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Abstract. Reasoning about computers and programming languages on
paper is most often done with set theory, while most proof assistant
formalizations of languages and programs use alternative mathematical
foundations. One of the few exceptions has been Mizar where the Simple
Concrete Model of computers has been used to verify programs expressed
as abstract programming language instruction sequences. The model uses
extended set theory features including structures and Fraenkel set com-
prehension operators. In this paper we show how to formally specify
such objects in the Isabelle object logic implementing the Mizar foun-
dations as definitional extensions. To show the adequacy and usability
of the mechanisms, we reformalize a number of Mizar definitions and
theorems related to structures and set comprehensions, including both
mathematical and programming language examples: groups, machines
and properties of computer memory states.

Keywords: Isabelle, Mizar, structure, set comprehension, multiple in-
heritance

1 Introduction

Proof assistants are today increasingly used to certify software, hardware, as
well as mathematical proofs that involve computer programs [10]. One of the
earliest proof assistants, Mizar [7], has been developed as a tool to provide a
human-oriented environment which would allow proofs to be formally analyzed.
The system has already been developed over forty years with its most distinc-
tive features being a proof style that imitates informal mathematical proofs as
much as possible [16] and a rich type system that reflects how mathematicians
and computer scientists describe dependencies between objects [25]. Such sup-
port for formal proofs has given rise to one of the largest libraries of formalized
mathematics with many domains not covered in other libraries. One of such
domains is the Simple Concrete Model (SCM) [17], which introduces a formal
model corresponding to random-access Turing machines, their instructions, and
? The paper has been supported by the resources of the Polish National Science Center
granted by decision n◦DEC-2015/19/D/ST6/01473.
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programs and has been considered more realistic for modeling of real comput-
ers [21]. The development of SCMs and the proofs of their various properties
spans 66 Mizar Mathematical Library (MML) articles.

We build upon our recent work which aimed to specify foundations [13], no-
tations [12], automation [14] of the Mizar system in the Isabelle Logical Frame-
work [24]. The most important motivation for the current work is to provide
the completely specified set theoretic formalizations of the model of computers,
instructions, languages, etc. There are multiple further directions for how we
plan to extend that work, as well as multiple reasons for these extensions:

– Specifying Mizar in a logical framework gives the complete semantics of the
system specified only on paper so far [6], including the underlying first-order
logic variant, the soft type system, definitional mechanisms, and automation
mechanisms.

– Despite various efforts [11], the contents of the MML are hard to access
for developers of other proof and knowledge management systems. Isabelle’s
structures can allow experiments with sharing proof techniques and automa-
tion across proof assistants.

– Mizar has a large monolithic kernel. Despite the implementers best efforts,
bugs in the code can result in incorrect proofs being accepted. This problem
can be significantly remedied by certifying proofs across systems.

– In the long run, develop an alternative environment for reverification and
development of proofs automatically exported from the MML.

In this work we introduce and develop two components used in Mizar neces-
sary to translate and certify the MML proofs on algebraic structures including
the SCM model of computers in Isabelle. The components are Mizar structures
and Mizar set comprehension operators.

Mizar structures (also referred to as aggregates or records) allow grouping
multiple other objects together with relations between them into a single entity.
This is useful for defining and reasoning about mathematical structures such as
rings, fields, and vector spaces. Mizar structures correspond to mechanisms in
other proof assistants like the Isabelle type classes [9] or Coq records used to
build an algebraic hierarchy [5]. The support for structures is a crucial part of
the Mizar language. Structures are built in to the Mizar verifier [6] and they
are heavily used in the MML. In fact 74% of the articles in the current MML
version 1289 rely directly or indirectly on the article struct_0.

Mizar set comprehension operators (referred to as Fraenkel in the Mizar
literature [6]) allow describing a set of terms whose argument list satisfies a
given predicate. Defining set comprehension in a sound and adequate way is an
important part of the Mizar foundations, as in any set theory this is where most
paradoxes (Russell’s paradox and its variants) originate from.

We use the already specified foundations of the Mizar system together with
the Tarski-Groethendieck axiomatization, and the first few formalized articles
of the MML to formally define Mizar structures and Mizar set comprehension
operators. Both can be introduced as definitional extensions, without adding any
further axioms.



Formalization of Mizar Structures and Set Comprehensions 3

1.1 Related Work

B-Method [1] has aimed to ease the formalization of programs in a foundation
based on set theory, however like Mizar the structures and set comprehension are
a part of the system. Similarly, Metamath [20] does not have a built-in notion
of structures and focuses on n-tuples instead.

Turing machines have been formalized in Isabelle/HOL [26] allowing reason-
ing about their behavior in Hoare logic, as well as in Matita [2] focusing on
complexity theory. The main approach to formalization of imperative programs
in Isabelle is used in Imperative/HOL [4]. This approach was further refined to
allow for formalization of programs in separation logic [18].

Algebraic structures were often necessary early in the development of proof
assistants. In Isabelle/HOL type classes [9] allow for further control of the poly-
morphic type system adding mechanisms such as inheritance between types.
Various Isabelle automation mechanisms can translate type classes to predicates,
which is also how reasoning about algebraic structures with inheritance is usu-
ally performed in other HOL-based systems. Proof assistants based on versions
of type theory can store objects along with their properties in tuples (or records
with named fields). This has been used to build an algebraic hierarchy [5] in Coq
or to extend it to topologies as done in Matita [23]. Inheritance for records that
can allow for good automation has become an important field with developments
including canonical structures and type classes.

Lee and Rudnicki [19] proposed an alternative approach to defining structures
without special support in the Mizar system. The main motivation is to make
field structures into first-class objects, which allows more convenient reasoning
about graphs. The proposed approach directly uses other parts of the Mizar
language (including preceding parts of the MML) to define aggregates as Mizar
finite Functions. This allows defining what it means for an object to have
a field, rather than to fix which collections of fields constitute an aggregated
object.

The exports of Mizar to ATPs [3] require a specification of the Mizar set
comprehensions. The semantics of the exported objects is the same as that in
Mizar and in our formalizations, but they are axiomatized rather than defined.
We are not aware of any work that specifies the foundations of Mizar in a formal
system that would cover structures.

1.2 Contributions and Outline

We give a complete formal specification of Mizar structures formalized in the Is-
abelle/Mizar object logic (Sect. 3). It supports strict structures (structures that
do not include additional fields), domain of a structure (which allows restrict-
ing larger structures to smaller ones), and inheritance (which allows extending
structures to larger ones) including multiple inheritance.

We formally specify the Mizar Fraenkel set comprehension operator (Sect. 4).
Our approach allows defining it as a single meta-level functor, therefore a defi-
nitional extension as opposed to a part of the implementation of the checker
in Mizar. We further prove a number of properties of this functor.
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We reformalize parts of the MML corresponding to the lattice of types fo-
cusing on the simple concrete model of computers, and show that the defined
mechanisms are appropriate and usable to formalize all of Mizar specifics in
Isabelle (Sect. 5).

2 Preliminaries

In this section we briefly introduce the Mizar foundations defined as an object
logic in the Isabelle framework. For more details see [13].

Four Isabelle types are used to model the Mizar foundations. The type of
propositions is already defined by the underlying Isabelle/FOL object logic. The
following types are further added: the type of Mizar sets Set and two types
used for the Mizar type system: Mode and Attr. Mizar modes are the elemen-
tary types assigned to all objects. Modes are guaranteed to be non-empty. Mizar
attributes allow restricting of a given mode or of another attribute. The only at-
tributes considered in this paper will be adjectives. Each adjective corresponds to
a (parametrizable) predicate on a given type. The type constructed by applying
a number of adjectives to a given type corresponds to the elements of the type
which satisfy all the adjective-associated predicates. For example the type non

zero natural number restricts the type (mode) of numbers to both natural
ones and those different from zero. For clarity, in the Isabelle formalization the
operation that combines attributes will be denoted using a single vertical bar
| and the operation of applying attributes to a mode will be denoted using a
double one ‖. More information about modes and attributes can be found in [7].

The Isabelle/Mizar object logic introduces constants that allow interacting
with the Mizar types, a constant for the choice operator, and five axioms that
specify these constants. Two axioms specify what it mean to define a new mode
and a new attribute. Two axioms express the meaning of the combinations of
attributes with attributes and with modes. The last one axiomatizes the Mizar
axiom of choice for non-empty types.

Next, notations that imitate the Mizar text are introduced for the first-order
logic symbols: &, or, implies, for x holds P, etc. Syntax and helper lemmas
are provided to allow defining functions, predicates, and new types in ways sim-
ilar to that used in Mizar. In particular the definition of a meta-level function
F which is to return type T in Mizar follows the pattern func F → T equals
D and definitions using the description operator use means rather than equals
and a predicate that the defined object should satisfy. These preliminaries are
sufficient to express the Tarski-Grothendieck set theory axiomatization in the
same way as in Mizar. Furthermore [13] showed, that it is sufficient to translate
all the definitions and theorems from the first few articles of the MML.

3 Structures

Mizar structures are used to define objects that are typically represented as
tuples in mathematics. For example the Mizar definition of ring 〈F,+, 0, · , 1〉
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consists of Mizar types assigned to fields in the structure, in particular +, ·
are binary operations on F , and 0, 1 are members of F . To do this, unique
identifiers (referred to as a field selector or simply selector in the Mizar litera-
ture) are needed for each tuple element. In case of a ring these identifiers are
carrier, addF, ZeroF, multF, and OneF respectively. The Mizar syntax for the
tuple including the above mentioned types is presented on the left. The Isabelle
counterpart, which we will define later in this section is presented on the right
for comparison (for simplicity inheritance information is omitted here, it will be
discussed in Sect. 3.4):

struct doubleLoopStr (#
carrier → set,
addF → BinOp of the carrier,
ZeroF → Element of the carrier,
multF → BinOp of the carrier,
OneF → Element of the carrier

#)

definition
"struct doubleLoopStr (#

carrier → λS. set;
addF → λS. BinOp-of the carrier of S;
ZeroF → λS. Element-of the carrier of S;
multF → λS. BinOp-of the carrier of S;
OneF → λS. Element-of the carrier of S

#)"

The doubleLoopStr structure will correspond to a ring only with addi-
tional restrictions. Such restrictions are in Mizar introduced using adjectives
(see Sect. 2). In particular, a ring in the MML is defined as a doubleLoopStr

together with nine adjectives, such as Abelian and distributive with their
expected meanings. Certain extensions of a ring, such as a field, will only ex-
tend the list of adjectives (for example by commutative), which permits all
Mizar mechanisms (functors, definitions, theorems) associated with rings to also
work with fields. Mizar allows adjectives to be used in the field selector types,
which corresponds to structures with resticted values. This is used for SCMs (see
Sect. 5.2).

Mizar structures also support inheritance discussed in more detail in Sect. 3.4.
Here it is only important to note that inheritance does allow not only ring
extensions, but also permits the use of group theory for rings and fields, since
the group tuple multLoopStr is a sub-tuple of that of doubleLoopStr. This
means that “being a group” defined for multLoopStr must allow tuples that
have more than the required selectors. However, there are cases where we want
to express the fact that a group has precisely the multLoopStr selectors, namely
that the tuple does not have any other elements. This is achieved using the Mizar
attribute strict that can be applied to any structure, which specifies that only the
selectors from that structure are allowed. The need for strict can be illustrated
by the following example. Consider the set of all groups over Z3. This set is finite
if and only if we consider strict structures. The net hierarchy of basic algebraic
structures in the MML is depicted in Fig. 1.

3.1 Structure Preliminaries

In the Mizar literature the word structure is used both for structure prototypes
(e.g. the type of rings) and for actual structure instances (e.g. individual objects
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that are of the type of rings). We will try to distinguish the two when it is not
clear from the context. Structure instances will be represented as set theoretic
functions. We will use our Isabelle reformalization of the Mizar set theoretic
relations for this purpose. Structure prototype definitions will correspond to
schemes of functions, which can be further restricted by the given adjectives.

3.2 Structure Operations

A structure prototype definition will describe functions given as sets of assign-
ments. Each assignment is of the form x→ y, where x is a unique label (selector)
and y is the specification given to that field of the structure. As the specification
may refer to the other parts of the structure (for example the zero in the ring is
an element of the carrier), y needs to be a meta-level function which, when given
the structure instance as an argument returns the type of that field. We present
here the general definitions of the selector and of the single field in a structure
in our formalization:

definition TheSelectorOf ("the _ of _ " [90,90] 190) where
"func the selector of Term → object means λit.

for T be object st 〈selector,T〉 in Term holds it = T"

definition Field ("_ → _" 91) where
"selector → spec ≡ define_attr (λit.

the selector of it be spec(it) & selector in dom it)"

With this we can introduce a Mizar-like syntax for structure prototypes
(# f1; . . . ; fn #), where each field fi is described by an assignment sel→ spec(it).
Most basic structure prototypes ignore the argument:

definition one_sorted :: "Mode" ("one-sorted") where
"struct one-sorted (# carrier → λ_. set #)"

We now define the domain of a structure prototype as the minimal set that is
contained in the domain of any instance. This allows the following definition to
be a global one, however the result makes sense only for a particular prototype.

definition domain_of::"Mode ⇒ Set" ("domain’_of _" 200) where
"func domain_of M → set means (λit.

(ex X be M st it = dom X) & (for X be M holds it ⊆ dom X))"

The fact that we know the domain globally also allows creating strict as an
attribute. The attribute should consider the domain of the structure type, which
may be the last argument after other attributes. Not to restrict the order of
attributes, the Isabelle version of strict requires an argument, which repeats the
mode. For example strict one-sorted || one-sorted.

definition strict :: "Mode ⇒ Attr" ("strict _" 200) where
"attr strict M means (λX. X be M & dom X = domain_of M)"

We can finally introduce the restriction of an instance to a strict structure using
the restriction of a function domain denoted with the slash operator.

definition the_restriction_of :: "Set ⇒ Mode ⇒ Set"
("the’_restriction’_of _ to _" 90) where

"func the_restriction_of X to Struct →
strict Struct ‖ Struct equals X | domain_of Struct"
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1-sorted

carrier

multMagma

multF

OneStr

OneF

ZeroStr

ZeroF

addMagma

addF

TopStruct

topology

Mem-Struct over N

Object-Kind
ValuesF

multLoopStr ZeroOneStr addLoopStr TopaddGrStr

multLoopStr_0
ModuleStr overF

lmult

RightModStr overF
rmult

COM-Struct

InstructionsF
doubleLoopStr BiModStr over F

AMI-Struct

Execution
AlgebraStr over F

Fig. 1. Net of basic algebraic and computer-related structures in the MML follow-
ing [8]. The presented ones have already been covered in our formalization. The lower
part of each node lists the selectors which are added w.r.t. the inherited ones. AMI
(Architecture Model for Instructions) is an abstract computer structure parametrized
by the data stored in its memory, further detailed in Sect. 5.2.

3.3 Structure Prototype Introduction

To define an actual structure prototype, it is necessary to use an actual set
of labels which are pairwise different. In principle strings could be natural for
this purpose. However, as we prefer to reduce the required part of the library
foundations, we chose to use the set theoretic natural numbers defined by 0 = {}
and succ(X) = X ∪ {X}.

Furthermore, to define an actual structure prototype, it is necessary to show
non-emptiness, that is that there exists a structure instance which fulfills the
structure prototype conditions. To show such existence, Mizar requires the non-
emptiness of all structure field specifications. For this, we use the global choice
operator ε. For each field (selector → specification) we take the pair 〈selector,
ε(specification)〉. We show that the set of such pairs for all fields of the struc-
ture fulfills the prototype conditions (with convenient automation to show such
existence, see Mizar_struct file). For example, for doubleLoopStr we use:

term "{〈carrier, the set〉} ∪
{〈addF, the BinOp-of the set〉} ∪ {〈ZeroF, the Element-of the set〉} ∪
{〈multF, the BinOp-of the set〉} ∪ {〈OneF,the Element-of the set〉}"

3.4 Inheritance and Multiple Inheritance

The original MML definition of doubleLoopStr includes information about
(multiple) inheritance:
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struct (addLoopStr,multLoopStr_0) doubleLoopStr

which informs Mizar that doubleLoopStr should inherit all the fields contained
in addLoopStr, as well as those in multLoopStr_0. These are used to define
additive and multiplicative groups, respectively. Inheritance is transitive. Mul-
tiple inheritance causes the Mizar inheritance graph to become a DAG. There
are 168 structures defined in MML. This does not include their versions with
adjectives. Most structures (135 of them) inherit from 1-sorted. A part of the
graph restricted to the most basic algebraic structures is depicted in Fig. 1. In
our approach it is possible to verify that the domain of a structure is a subset of
the domain of another one allowing (automated) inheritance proofs at any point
after the definition.

4 Set Comprehension

Set comprehension is a key notion in Mizar set theory. It allows defining a set of
terms, which satisfy the given predicate (see [6, Fraenkel]), with Mizar syntax:

{t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn:P[v1,v2,. . .,vn]}

Such an expression is of the type set in Mizar and it is not possible to further
specify the type. The built-in definition of the set comprehension operator is
automatically expanded in terms of set membership as follows:

x in {t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn :P(v1,v2,. . .,vn)}
iff

ex v1 be Θ1, v2 be Θ2, . . .,vn be Θn st x = t(v1,v2,. . .,vn) & P[v1,v2,. . .,vn]

The generality of the definition could quickly lead to a version of the Russell’s
paradox, as according to the Tarski-Groethendieck axiomatization everything is
a set. Therefore, the set comprehension operator is well-formed only when all the
types Θ1, Θ2, . . . , Θn have the sethood property (otherwise Mizar reports Error
86: “It is only meaningful for sethood property”, see [7] for more details).

Definition 1. A Mizar-type Θ has the sethood property if all objects of the type
Θ are elements of some set.

We define sethood in Isabelle/Mizar and make sure that it is proved for the most
important Mizar types (Mizar allows the inheritance of sethood). With this, we
can show the existence of sets described by comprehensions. The Isabelle/Mizar
statement and proof are quite involved, so we present these mostly in mathe-
matical setting.

Theorem 1. Let Θ be a Mizar type with the sethood property, P be a unary
predicate and F be a unary function defined on Θ. Then there exists a set C
such that each x is a member of C if and only if there exists a v of type Θ such
that x = F (v) ∧ P (v).
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Proof. The proof only relies on the Tarski-Groethendieck axiom of Replacement.
Consider the set Sethood that contains all objects of the type Θ. Furthermore,
consider the binary relation R1 defined for a predicate P as R1(x, y) ⇐⇒ x =
y ∧P (x). Then, by the axiom of Replacement, there exists a set Separation, such
that x is a member of Separation if and only if there exists y that is a member of
Sethood and R1(x, y). Now Separation contains the objects of the type Θ which
satisfy P and only such objects. We can use the Replacement axiom again for
the unary relation λy.∃x. y = F (x) and the set Sethood. This gives the image of
the function F on the set Sethood. This set fulfills the requirement of the theorem
statement. ut

The theorem was so far limited to unary predicates and functions. To adapt
it to multiple arguments, we can consider the Cartesian product together with
the property that two tuples are equal, if their corresponding elements are equal.
In our Isabelle/Mizar formalization we introduced the Cartesian product in the
zfmisc_1 theory corresponding to the Mizar article with the same name. This can
used to show set comprehensions with multiple arguments:

Theorem 2. Let Θ1, Θ2, . . . , Θn be Mizar types with the sethood property, P
be an n-argument predicate and F be an n-argument function defined for the
arguments of the types Θ1, Θ2, . . . , Θn. Then there exists a set C such that x is
a member of C if and only if there exists v1 be Θ1, v2 be Θ2, . . ., vn be Θn, such
that x = F (v1, v2, . . . , vn) ∧ P (v1, v2, . . . , vn).

Proof. Consider the sets Si which contain objects of the types Θi. Consider the
binary relation R1, defined as

λxy.x = y ∧ ∃v1,v2,...,vnx = 〈〈. . .〈〈v1, v2〉, v3〉, . . .〉, vn〉 ∧ P (v1, v2, . . . , vn)

The Replacement axiom can be used to obtain the set Separation for which x
is a member of Separation if and only if there exists y that is a member of
(. . . ((S1×S2)×S3) . . .)×Sn and R1(x, y). Using the Replacement axiom again
for the relation

λxy.∃v1,v2,...,vnx = 〈〈. . .〈〈v1, v2〉, v3〉, . . .〉, vn〉 ∧ y = F (v1, v2, . . . , vn)

and the set Sethood, we obtain the set C. ut

The following example collects the results of the function f on the set X and
can be shown to be equivalent to the range of the function restricted to the set.

term "{f. x where x be Element-of dom f: x in X}"

Set comprehensions are often used in the MML to define sets of terms without
additional properties. The following syntax has been introduced so simplify such
comprehension terms: the set of all t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn

is Θn which abbreviates: {t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θ2: non
contradiction}. Just like for set comprehensions we add this abbreviation together
with the Mizar notation. It can be seen for example in the following theorem:
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theorem funct_1_th_110:
assumes "B be non empty | functional ‖ set"

"f be Function" "f = union B"
shows

"dom f = union the set-of-all dom g where g be Element-of B"
"rng f = union the set-of-all rng g where g be Element-of B"

5 Case Studies

In this section we argue that our model of structures is not only correct based
on the Tarski-Groethendieck set theory axioms, but also that it is adequate for
Mizar-like formalization. For this, we formalized a part of Mizar’s group theory in
Isabelle defining the basic concepts as structures, the corresponding attributes,
and showing a number of their properties. We also show how groups combine
with set comprehensions and a more involved inheritance example. All Isabelle
examples have same identifiers as their Mizar counterparts to ease comparison.

5.1 Algebraic structures

We first define the Mizar type of groups as the multiplicative magma structure
multMagma with three adjectives. We define the identity in the group and an
inverse, where the group operation is defined as usual.

abbreviation Group where
"Group ≡ Group-like | associative | non empty-struct ‖ multMagma"

definition group_1_def_4 ("1’._" [1000] 99) where
"assume G is unital
func 1.G → Element-of-struct G means λit.

for h being Element-of-struct G holds
h ⊗G it = h & it ⊗G h = h"

definition group_1_def_5 ( infix "−1
” 105) where

"func h−1
G → Element-of-struct G means λit.

h ⊗G it = 1.G & it ⊗G h = 1.G"

definition algstr_0_def_18 ("_ ⊗_ _" [96, 1000, 97] 96) where
"func x ⊗M y → Element-of-struct M equals

(the multF of M) . (| x , y |)"

Next, we show a number of theorems about groups. We show here only a
property that each group fulfils properties of semigroups with involution. The
Mizar formalization does not need to repeat the variable declarations, thanks to
the reserve mechanism, which is similar to Isabelle locales, but for each theorem
only the variables and assumptions that are actually needed for its statement
are exported. We do not have a complete mechanism of this kind yet.

theorem group_1_th_16:
assumes "G be Group"

"h be Element-of-struct G" "g be Element-of-struct G"
shows "(h ⊗G g)−1

G = g−1
G ⊗G h−1

G"
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We have also reproved the 13 schemes that talk about set comprehension.
We show here two, one that combines set comprehension with functions, and
one that uses nested comprehensions.

theorem Fraenkel_sch_9:
assumes "A be set" "B be set" "X be set"

"f be Function-of A,B" "g be Function-of A,B"
"(f | X) = (g | X)"

"for u being Element-of A st u in X holds P(u) iff Q(u)"
shows "{ f. u where u be Element-of A : P(u) & u in X } =

{ g. v where v be Element-of A : Q(v) & v in X }"

theorem Fraenkel_sch_13:
assumes T0: "A be set" "B be set" "C be set"
"for x1 be object,x2 be object holds F(x1,x2) be Element-of C"
shows "{ st1 where st1 be Element-of C:

st1 in {F(s1,t1) where s1 be Element-of A,
t1 be Element-of B: P(s1,t1) } & Q(st1)} =

{ F(s2,t2) where s2 be Element-of A,t2 be Element-of B:
P(s2,t2) & Q(F(s2,t2))}"

We finally look at the combination of groups and set comprehensions. The
following two definitions introduce the set of all inverses and the set of results
of the group operation:

definition group_2_def_1 ( infix "˝−1
” 150) where

"func A˝−1
G → Subset-of-struct G equals

{g−1
G where g be Element-of-struct G : g in A}"

definition group_2_def_2(" _ ⊗_ _" [66, 1000, 67] 66) where
"func A ⊗G B → Subset-of-struct G equals

{a ⊗G b where a be Element-of-struct G,
b be Element-of-struct G : a in A & b in B}"

We can now show the relationship between these two operations, which is
a consequence of the properties of semigroups with involution (group_1_th_16
above).

theorem group_2_th_11:
assumes "G be Group"

"A be Subset-of-struct G" "B be Subset-of-struct G"
shows "(A ⊗G B) ˝−1

G = B˝−1
G ⊗G A˝−1

G"

We finally show a multiple inheritance relation for the double loop structure.
It follows by simple rewriting just using the definitions of the structures.

theorem doubleLoopStr_inheritance:
assumes "X be doubleLoopStr"
shows "X be multLoopStr_0" "X be addLoopStr"

5.2 SCM computer model

The MML models computers as structures whose elements correspond to: the set
of instructions, the computer memory, and the functor Execution whose role is
to map each instruction to a function from memory states to memory states.

The instructions form a set which must fulfill four properties corresponding
to the following adjectives
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abbreviation
"Instructions ≡ J|A-independent |homogeneous |with_halt |standard-ins‖set"

The standard-ins adjective specifies that any element i of the instruction set
is a triple

term "[InsCode i, JumpPart i, AddressPart i]"

where InsCode i is an instruction number represented by a natural number,
JumpPart i is a list of natural numbers used by the Execution functor to
compute the following instruction numbers, and AddressPart i is a list ob-
jects passed to the instructions as arguments. The with_halt adjective means
that the set I includes a halt instruction. The halt instruction is represented
as [0,{},{}], where the empty set corresponds to the empty list. The adjec-
tives homogeneous and J|A-independent specify a subset of instructions which
share the number InsCode and are necessary for the definition of the Execution
functor. homogeneous specifies, that the JumpPart lists of arguments given to
the InsCode instruction are always of the same length (for example goto always
requires one argument). J|A-independent specifies that every list of the appro-
priate length can be handled (for the goto example, Execution must be able to
perform a goto instruction to every location).

definition compos_0_def_5 ("homogeneous") where
"attr homogeneous means (λI.

I be non empty |standard-ins‖set &
(for i,j be Element-of I st InsCode i = InsCode j holds

dom JumpPart i = dom JumpPart j))"

definition compos_0_def_7 ("J|A-independent") where
"attr J|A-independent means (λI.

I be non empty |standard-ins‖set &
(for n be Nat, f1,f2 be NAT-valued ‖Function, p be object

st dom f1 = dom f2 & [n,f1,p] in I holds [n,f2,p] in I))"

The next structure in the formalization is the computer memory (see Fig. 1).
It is also modeled as a structure. The main field, carrier, corresponds to the
actual memory and the set N gives the kind of data that can be stored within it.
Note that that in SCMs all memory locations are of the same size [17]. The ZeroF
field is the instruction counter. It corresponds to the number of the instruction
performed in the given state. Object-Kind indicates the kind of data stored in
the given memory location and ValuesF gives the value range for the given type.

definition MemStruct_over ("Mem-Struct-over _") where
"struct Mem-Struct-over N (#

carrier → λS. set;
ZeroF → λS. Element-of the carrier of S;
Object-Kind → λS. Function-of the carrier of S, N;
ValuesF → λS. ManySortedSet-of N

#)"

An actual memory state is defined as a function that associates each memory
location in the carrier with the stored data, where the value must be one of
the allowed values.
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definition memstr_0_def_2 ( "the’_Values’_of _ " 190) where
"func the_Values_of M → ManySortedSet-of the carrier of M equals

the ValuesF of M ◦ the Object-Kind of M"

abbreviation memstr_0_mode_2 ("State-of _" 190)
where "State-of M ≡

(the carrier of M):total | the_Values_of M-compatible ‖ Function"

We can now formulate the Mizar type of a computer and show the non-
emptiness of this type. The type is a structure parametrized by the data stored
in the memory of the computer. The name AMI (for Architecture Model for
Instructions) is used in the Mizar dictionaries to refer to this structure as a type
and SCM is an object of the type [17].

definition AMI_Struct_over ("AMI-Struct-over _") where
"struct AMI-Struct-over N (#

carrier → λS. set;
ZeroF → λS. Element-of the carrier of S;
InstructionsF → λ_. Instructions;
Object-Kind → λS. Function-of the carrier of S, N;
ValuesF → λS. ManySortedSet-of N;
Execution → λS. Action-of the InstructionsF of S,

product ((the ValuesF of S)*‘the Object-Kind of S)#)"

We subsequently reformalize a machine with the halt instruction and we
show that all the indicated fields have their corresponding types, and that this
construction uniquely defines a computer. The proof corresponding to the below
definition requires 83 lines of Isabelle proof to justify.

definition extpro_1_def_1 ("Trivial-AMI _") where
"func Trivial-AMI N → strict AMI-Struct-over N‖AMI-Struct-over N

means (λit.
the carrier of it = {0} &

the ZeroF of it = 0 &
the InstructionsF of it = {[0,{},{}]} &

the Object-Kind of it = {0} –-> 0 &
the ValuesF of it = N –-> NAT &

the Execution of it = {[0,{},{}]} –-> id product(N –-> NAT ◦ {0} –-> 0))"

Next, we introduce the Exec functor. Applying the instruction I to (the

Execution of S) we should obtain a function that can be given a memory
state as input and returns a memory state. Again showing the correctness of the
definitions and that these properties hold requires 57 lines of Isabelle proofs.

definition extpro_1_def_2( "Exec _’(_ , _’)" 190) where
"func Exec S(I,s) → State-of S equals

((the Execution of S).I).s "

definition extpro_1_def_3("halting _") where
"attr halting S means (λI.

I be Instruction-of S &
(for s be State-of S holds Exec S(I,s) = s))"

We finally show, that Trivial-AMI N is of the computer type and that it does
halt, which shows the non-emptiness of the Mizar type of computers.

theorem extpro_1:
assumes "N be with_zero‖set"
shows "haltTrivial-AMI N is halting Trivial-AMI N"
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6 Conclusion

Mizar structures and set comprehension operators complete the foundations of
Mizar as an Isabelle object logic. This allows manual translation of the MML to
Isabelle/Mizar, as we have shown with the Mizar theory of basic algebraic struc-
tures including SCMs. We have defined 90 concepts where 27 of them required
justifications and proved 105 registrations, 31 theorems that discuss based alge-
braic structures and set comprehensions, as well as inheritance relations between
15 structures. We have defined also 27 concepts where 14 of them required justifi-
cation and proved 12 registrations, 3 theorems about SCMs. The total combined
size of the development is 513 kB and 8295 lines of proofs. It is available at:

http://cl-informatik.uibk.ac.at/cek/macis2017/
The Isabelle proofs are mostly longer are than their Mizar counterparts. This

is predominantly because of the lack of type automation for the type system,
even if the Mizar type system could be handled by ATPs [15]. Similarly, many
Isabelle proofs require more labels than the corresponding Mizar ones, which
we hope to remedy by developing legibility tools similar to the ones available
for Mizar [22]. Finally it would be interesting to mechanically translate MML
statements or even proofs and imitate the behavior of Mizar’s automation.
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