Melis, J. Büdenbender, G. Goguadze, P. Libbrecht, and C. Ull-
rich. Knowledge representation and management in activemath.
Ann. Math. Artif. Intell., 38(1-3):47–64, 2003.

[McB04] C. McBride. Epigram: Practical programming with dependent
types. In V. Vene and T. Uustalu, editors, Advanced Functional
Programming, volume 3622 of Lecture Notes in Computer Sci-
ence, pages 130–170. Springer, 2004.

[Mel08] G. Melquiond. Proving bounds on real-valued functions with
computations. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, Proceedings of the 4th International Joint
Conference on Automated Reasoning, Lectures Notes in Com-
puter Science, Sydney, Australia, 2008.

[MHW08] F. van Raamsdonk M. Hendriks, C. Kaliszyk and F. Wiedĳk.
Teaching logic using a state-of-the-art proof assistant. In Pro-
ceedings of the ETAPS Workshop on Formal Methods in Educa-
tion (ForMEd’08), Budapest, 2008. Accepted for publication in
ENTCS.

[Miz] Mizar. http://www.mizar.org/.

http://www.cs.vu.nl/~tcs/lv/
http://www.cecm.sfu.ca/organics/help/nmpform.html
http://www.mizar.org/

BIBLIOGRAPHY 129

[Miz08] Mizar Development Team. Mizar wiki, 2008.
http://wiki.mizar.org/.

[MS97] O. Müller and K. Slind. Treating partiality in a logic of total
functions. Comput. J., 40(10):640–652, 1997.

[Muz93] M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le
Hodey, Brussels, 1993.

[Niq04] M. Niqui. Formalising Exact Arithmetic: Representations, Algo-
rithms and Proofs. PhD thesis, Radboud Universiteit Nĳmegen,
September 2004.

[Niq08] M. Niqui. Cocorico: a Coq wiki, 2008.
http://www.lix.polytechnique.fr/cocorico/.

[NPW02] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture
Notes in Computer Science. Springer, 2002.

[NuP] PRL Project: “Proof/Program Refinement Logic”.
http://www.cs.cornell.edu/Info/Projects/NuPRL/.

[Obu08] S. Obua. Flyspeck II: The Basic Linear Programs. PhD thesis,
Technische Universitat Munchen, 2008. Submitted.

[O’C05] R. O’Connor. Essential incompleteness of arithmetic verified by
coq. In J. Hurd and T.F. Melham, editors, TPHOLs, volume 3603
of Lecture Notes in Computer Science, pages 245–260. Springer,
2005.

[O’C07] R. O’Connor. A monadic, functional implementation of real num-
bers. Mathematical Structures in Computer Science, 17(1):129–
159, 2007.

[Oca] Ocamlnet.
http://projects.camlcity.org/projects/ocamlnet.html.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verifica-
tion system. In D. Kapur, editor, 11th International Conference
on Automated Deduction (CADE), volume 607 of LNAI, pages
748–752, Berlin, Heidelberg, New York, 1992. Springer-Verlag.

[Pau83] L.C. Paulson. A higher-order implementation of rewriting. Sci.
Comput. Program., 3(2):119–149, 1983.

[Pau05] L. Dailey Paulson. Building rich web applications with ajax.
Computer, 38(10):14–17, 2005.

[Pot99] L. Pottier. LogiCoq, 1999. http://wims.unice.fr/wims/wims.
cgi?module=U3/logic/logicoq.

http://wiki.mizar.org/
http://www.lix.polytechnique.fr/cocorico/
http://www.cs.cornell.edu/Info/Projects/NuPRL/
http://projects.camlcity.org/projects/ocamlnet.html
http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq
http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq

130 BIBLIOGRAPHY

[Pra95] V.R. Pratt. Anatomy of the pentium bug. In TAPSOFT ’95:
Proceedings of the 6th International Joint Conference CAAP/-
FASE on Theory and Practice of Software Development, pages
97–107, London, UK, 1995. Springer-Verlag.

[PT98] E. Poll and S. Thompson. Adding the axioms to Axiom: Towards
a system of automated reasoning in Aldor. In Calculemus and
Types ’98, July 1998. Also as technical report 6-98, Computing
Laboratory, University of Kent.

[Pvs] PVS Specification and Verification System.
http://pvs.csl.sri.com/.

[RT03] P. Rudnicki and A. Trybulec. On the integrity of a repository of
formalized mathematics. In MKM ’03: Proceedings of the Second
International Conference on Mathematical Knowledge Manage-
ment, pages 162–174, London, UK, 2003. Springer-Verlag.

[Sor00] V. Sorge. Non-trivial symbolic computations in proof planning.
In FroCoS ’00: Proceedings of the Third International Workshop
on Frontiers of Combining Systems, pages 121–135, London, UK,
2000. Springer-Verlag.

[SPK+] C. Schurmann, F. Pfenning, M. Kohlhase, N. Shankar, and
S. Owre. Logosphere. A Formal Digital Library. Logosphere
homepage: http://www.logosphere.org/.

[Urb98] C. Urban. Implementation of proof search in the imperative
programming language pizza. In H.C.M. de Swart, editor,
TABLEAUX, volume 1397 of Lecture Notes in Computer Sci-
ence, pages 313–319. Springer, 1998.

[vD07] H. van Ditmarsch. Logic courseware, 2007. http://www.cs.
otago.ac.nz/staffpriv/hans/logiccourseware.html.

[Vui88] J. Vuillemin. Exact real computer arithmetic with continued
fractions. In LFP ’88: Proceedings of the 1988 ACM conference
on LISP and functional programming, pages 14–27, New York,
NY, USA, 1988. ACM Press.

[W3C08] W3C. Web applications (webapps) working group, 2008.
http://www.w3.org/2008/webapps/.

[Web08] Web APIs Working Group. The XMLHttpRequest Object. Tech-
nical report, W3C, 2008.
http://www.w3.org/TR/XMLHttpRequest/.

[Wes99] M.J. Wester, editor. Contents of Computer Algebra Systems: A
Practical Guide, chapter A Critique of the Mathematical Abil-
ities of CA Systems. John Wiley & Sons, Chichester, United
Kingdom, 1999.

http://pvs.csl.sri.com/
http://www.logosphere.org/
http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html
http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html
http://www.w3.org/2008/webapps/
http://www.w3.org/TR/XMLHttpRequest/

BIBLIOGRAPHY 131

[Wie01] F. Wiedĳk. Mizar light for hol light. In TPHOLs ’01: Pro-
ceedings of the 14th International Conference on Theorem Prov-
ing in Higher Order Logics, pages 378–394, London, UK, 2001.
Springer-Verlag.

[Wie09] F. Wiedĳk. Formalizing 100 theorems, 2009.
http://www.cs.ru.nl/~freek/100/.

[Wol03] S. Wolfram. The Mathematica Book. Wolfram Media, Incorpo-
rated, 2003.

[WZ03] F. Wiedĳk and J. Zwanenburg. First order logic with domain
conditions. In D.A. Basin and B. Wolff, editors, TPHOLs, vol-
ume 2758 of Lecture Notes in Computer Science, pages 221–237.
Springer, 2003.

http://www.cs.ru.nl/~freek/100/

132 BIBLIOGRAPHY

Summary

Proof assistants are computer programs that help the user build mechanically
checked proofs. Proof assistants allow describing mathematical concepts or
creating models of computer systems and proving properties of those concepts
and models. The use of proof assistants is currently limited to specialists in the
domain, since to make a proof as done on paper accepted by a proof assistant,
one needs to add many details.

In this thesis we present an approach to extending the usability of proof
assistants in mathematics and computer science. We do it in two ways: by
combining proof assistants with computer algebra systems and by providing
interactive access to such systems over the web.

Computer algebra systems are computer programs that process mathemat-
ical expressions. They include general purpose mathematical utilities, not only
computer algebra. Most computer algebra systems allow manipulation of sym-
bolic expressions including automatic simplifications, performing substitutions,
solving equations over various domains, calculating arbitrary precision numer-
ical approximations and plotting graphs of functions. Most computer algebra
systems are designed to be easy to use for a beginner. Computer algebra systems
allow the users to enter mathematical expressions in traditional mathematical
notation and output results in user friendly format. Defining structures or func-
tions and computing with them is easy, so performing experiments inside such
a system is simple. This simplicity comes with a drawback. The algorithms im-
plemented in those systems are not formally checked and are therefore known
to make mistakes.

The thesis consists of two parts. Part I deals with approaches that combine
computer algebra systems with proof assistants.

In Chapter 1 we build a prototype computer algebra system built on top of
a proof assistant, HOL Light. This architecture guarantees that the system will
make no mistakes. All expressions in the system have precise semantics and the
proof assistant will check the correctness of all simplifications according to this
semantics. We designed the user interface to close to the interfaces of popular
computer algebra systems. This allows the user to easily probe the underlying
automation of the proof assistant.

In Chapter 2 we extend the above system with partiality. We present an
approach to formalizing partiality in real and complex analysis in total frame-
works that allows the side conditions to be kept hidden from the user as long as

133

134 Summary

they can be computed and simplified automatically. Assumptions about the do-
mains of partial functions are necessary when we guarantee correctness in proof
assistants. On the other hand when mathematicians write about partial func-
tions they tend not to explicitly write these side conditions. The solution from
this chapter simplifies defining and operating on partial functions in formalized
real analysis in HOL Light. It allows simplifying expressions under partiality
conditions in a proof assistant in a manner that resembles computer algebra
systems.

Chapter 3 talks about real number approximations in proof assistants. In
Coq it is possible to work with infinite precision real numbers effectively. We
investigate how to use the classical theory of real numbers together with approx-
imations computed constructively. We combine the two main Coq libraries that
have a theory of the real numbers: the Coq standard library, which gives an ax-
iomatic treatment of the classical theory of real numbers and the CoRN library
from Nĳmegen which defines a constructively valid theory of real numbers.

In Part II we look at interactive formalized mathematics on the web. We
describe a web interface for proof assistants and we investigate the use of this
interface in teaching logic and in collaborative proof development.

In Chapter 4 we describe an architecture for creating responsive web inter-
faces for proof assistants. We create an interface that is available completely
within a web browser, but resembles and behaves like a local one. Security,
availability and efficiency issues of the architecture are described.

Chapter 5 describes the system ProofWeb which uses a web interface to Coq
to teach logic to undergraduate computer science students. The system makes
the full power of Coq available to the students, but simultaneously presents the
logic problems in a way that is customary in undergraduate logic courses. We
describe a large database of logic problems and the tactics for Coq that have
been developed for the inference rules of the logic.

In Chapter 6 we present an algorithm for converting tree style proofs to flag
style proofs. We then present a rewrite system that simplifies the results. It has
been implemented in ProofWeb. The algorithm can be used to convert arbitrary
procedural proofs to declarative proofs. In ProofWeb a proof that is given as a
Coq proof script (even with arbitrary Coq tactics) can be displayed both as a
tree style and as a flag style proof.

In Chapter 7 we combine the web interface from previous chapters with
a wiki to create an environment for the collaborative development of formal
proofs. We describe a prototype based on Coq and a modified version of the
MediaWiki code-base that allows modifying proofs while preserving repository
consistency and rendering the provided proofs.

Samenvatting (Dutch summary)

Bewĳsassistenten zĳn computerprogramma’s die de gebruiker helpen mecha-
nisch geverifieerde bewĳzen te construeren. Bewĳsassistenten maken het mo-
gelĳk wiskundige concepten te beschrĳven en modellen van computersystemen
te bouwen, en eigenschappen van deze concepten en modellen te bewĳzen. Het
gebruik van bewĳsassistenten is tegenwoordig nog beperkt tot specialisten in dit
onderwerp, omdat om een bewĳs zoals het op papier wordt gedaan door een be-
wĳsassistent te laten accepteren, er vele details aan moeten worden toegevoegd.

In dit proefschrift presenteren we methoden om de bruikbaarheid van be-
wĳsassistenten voor wiskunde en informatica te verhogen. We doen dit op twee
manieren: door bewĳsassistenten met systemen voor computer algebra te inte-
greren, en door interactieve toegang tot zulke systemen via het web mogelĳk te
maken.

Computer algebra systemen zĳn computerprogramma’s die wiskundige ex-
pressies verwerken. Behalve computer algebra vallen hier ook algemenere wis-
kundige programma’s onder. De meeste computer algebra systemen maken het
mogelĳk symbolische expressies te manipuleren, onder meer door automatisch
vereenvoudigen, door substitueren, door het oplossen van vergelĳkingen in ver-
schillende domeinen, door het berekenen van numerieke benaderingen met een
willekeurige precisie, en door het tekenen van grafieken van functies. De meeste
systemen voor computer algebra zĳn ontworpen om eenvoudig bruikbaar te zĳn
voor beginners. Computer algebra systemen stellen de gebruikers in staat wis-
kundige expressies in traditionele wiskundige notatie in te voeren en ze geven
antwoorden in een gebruikersvriendelĳk vorm. Met deze systemen is het mak-
kelĳk om structuren en functies te definiëren, en daarom is het eenvoudig om
met een dergelĳk systeem te experimenteren. Deze eenvoud heeft ook een na-
deel. De algoritmes die in deze systemen zĳn geïmplementeerd zĳn niet formeel
geverifieerd, en maken soms fouten.

Dit proefschrift bestaat uit twee delen. Deel I gaat over methoden om com-
puter algebra met bewĳsassistenten te combineren.

In Hoofdstuk 1 ontwikkelen we een prototype computer algebra systeem
bovenop de bewĳsassistent HOL Light. Deze architectuur garandeert dat het
systeem geen fouten maakt. Alle expressies in het systeem hebben een wel-
gedefinieerde semantiek, en de bewĳsassistent checkt de correctheid van alle
vereenvoudigingen met betrekking tot deze semantiek. We hebben ontworpen

135

136 Samenvatting (Dutch summary)

een gebruikersinterface dat sterk lĳkt op de interfaces van populaire systemen
voor computer algebra. Dit maakt het eenvoudig voor een gebruiker om met de
onderliggende automatisering van de bewĳsassistent te experimenteren.

In Hoofdstuk 2 breiden we het bovenstaande systeem uit met partialiteit. We
presenteren een aanpak voor formalisatie van partialiteit in reële en complexe
analyse in een totaal framework, waarbĳ het mogelĳk is de zĳ-condities voor
de gebruiker verborgen te houden zo lang ze automatisch berekend en vereen-
voudigd kunnen worden. Aannames over het domein van partiële functies zĳn
noodzakelĳk wanneer we correctheid in een bewĳsassistent willen garanderen.
Aan de andere kant schrĳven wiskundigen als ze partiële functies gebruiken deze
zĳ-condities meestal niet expliciet op. De oplossing van dit hoofdstuk maakt
het eenvoudiger om partiële functies te definiëren en er mee te werken in gefor-
maliseerde reële analyse in HOL Light. Het maakt het mogelĳk expressies met
partialiteitscondities in een bewĳsassistent te vereenvoudigen op een manier die
lĳkt op die van computer algebra.

Hoofstuk 3 gaat over het benaderen van reële getallen in bewĳsassistenten. In
Coq is het mogelĳk om effectief met reële getallen te werken die een willekeurig
grote precisie hebben. We onderzoeken hoe de theorie van de reële getallen
uit de klassieke wiskunde te gebruiken is met benaderingen die constructief
berekend zĳn. We combineren de twee belangrĳkste Coq bibliotheken die een
theorie van de reële getallen bevatten: de Coq standaardbibliotheek die een
axiomatische behandeling van de klassieke theorie van de reële getallen geeft,
en de CoRN bibliotheek uit Nĳmegen die een constructieve theorie van de reële
getallen definieert.

In Deel II kĳken we naar interactieve formele wiskunde op het web. We be-
schrĳven een web-interface voor bewĳsassistenten en onderzoeken het gebruik
van dit interface in het onderwĳs in de logica en in collaboratieve bewĳsontwik-
keling.

In Hoofdstuk 4 beschrĳven we een architectuur voor het bouwen van res-
ponsieve web-interfaces voor bewĳsassistenten. We bouwen een interface dat
volledig in een web-browser beschikbaar is, maar zich gedraagt als een locaal
interface. We beschrĳven de veiligheid, beschikbaarheid en efficiëntie van de
architectuur.

Hoofdstuk 5 beschrĳft het ProofWeb systeem dat een web-interface voor
Coq gebruikt om logica te onderwĳzen aan studenten informatica. Het sys-
teem maakt de volledige kracht van Coq beschikbaar voor de studenten, maar
tegelĳkertĳd presenteert het logica-opgaven op een manier die gebruikelĳk is
in propedeuse logica-cursussen. We beschrĳven een grote verzameling logica-
opgaven, en de tactieken voor Coq die ontwikkeld zĳn voor de redeneerregels
van de logica.

In Hoofdstuk 6 presenteren we een algoritme om boombewĳzen om te zetten
in vlaggenbewĳzen. Vervolgens geven we een herschrĳfsysteem om het resultaat
te vereenvoudigen. Dit is geïmplementeerd in ProofWeb. Het algoritme kan ge-
bruikt worden om willekeurige procedurele bewĳzen om te zetten in declaratieve
bewĳzen. In ProofWeb kan een bewĳs dat als een Coq bewĳs is gegeven (zelfs
wanneer willekeurige Coq tactieken zĳn gebruikt) worden weergegeven zowel als

Samenvatting (Dutch summary) 137

boom- als als vlaggenbewĳs.
In Hoofdstuk 7 combineren we het web-interface uit de vorige hoofdstukken

met een wiki, en creëren zo een omgeving voor de collaboratieve ontwikkeling
van formele bewĳzen. We beschrĳven een prototype gebaseerd op Coq en een
aangepaste versie van de MediaWiki broncode, die het mogelĳk maakt bewĳzen
te bewerken terwĳl de consistentie van de repository en de weergave van de
bewĳzen behouden blĳft.

138 Samenvatting (Dutch summary)

Streszczenie (Polish summary)

Systemy dowodzenia twierdzeń są programami komputerowymi, które pomagają
użytkownikom tworzyć mechanicznie sprawdzone dowody. Te systemy pozwa-
lają zdefiniować pojęcia matematyczne lub modele oprogramowania, a następ-
nie dowodzić własności tych pojęć i modeli. Systemy dowodzenia twierdzeń są
współcześnie używane jedynie przez specjalistów, gdyż do pełnego zaakcepto-
wania dowodu przez system wymagane jest dodanie wielu szczegółów.

W niniejszej pracy doktorskiej przedstawione są sposoby zwiększenia uży-
walności systemów dowodzenia twierdzeń w matematyce i informatyce. Przed-
stawione są dwie metody: łączenie systemów dowodzenia twierdzeń z systemami
algebry komputerowej oraz umożliwienie dostępu do tych systemów przez sieć.

Systemy algebry komputerowej są programami, które służą do przekształca-
nia wyrażeń matematycznych. Systemy te potrafią wykonywać wiele ogólnych
matematycznych operacji, nie ograniczają się jedynie do algebry komputerowej.
Większość systemów algebry komputerowej pozwala na operowanie wyrażeniami
symbolicznymi wraz z automatycznym ich upraszczaniem, wykonywanie pod-
stawień, rozwiązywanie równań w różnych dziedzinach, obliczanie przybliżeń
numerycznych dowolnej dokładności oraz rysowanie wykresów funkcji. Więk-
szość systemów algebry komputerowej jest zaprojektowana z myślą o początku-
jącym użytkowniku. Pozwalają one na wprowadzanie wyrażeń matematycznych
w standardowej matematycznej notacji i zwracają wynik w formacie przyjaznym
użytkownikowi. Tworzenie nowych definicji struktur i funkcji jest uproszczone,
przez co eksperymentowanie z takim systemem jest względnie łatwe. Takie
uproszczenie ma jednak wady. Algorytmy zaimplementowane w tych systemach
nie są formalnie sprawdzone, przez co systemy te mogą popełniać błędy.

Przedstawiona praca doktorska składa się z dwóch części. Część pierwsza
przedstawia metody łączenia systemów dowodzenia twierdzeń z systemami al-
gebry komputerowej.

W Rozdziale 1 przedstawiamy prototypowy system algebry komputerowej
zbudowany wewnątrz systemu dowodzenia twierdzeń HOL Light. Ta architek-
tura zapewnia, że system nie będzie popełniał żadnych błędów. Wszystkie wy-
rażenia w systemie mają dokładną semantykę, a system dowodzenia twierdzeń
sprawdza poprawność wszystkich przekształceń zgodnie z tą semantyką. Zapro-
jektowaliśmy interfejs użytkownika systemu tak, aby zachowywał się podobnie
do popularnych systemów algebry komputerowej. To pozwala użytkownikom na

139

140 Streszczenie (Polish summary)

proste eksperymentowanie z automatyką bazowego systemu dowodzenia twier-
dzeń.

W Rozdziale 2 rozszerzamy powyższy system o obsługę funkcji częściowych.
Przedstawiamy sposób formalizacji funkcji częściowych z analizy rzeczywistej i
zespolonej w środowiskach całkowitych, który pozwala na ukrycie założeń czę-
ściowości, o ile mogą one być znalezione i uproszczone automatycznie. Założenia
na temat dziedzin funkcji częściowych są niezbędne, aby zagwarantować popraw-
ność w systemie dowodzenia twierdzeń. Jednocześnie matematycy zazwyczaj nie
piszą explicite tych założeń. Rozwiązanie przedstawione w tym rozdziale uprasz-
cza definiowanie i operowanie na funkcjach częściowych w formalnej analizie w
HOL Light. To pozwala na upraszczanie wyrażeń pod założeniami częściowości
w systemie dowodzenia twierdzeń w sposób, który przypomina ten z algebry
komputerowej.

Rozdział 3 dotyczy przybliżeń numerycznych liczb rzeczywistych w syste-
mach dowodzenia twierdzeń. W systemie Coq można pracować efektywnie z
liczbami rzeczywistymi o nieskończonej dokładności. Przedstawiamy możliwość
użycia aksjomatycznie zdefiniowanych klasycznych liczb rzeczywistych z biblio-
teki standardowej Coq’a z liczbami rzeczywistymi z biblioteki CoRN, których
teoria jest poprawna konstruktywnie.

W części drugiej zajmujemy się interaktywną sformalizowaną matematyką w
sieci. Opisujemy interfejs strony internetowej dla systemów dowodzenia twier-
dzeń oraz badamy używalność tego interfejsu do uczenia logiki oraz do współ-
pracy przy tworzeniu dowodów.

W Rozdziale 4 opisujemy architekturę interaktywnych interfejsów strony in-
ternetowej dla systemów dowodzenia twierdzeń. Tworzymy interfejs, który jest
dostępny w całości poprzez przeglądarkę, choć przypomina i zachowuje się tak
jak lokalny interfejs użytkownika. Opisane są także bezpieczeństwo, dostępność
i efektywność przedstawionego rozwiązania.

Rozdział 5 opisuje system ProofWeb, który używa interfejsu strony interne-
towej do Coq’a do uczenia logiki studentów informatyki. Ten system pozwala
studentom używać całej mocy Coq’a jednocześnie przedstawiając problemy lo-
giczne w sposób zwyczajowy dla studiów logiki. Przedstawiamy bazę problemów
logicznych oraz zaimplementowane taktyki dla reguł inferencji logiki.

W Rozdziale 6 przedstawiamy algorytm przekształcania drzew dowodu w
dowody flagowe. Przedstawiamy także system przepisywania, który upraszcza
uzyskane dowody. Takie przekształcenie zostało zaimplementowane w syste-
mie ProofWeb. Nasz algorytm może przekształcić każdy dowód proceduralny
w dowód deklaratywny. W systemie ProofWeb dowód podany jako skrypt do-
wodowy Coq’a (z dowolnymi taktykami) może być wyświetlony zarówno jako
drzewo dowodu jak i jako dowód flagowy.

W Rozdziale 7 przedstawione jest połączenie interfejsu strony internetowej
z poprzednich rozdziałów z wiki dla stworzenia pełnego środowiska do współ-
pracy przy tworzeniu dowodów matematycznych. Opisujemy prototyp oparty
na Coq’u oraz Mediawiki, który pozwala rozwĳać i modyfikować dowody zacho-
wując spójność repozytorium.

Curriculum Vitae

Born on 04.08.1981 in Warsaw, Poland.
1996-2000 High School. Warsaw, Poland.
2000-2005 M.Sc. Computer Science. Warsaw University, Poland.
2000-2004 B.Sc. Mathematics. Warsaw University, Poland.
2005-2009 Junior researcher. Radboud University Nĳmegen, the Netherlands.

141

	Acknowledgments
	Introduction
	I Basing Computer Algebra on Proof Assistants
	Computer Algebra in HOL Light
	Introduction
	Motivation
	Approach
	Related work
	Contents

	Architecture
	Input-response loop
	Abstract CAS conversion

	CAS-like knowledge
	Knowledge base
	Knowledge representation
	Numerical approximations
	Assumptions
	Manipulating assumptions

	Concluding remarks

	Automating partiality side conditions
	Introduction
	Motivation
	Approach
	Related work
	Contents

	Approach
	Basic definitions
	Example in mathematical notation

	The formalization
	Design decisions
	HOL Light implementation details
	How to extend the system

	Concluding Remarks

	Computing with classical real numbers
	Introduction
	The two universes of Coq

	Logical Consequences of Coq real numbers
	The axiomatic definition of the real numbers
	Decidability of 01 sentences

	The construction of the isomorphism
	Building a constructive reals structure based on Coq reals
	The isomorphism

	Computation with classical reals
	Solving ground inequalities
	Using facts about Coq reals in CoRN

	Related Work
	Concluding remarks

	II Interactive formalized math on the web
	Web Interfaces for Proof Assistants
	Introduction
	Motivation
	Our Approach
	Related work
	Contents

	Asynchronous DOM Modification
	Generic Interface for Proof Assistants
	General Architecture
	The Client Part
	The Server Part

	Security and Efficiency
	User side
	Server side

	Prototype
	Possible Uses

	Implementation
	The server process
	The server environment
	Client side

	Concluding Remarks

	Teaching logic using a proof assistant
	Introduction
	Motivation
	Our contribution
	Related work
	Contents

	Experiences in the project
	Architecture of the interface
	Natural deduction for first-order logic
	Visualization

	The exercise set
	Outlook
	Beyond the project

	Merging proof styles
	Introduction
	Procedural versus declarative proof assistants
	Approach
	Related Work
	Contents

	Translating minimal logic tree proofs
	Translating proofs in more complicated logical systems
	Simplification of obtained proofs
	Simplification of forward proofs
	Implementation for Coq proofs
	Transforming Coq proof state in a flag style proof

	Concluding Remarks

	Repositories for formal proofs
	Introduction
	Motivation
	Related Work
	The future of proof interfaces
	Chapter contents

	Web Technologies
	Wikis

	Architecture
	Main Components
	Global Design
	Consistency Issues
	Towards a hybrid approach

	Prototype
	Implementation
	Security and Efficiency
	How to integrate other provers

	Concluding Remarks

	Environment for Computer Mathematics
	Vision
	Progress of this thesis towards the vision
	Multivaluedness

	Future Work towards obtaining the Vision
	Computer Algebra with Strong Semantics
	MathWiki
	Using a web interface for software

	Conclusion

	Bibliography
	Summary
	Samenvatting (Dutch summary)
	Streszczenie (Polish summary)
	Curriculum Vitae

