Noname manuscript No.
(will be inserted by the editor)

Combining Higher-order Logic with Set Theory
Formalizations

Cezary Kaliszyk - Karol Pak

the date of receipt and acceptance should be inserted later

Abstract The Isabelle Higher-order Tarski-Grothendieck object logic includes in its
foundations both higher-order logic and set theory, which allows importing the libraries
of Isabelle/HOL and Isabelle/Mizar. The two libraries, however, define all the basic
concepts independently, which means that the results in the two are disconnected. In
this paper, we align significant parts of these two libraries, by defining isomorphisms
between their concepts, including the real numbers and algebraic structures. The iso-
morphisms allow us to transport theorems between the foundations and use the results
from the libraries simultaneously.

1 Introduction

Among the various foundations for formal proofs, set theory on top of higher-order
logic has been tried a number of times in systems such as HOLZF [Obu06|, Proof-
Peer [OFSA14], Egal [Brol4], and Isabelle/Mizar [KP18|. This foundation is attractive
for formalization, as it offers a natural mathematical foundation combined with the
automation present in HOL.

The formal proof libraries of Isabelle/HOL [WPNOQS8| and that of Mizar [GKN15
BBG™17| are among the largest proof libraries in existence today. Indeed, the HOL
library together with the Archive of Formal Proofs consist of more than 100,000 theo-
rems [BHMNI15|, while the Mizar Mathematical Library (MML) contains 59,000 the-
orems. Furthermore, the results contained in the libraries are incomparable: Almost
all of the Mizar library concerns itself with mathematics, while the majority of the
Isabelle/AFP library are results closer to computer science [BHMNTI5|. For example,
the Mizar library includes results about lattice theory [BR02|, topology, and mani-

Cezary Kaliszyk

Department of Computer Science, University of Innsbruck, Innsbruck, Austria and

INDRC, International Neurodegenerative Disorders Research Center, Prague, Czech Republic
cezary.kaliszyk@uibk.ac.at

Karol Pak
Institute of Computer Science, University of Bialystok, Bialtystok, Poland
pakkarolQuwb.edu.pl

2 C. Kaliszyk, K. Pak

folds [Pak14b| not present in the Isabelle library, while the Isabelle library has many
results related to algorithms not in the MML [EHN20}[Lam19/[LSBM19].

In our previous work [BKP19], we have presented a model of higher-order Tarski-
Grothendieck, which justifies the use of higher-order logic formalizations with set
theory-based ones simultaneously. This model will allow us to combine the results
present in these two major Isabelle libraries. We will specify isomorphisms between
various basic types present in the libraries, such as functions and lists, leading to
isomorphisms between various number structures including the real numbers, and al-
gebraic structures. The last requires mappings between extensible soft record types
and Isabelle type classes [HW07].

We will use the isomorphisms to transport proved theorem including the theorems
of Lagrange, Bertrand, cases of Fermat’s last theorem and the Intermediate Value
Theorem. We will also merge the formalizations of groups and rings in the two libraries.

This paper is an extended version of our paper presented at I'TP 2019 [BKP19]. In
particular the new content presented is as follows:

— we specify the alignments between many more complex types in the two proof
libraries including the rationals and the real numbers;

— we transfer more advanced theorems between the two foundations, including the
intermediate value theorem in the merged HOL-Set theory library, together with a
large set of theorems that connect Dedekind cuts with Cauchy sequences; and

— we complete the model of higher-order Tarski-Grothendieck presented in our previ-
ous work [BKP19], by justifying that the Grothendieck-style axioms are equivalent
to the Tarski style (for example used in the Mizar Mathematical Library), formal-
izing the relationship between them in Isabelle.

The rest of the paper is structured as follows. In Section [2] we introduce the Is-
abelle HOTG foundations, which will be the basis for all the work, we describe the
various axiomatizations of higher-order Tarski-Grothendieck (HOTG) and prove some
of them to be equivalent. The basics of the aligned libraries are presented in Sec-
tion 3] The subsequent Sections [4] [} [6] discuss our isomorphisms between the different
types concerning functions, numbers, and algebra respectively. Section [7] shows prac-
tical examples of theorems we can move using the isomorphisms. Section [§] discusses
the Tarski-Grothendieck equivalence proofs. Finally, Section [J] discusses the related
work on combining foundations and Section [L0] presents the existing automated trans-
fer methods in higher-order logic and discusses the limitations of the current work in
this respect.

2 Isabelle and Isabelle/Mizar

The Isabelle logical framework’s meta-logic Pure is a variant of simple type theory
with shallow polymorphism. The framework provides functionality that makes it con-
venient to define object logics, namely allowing easily defining their types, objects, and
inference rules as well as their notations. Isabelle/HOL is today the most developed
Isabelle object logic. Further Isabelle object logics [Pau90] include constructive type
theory or untyped set theory [Pau93].

As Isabelle/HOL is relatively well known and documented, we assume that the
reader is familiar with the HOL foundations, Isabelle’s basic commands (such as defi-
nition and theorem) and the basic Isabelle objects (numbers and lists). For details, we
refer the reader to the Isabelle Manual [Wen21].

Combining Higher-order Logic with Set Theory Formalizations 3

The details of Isabelle/Mizar’s design and implementation have been presented
previously [KP18|, therefore, we present only the main commands needed for under-
standing the current paper. Isabelle/Mizar can be loaded on top of Isabelle/FOL or
Isabelle/HOL. It re-uses the type of propositions of the underlying basic logic (o of
FOL or bool of HOL) and its basic propositional connectives (negation, conjunction,
disjunction, implication), as well as the polymorphic equality present there. However, as
the intention of Isabelle/Mizar is to provide a sofly-typed set theory, the universal and
existential quantifiers are actually bounded quantifiers that for each quantified object
require the type over which it ranges (e.g. Vz being Nat. ...). These propositional and
predicate quantifiers together with quality are sufficient for representing firest-order
logic with quality and to represent Jaskowski [Ja$34] style natural deduction proofs
present in Mizar.

To introduce the soft type system, a meta logic type of soft-types ty is declared
together with the an infix operator is that corresponds to the element satisfying the
predicate associated with a type. Types can be combined with an intersection opera-
tor (e.g. x is even | number) and can be negated (e.g. y is non-negative) with natural
semantics to these operations. The meta-logic abstractions can be used to parametrize
the types by other types or even by terms (e.g. A is m,n-matrix corresponds to m-by-n
matrices). To improve automation, the user can prove properties of types, including
inhabited and sethood. The first one is useful for eliminating quantifiers, whereas the
latter is useful for forming compregension operators. Finally, a choice operator (de-
noted the on the level of types allows for getting a term of a given type). For example,
given the type of sets, that is intersected with empty, it is possible to define the empty
set as the empty | set.

The Isabelle/Mizar object logic subsequently introduces the axioms of set theory,
specifically, the Tarski-Grothendieck axioms. In particular, the Fraenkel axiom is suffi-
cient to construct set comprehensions written as {F(x) where x be Element-of X: P(x)}
(called Fraenkel terms) for a given set X, function F' and predicate P. In the Mizar
language, it is not always possible to define such a functor for arbitrary X, F, P, to
avoid inconsistency (variants of Russell’s paradox), however, with the help of sethood
safe comprehension terms can be interpreted. In Isabelle/Mizar the semantics of com-
prehension are defined with sethood as a precondition, which means that the property
is only valid for terms for which sethood has been proved. This completes the axiomatic
part of the object logic, and subsequent parts are introduced as definitional extensions.
In particular, the possibility for users to define all kinds types and objects, as well as
syntax that allows an easier interaction with softly-typed set theory will be added in
this way.

Isabelle/Mizar allows four kinds of user-level definitions corresponding to the same
four kinds of user-level definitions in Mizar [GKN15|. Defining predicates is not different
from the usual Isabelle definitions. We present the definition of a set theoretic functor
by the example of the set theoretic union of two setsﬂ
mdef zboole_0_def_3 (infix] U 65) where

mlet X be set, Y be set

func X U 'Y — set means Ait.
Vz.zimit «— zin X VzinY

1 The Isabelle definitions and lemmas that directly correspond to the definitions and lemmas
in the Mizar Mathematical Library have been names with the same identifiers in order to ease
comparison. For example the Isabelle/Mizar definition zboole-0-def-3 directly corresponds to
the MML definition XBOOLE 0:def 3 (colon is not allowed in Isabelle labels).

4 C. Kaliszyk, K. Pak

The mdef command starts with the handle used to refer to the definition, followed
by an optional notation (union denoted by infix U), a typing environment in which
the definition is made (mlet) and then the actual defined operator is given after the
keyword func. The return type is given after the keyword —. A definition by means is
supposed to correspond to a concept where the it has the desired property. The user
needs to show the existence and the uniqueness as proof obligations. When the user
completes these proofs, the Isabelle/Mizar definition package introduces the identifier
together with the theorems corresponding to the property of the object and its type
for further use. Functors can also be defined by equals where the term is given directly
in a given environment and with a given return type of the defined term. There, the
obligation is to show that the result has the return type.

Type definitions are similar. In order to make type inference and checking au-
tomatable, types are divided into modes (more primitive types that are known to be
inhabited) and attributes (the types that are used to restrict other types with inter-
section). Consider for example the definition of the type of a finite sequences over the
type D (which are the set-theoretic equivalents of polymorphic lists used are often used
in formal proofs):
mdef finseq_1_def_4 (FinSequence-of) where

mlet D be object

mode FinSequence-of D — FinSequence means
(Att. rng it C D)

Again mlet introduces an environment (these are preconditions for the definitional
theorems but can be used in the proofs) and the definition can describe the desired
properties that all objects of the defined type must have. After the proof obligation
(non-emptiness) is proved, definitional theorems are derived and given to the user. The
already mentioned attributes are also similar. They restrict a given type to a subtype.
An example type introduced with the help of an attribute is the type of relations. First,
the attribute Relation_like is introduced, which can be later used to define the type
of relations as just an abbreviation, as follows.
mdef relat_1_def 1 (Relation_like) where

attr Relation_like for set means
Ait.Vz. zinit — (3 y, 2. z =5 [y, 2]))..

This approach allows for all definitions and operations defined for a Relation to
also immediately be available for a Function, which is defined as a type restriction
using the attribute Function like. The type FinSequence is similarly defined by the
attribute FinSequence_like as follows:
mdef funct_1_def.1 (Function_like) where

attr Function_like for set means

(Ait. V z,y1,y2 being object.

[z,y1] in it A [z,y2] in it — yl =5 y2)..

mdef finseq_1_def.2 (FinSequence-like) where
attr FinSequence-like for Relation means
(Ait. 3 n be Element-of NAT. dom it =s Seg n)..

abbreviation Relation = Relation_like | set
abbreviation Function = Function_like | Relation

abbreviation FinSequence = FinSequence-like | Function

Combining Higher-order Logic with Set Theory Formalizations 5

Finally, Isabelle/Mizar introduces the mtheorem command, that is similar to the
standard theorem command, but additionally allows the introduction of soft-type as-
sumptions with the mlet keyword and hiding these from the user as long as the auto-
mated type inference can handle these. Additionally to imitate the Mizar automation
the mby proof method has been included, that combines type inference with Isabelle’s
auto proof method.

Parallel to the system development, the Mizar community puts a significant effort
into building the Mizar Mathematical Library (MML) [BBG™17|. Parts of the MML
library (including numbers or parts of algebra) have been translated to Isabelle/Mizar
[KP19al] and are being used in the current paper.

3 Proof Integration

The Isabelle higher-order Tarski-Grothendieck foundations allow the import of results
proved in higher-order logic and in set theory. This is possible both theoretically (we
have previously presented a model that supports the combined foundation [BKP19] and
discussed its adequacy more in Section |8)) and practically, that is the Isabelle logical
framework allows us to import various results from the two libraries of Isabelle/HOL
and Isabelle/Mizar in the same environment. Note, however, that the imported devel-
opments are initially disconnected. In this and the next sections, we will define transfer
methods between these results. These will allow us to use theorems proved in one of
the foundations using the term language of the other.

All the definitions and theorems presented in these sections have been formalized
in Isabelle and will be presented close to the Isabelle notation. The Isabelle environ-
ment will import both Isabelle/HOL [NPW02] and Isabelle/Mizar [KP18| object logics
along with a number of results formalized in the standard libraries of the two. Isabelle
distinguishes between meta-level implication (=) and object-level implication (—)
and our notation in examples below reflects this distinction. The remaining notations
will follow first-order conventions. In particular, the symbols =4, and =g will refer to
the HOL and set-theoretic equality operations respectively. Then, be is the Mizar infix
operator for specifying the type of a set in the Mizar intersection type system [KPUI6].

In order to transfer results between the foundations, we will first define bijections
between types that are isomorphic. We will next show that these bijections preserve
various constants and operators. This will allow us to transfer results using higher-order
rewriting, in the style of quotient packages for HOL [HomO5l[KUT1] and the Isabelle
transfer package [HK13|. Note, that we are not able to use these packages directly. We
discuss this in section

In the Mizar set theory there are often two ways to express domains of objects. It is
already the case for the natural numbers, where it is common to reason both about the
type of the natural numbers and the members of the set of natural numbers. This is
necessary since the arguments of all operations must be sets, while the reasoning engine
allows more advanced reasoning steps for types [BBG+17J. We, therefore, define two
operators, one that specifies a bijection between a HOL type and a set-theoretic set
and one that specified a bijection between a HOL type and a set-theoretic type. The
definitions are analogous and we show only the former one here. We will define an
isomorphism between a type o and a set d € A, to be a pair (f,g) of functions (at the
type theory level) where f maps sets to objects of type o and g maps objects of type

[§ C. Kaliszyk, K. Pak

o to sets in such a way that objects of type o (in the type theory) correspond uniquely
to elements of d (in the set theory).

Definition 3.1 Let o be a type, d € A, be a set and s2h € A,=+ and h2s € Ay=, be
functions. The predicate belsog(h2s,s2h, d) holds whenever all of the following hold:

— Vz : 0.52h(h2s(z)) =y =,
— Vz iz €d— h2s(s2h(z)) =5 =z,
— Vz :0.h2s(z) € d.

In Isabelle the definition appears as follows:

definition belsoS(h2s,s2h,d) «— ((Vry. s2h(h2s(y)) =x y) A
(Vz:Element-of d. h2s(s2h(z)) =s)N\ (VY Ly. h2s(y) in d))

The existence of a bijection does not immediately imply the inhabitation of the
type/set. However, as types need to be non-empty in both formalisms, we can derive
this result as below. For space reasons we only present the statements, all the theorems
are proved in our formalization.

theorem belsoS_d:
belsoS(h2s,s2h,d) = d is non empty

4 Integrating Basic Infrastructure: Functions and Lists

We will denote the morphisms from set theory to HOL with the prefix s2h and the
inverse ones with the prefix h2s. We will initially give the complete types for readability,
omitting them later, where the types are clear. The first type, for which we build an
isomorphism, is the type of functions. In order to transfer a function of the type o« — 8
between set theory and HOL, we will require isomorphisms for the types o and for the
type .

In order to transfer a set-theoretic function (set of pairs) to HOL, given transfer
functions on the range, on the domain, and the function itself, we return the lambda
expression, that given a HOL input to the function, transfers it, applies the function
to it and transfers it back. The formal definition is as follows.

definition s2hf :: (Set = b) = (a = Set) = Set = (a = b) (s2hy(_,.,.)) where
s2hy(s2hr,h2sd,f) =4 (Ax. s2hr(f.(h2sd(z))))

Similarly, to build a set-theoretic function (set of pairs) given a HOL function and
the transfer operations, and the domain, we directly build this set:

definition h2sf :: (Set = a) = (b = Set) = Set = (a = b) = Set (h2s4(_,_,.,.)) where
h2s §(s2hd,h2sr,d,f) =s the set-of-all [x,h2sr(f(s2hd(x)))] where x be Element-of d

We are then able to directly show that these two functions are inverses of each
other on their domains. We also show the existence of an isomorphism, and show that
this isomorphism preserves the function application operation:
theorem belsoT_Function:

assumes belsoS(h2sd,s2hd,d) belsoS(h2sr,s2hr,r)
shows belsoT(A\f. h2s(s2hd,h2sr,d,f),\f. s2hs(s2hr,h2sd,f), Function-of d,r)

theorem HtoSappl:
assumes belsoS(h2sd,s2hd,d) and belsoS(h2sr,s2hr,T)

Combining Higher-order Logic with Set Theory Formalizations 7

shows h2sy(s2hd,h2sr,d,f).h2sd(z) =s h2sr(f(z))

Isabelle/HOL lists are realized as a polymorphic algebraic datatype, corresponding
to functional programming language lists. MML lists (called finite sequences, FinSequence)
are functions from an initial segment of the natural numbers. Higher-order lists behave
like stacks, with access to the top of the stack, whereas for the set-theoretic ones the
natural operations are the restriction or extension of the domain.

To build a bijection between these types, we note that the Cons operator corre-
sponds to the concatenation of a singleton list and the second argument. Since the list
type is polymorphic (in the shallow polymorphism sense used in HOL), in order to
build this bijection, we also need to map the actual elements of the list. Therefore the
bijection on lists will be parametric on a bijection on elements:
fun h2sfs :: (a = Set) = a List.list = Set (h2s(_,.))where

h2sy,(h2s, Nil) =g <x>
| h2sr (h2s, Cons(h, t)) =s ((<xh2s(h)x>) “M (h2sr(h2s, t)))

Where <*> and "M represent the Mizar empty sequence and the concatenation
of sequences respectively. The converse operation needs to decompose a sequence into
its first element z.1s and the remainder of the sequence shifted by one /"MIg. We
define this operation in Isabelle/Mizar and complete the definition. Isabelle will again
require us to show the termination of the function, which can be done by induction on
the length of the list/sequence:
function s2hl :: (Set = a) = Set =-a List.list (s2h(_,_)) where

= z be FinSequence = s2hp (s2h,z) =3 undefined
| s2hp(s2h,<x>) =3 Nil
| z be FinSequence =—> x # <x> = s2h,(s2h,x) =y Cons (s2h(z.1s), s2hp(s2h,xz/ "Mls

)

For the transformation introduced above, we can show that if we have a good homo-
morphism between the elements of the lists, then lists over this type are homomorphic
with finite sequences.

We can again show that this homomorphism preserves various basic operations,
such as concatenation, the selection of n-th element, length, etc.
theorem s2hL_Prop:
assumes p be FinSequence and q be FinSequence and n be Nat and n in len p
shows length(s2hr (s2h,p)) =% s2hw(len p)
s2hr(s2h,p "Mq) =4 s2hr(s2h,p) Q s2hr(s2h,q)
s2hr, (s2h,p) ! s2hi(n) =3 s2h(p. (succ n))

Note, that the sequences in the Mizar library, FinSequence, are indexed starting
at 1, whereas Isabelle/HOL’s nth starts from 0, which justifies the usage of a shift
(succ n). Furthermore, since Mizar Mathematical Library uses natural numbers in the
Peano sense, the expression n in len p actually means n < len p. To actually use these
in order to move theorems between the libraries we show how the morphisms interact
with the operations. For example, for reverse these are:
theorem rev_Rev:

assumes p be FinSequence
shows rev(s2hyp, (s2h,p)) =4 s2hr(s2h,Rev p)

theorem Rev_rev:
Rev(h2sr,(h2s,p)) =s h2sr(h2s,rev(p))

8 C. Kaliszyk, K. Pak

Moving a polymorphic statement from the Isabelle/HOL library to Isabelle/Mizar
requires an additional assumption about the existence of an isomorphism on the
parametrized type. The usual statement about the length of a reversed list, there-
fore becomes (of course this simple statement is already available in the Isabelle/Mizar
library, and can be used by referring to finseq 5 def 3, but its simplicity is good to
demonstrate moving polymorphic statements):
theorem

assumes p be FinSequence-of d and belsoS(h2s,s2h,d)
shows len Rev p =g len p
using Rev_rev|of h2s s2hp (s2h, p)]

len_length|of h2s s2hr (s2h, p)]

len_length[of h2s rev(s2hr, (s2h, p))]
by (simp only: length_rev FLF _prop|OF assms])

We also show the proof here. It is still straightforward, just like the other proofs
of the moved statements given the morphisms, but with polymorphism it no longer
follows by higher-order rewriting.

5 Numbers

The way numbers are constructed in set-theory based libraries is very different from the
majority of the libraries based on HOL or type-theory. In particular, in Isabelle/Mizar
subsequently defined number types are extended (in the sense of set-theoretic subset)
by new elements. This is as opposed to hard-type-based systems, in which subsequently
defined number types are independent and projections or coercions which preserve the
functions are necessary. In particular, Isabelle/Mizar’s real numbers are constructed as
Dedekind cuts. Note, however, that the cuts corresponding to the rational numbers are
replaced by the rational numbers themselves, in order to preserve the inclusion Q C R.

A second, less important, distinction is the fact that in the Mizar library the
non-negative types (N, QZO,RZO) are constructed first. After this, the negative reals
are built as Kuratowski pairs of the singleton zero and the positive element. Finally,
the rationals and integers are subsets of the set of all reals. In particular, the sets
N, QZO,RZO,R are already constructed with the basic operations on these sets and
addition, subtraction, multiplication directly re-use the real operations. The only ad-
ditional thing to prove is that the types are preserved, so for example the addition of
integers returns a real that is also an integer.

The inclusions, together with the order of the construction are depicted in Fig-
ure In order to realize this construction in Isabelle/Mizar, we first define the set of
the natural numbers, as the smallest limit ordinal. The formal definition is as follows:

mdef ordinall_def.11 (omega) where

T

INT & RAT & REAL

_/
& & &
NAT & ,RAT=0__ & , REAL=C

Fig. 5.1 The inclusions between the sets in the Mizar Mathematical Library. The arrows show
the construction order between the sets in the MML and our Isabelle set formalization.

Combining Higher-order Logic with Set Theory Formalizations 9

func omega — set means (\it.
0s in it A it be limit_ordinal N it be Ordinal A
(VA:Ordinal. 0s in A A A is limit_ordinal — it C A))

The definition introduces the constant (zero-argument functor) omega of the Mizar
type set, which satisfies the condition specified after the keyword means, that is, the
defined constant it is a limit ordinal with 0gs as a member, and it is the smallest
such set (considering set inclusion). As a reminder, the mdef command requires the
formalization to specify the existence of the constant (proof is only included in the for-
malization), which is a consequence of the Tarski universe property and its uniqueness.

On the other hand, the Isabelle natural numbers are a subtype of the type of
individuals. In order to merge these two different approaches, we specified a functor
that preserves zero and the successor. Note that the functor is specified only for the
type of the natural numbers which in Isabelle/HOL is implicit, but in the softly-typed
set theory needs to be written and checked explicitly. This is the reason for having an
undefined case, which as we will see later, still gives an isomorphism.

B 0s if n =9 Oy,
h2sn(n) =s { Ss(h2sy(k)) if n =3 Sy (k) for some H-natural k.

0y ifn=g0g,
s2hy(n) =3 < Sy (s2hy(k)) if n =5 Ss(k) for some S-natural k,
undefined otherwise.

The functor and its inverse are formally defined in Isabelle as follows

fun h2sn :: nat = Set (h2sn(.)) where
h2sn(0:nat) =s 0s | h2sn(Suc(z)) =s succ h2sn(z)

function s2hn :: Set = nat (s2hn(_)) where
-z be Nat = s2h(z) = undefined

| s2hin(0s) =3 0

| be Nat = s2hn (succ(z)) =¢ Suc(s2hn(z))

Note that h2sy is defined only on the HOL natural numbers (nat), while s2hy
is defined on all sets and its definition is only meaningful for arguments that are
of the type Nat. The soft-type system of Mizar requires us to give this assumption
explicitly here, but it can normally be hidden in the contexts where the argument type
is restricted appropriately. Isabelle requires us to prove the termination of the definition,
which can be done using the proper subset relation defined on natural numbers in the
Peano sense.

Using the induction principles for natural numbers present in both libraries, we
can show the property belsoS(h2sn, s2hw,NAT), where NAT is the set of all Nat. In
particular, it gives a bijection (note the hidden type restriction to sets of type nat). We
show also that the functors h2sy, s2h preserve all the basic operations.
theorem Nat_to_Nat:

fixes z::nat and y::nat

assumes n be Nat and m be Nat

shows h2sn(z +x y) =s h2sn(z) +sN h2sn(y)
s2hin(n +sN m) =y s2hn(n) +5 s2hn(m)
h2sn(z *3_y) =s h2sw(z) xs™ h2sw(y)
s2hi(n xs™N m) =4 s2hi(n) *3 s2hn(m)
z <y +— h2sn(z) C h2sn(y)
n C m <— s2hn(n) < s2hn(m)
z dvd y +— h2sn(z) divides h2sN(y)

10 C. Kaliszyk, K. Pak

n divides m <— s2hN(n) dvd s2h(m)
prime(z) <— h2sn(z) is primes
n is primes <— prime(s2hn(n))

5.1 Isabelle/Mizar Number Hierarchy

After the natural numbers, MML constructs the non-negative rationals as pairs of
relatively prime naturals. Additionally, to preserve the set-theoretic inclusion of the
set of natural numbers, not only pairs with the denominator zero but also those with
denominator one are excluded and the original natural numbers added. We follow the
same construction in Isabelle/Mizar.

mdef arytm_3_def 7 (RATZO) where

func RATZ0 5 set equals
({[#,4] where i be Element-of NAT, j be Element-of NAT:
1,7 are-coprime & j # 0s} \ the set-of-all [k,1s] where k be Element-of NAT) U NAT

Non-negative real numbers are constructed in a similar way. To the set of non-
negative rationals, we add Dedekind cuts corresponding to the positive irrational num-
bers. A standard definition of Dedekind cuts is used, only restricted to non-negative
rationals. We assume that a proper subset A of non-negative rationals is a cut, if it is
closed under smaller elements (Vr,s : Element-of RATZ. rin A A s <®° r — 5in A)
and for every element in the set A there is a larger element in the set A (Vr : Element-of
RATZ°. rin A — (3s : Element-of RATZ?. s in A A r <Q=° s)). Note that RATZ fulfills
this condition, however, it is not a proper subset of non-negative rationals. In contrast,
in this approach, the empty set is a Dedekind cut, but we do not need to add it in the
construction of REAL=9, since empty corresponds to zero.

mdef arytm_2_def_.1(DEDEKIND_CUTS) where
func DEDEKIND_CUTS — Subset-Family-of RATZ0 equals
{ A where A be Subset-of RATZV:
YV r: Element-of RATZ0. rin A —
. >0 Q=0 -
(Vs: Element-of RAT=Y. s < r— sin A) A
(3 s: Element-of RATZ0. sin Anr <([220 s\ {RATZO}

In order to preserve the inclusion between the rationals and reals, again the non-
negative real numbers are obtained as a union of the non-negative rationals as defined
above and the Dedekind cuts corresponding to the irrational numbers, that is cuts
that cannot be realized in the form {s where s be Element-of RAT+: s <Q20q} where ¢
is rational.

mdef arytm_2_def 2 (REALZO) where
func REALZ0 — set equals (RAT2U U DEDEKIND_CUTS) \

{{s where s be Element-of RATZ0: 5 <(];2ZO t} where t be Element-of RATZ0: ¢ Os}

Finally, the complete reals (REAL) are constructed by adding the negative real
numbers. In the Mizar set theory the negative numbers are represented by the pairs
[0s,r], where r is a positive real number. For this, we add the pairs corresponding to r,
where r is a non-negative real and then remove the pair [0s,0s] to avoid duplicating
0. The sets of rationals and integers are then appropriate subsets of the set REAL. Of
course, it would be possible to build these sets directly, together with their respective

Combining Higher-order Logic with Set Theory Formalizations 11

arithmetic operations, however, this would require the introduction of different symbols
for these operations in the different datatypes. The Isabelle/Mizar formalization only
temporarily introduces the operations QZO,RZO which will almost never be used in
the library, and the operations for the type R, which will be directly reused for Z and
Q. In particular, this allows using the operations in the context of homomorphisms
between integers, rationals, and reals.
mdef numbers_def 1 (REAL) where
func REAL — set equals

REALZOU[:{0s},REALZ 0\ {[0s,0s]}

mdef numbers_def.8 (RAT) where
func RAT — set equals

RATZ00[{0s},RATZ0]\ {[0s,05]}

mdef numbers_def_4 (INT) where
func INT — set equals
NATU[{0s},NAT:] \ {[0s,05]}

5.2 Integrating Numbers

Given the Isabelle/Mizar number hierarchy specified in the previous section, we can
start building bridges between the types. We start with the integers. The set-theoretic
definition is again different from the one used in Isabelle/HOL. There, an equivalence
relation (equal modulo the difference) is defined on pairs of natural numbers, and the
quotient package [KUTI] is used to construct the new type. Still, it is straightforward
to define a bijection between the two, using the constructed bijections between natural
numbers. We also show that these bijections preserve all the basic operators.
function h2sZ :: int = Set (h2sz(.))where

z > 0 => h2sz(z) =s h2sn(nat(z))
| 2 < 0 = h2sz(z) =s -s® h2sw(nat(-3(z)))

function s2hZ :: Set = int (s2hz(_.))where
-z is Integer = s2hz(z) =4 undefined
| © is natural => s2hz(z) =3 int(s2hn(z))
| = is Integer & not x is natural = s2hz(x) =4 -1 (int(s2hn(-sT 2)))

theorem belsoS_INT:
belsoS(h2sz,52hz,INT)

For the rational numbers, we construct the natural bijection h2sq, s2hg using
the bijections between the integers and the unique representation of any rational as
an irreducible fraction. We again show that the operations behave well on arbitrary
(including reducible) fractions.
theorem s2hQI:

fixes n::nat
shows n #y 0 — Fract(i,n) =y s2hq (h2sZ (i) /q h2sZ(n))

theorem s2hQM:
i 4s Integer A nis Nat A n # {} — s2hq (i /@ n) =n Fract(s2hz(i),s2hz(n))

12 C. Kaliszyk, K. Pak

The constructions of the real numbers are significantly different in the two consid-
ered proof libraries. Indeed, in Isabelle/HOL reals are quotients of Cauchy sequences
whereas the MML one uses Dedekind cuts. More precisely, in the MML, Dedekind cuts
are used to construct the irrational, and operations on them are defined on the cuts. To
build a homomorphism between the two definitions and to use it for all the operators
requires considering cases, namely whether the given argument is a rational number of
a cut. The same is true for the results of the operators.

To ease these constructions we first introduce two operators: DEDEKIND CUT
which transform a real number to a Dedekind cut, i.e. for positive rationals it associates
to the number r the cut {s where s be Element-of RATZ%: s <®@=° 7} and for irrational
numbers, which are already cuts, it is the identity. We also define the inverse oper-
ator GLUEFE, which transforms cuts that can be represented in the form {s where s be
Element-of RATZ0 : s <@=° r} for a rational r, returns r, and is the identity otherwise.

mdef arytm_2_def.8 (DEDEKIND_CUT _) where

mlet z be Element-of REALZV
func DEDEKIND_CUT © —
Element-of DEDEKIND_CUTS means

Ait. Ar:Element-of RATZ0. ¢ =s7rA
>
it = {s where s be Element-of RATZ0: s <Q70 r}
if x in RATZ0
otherwise \it. it =g =

mdef arytm_2_def_4 (GLUED _) where
mlet z be Element-of DEDEKIND_CUTS

func GLUED z — Element-of REALZ20 means
Ait. 3r : Element-of RAT20 it =+ A
(Vs : Element-of RATZ20. sinz «— s <(L_’220 r)
if 37 : Blement-of RATZ0. Vs : Element-of RATZU.

. QZO
SN T s < T
otherwise \ it. it = x

We will now construct the homomorphism between the real number representations.
Consider a non-empty Dedekind cut A. We observe, that by multiplying all the elements
of A by a positive rational g, we obtain a non-empty Dedekind cut. We denote this
cut by ¢ *p A. Next, we denote by mazrn A the largest natural number in the set

A. Consider the sequence of non-negative rationals {W} . It easily
n€N

follows that this sequence is non-decreasing and that for every n < k it is true that

mazn (2" xp A) < Moz (2% «p A) < Mmarw (2™ xp A) +i

an gk — an an

which shows that this sequence is a Cauchy sequence.
This allows us to associate any positive real number with a Cauchy sequence of
rationals:

mdef Rat2C(rC _ 110) where

mlet r be Element-of REAL>0
func rC r — Function-of NAT,RAT means
Xit. V n:Nat. it. n = (mazrw ((2s |~ n) xp (DEDEKIND_CUT 1))) /g (2s |~ n)

Using the previously defined homomorphisms between the naturals and rationals
as well as between the types of functions (Section [4] and previous subsections of Sec-

Combining Higher-order Logic with Set Theory Formalizations 13

tion , we can transform this set-theoretic function to a HOL one. We show that this
transformation preserves Cauchy convergence:

definition s2hseq :: Set = (nat = rat) (s2hseq(_)) where
s2hseq(f) =u s2hf(s2hQ,h2sn,f)

theorem MICauchy:
assumes f is Function-of NAT,RAT
shows fis Cauchys <— Real.cauchy (s2hseq(f))

Which allows us to define the final homomorphism that given a set-theoretic real

transforms it to a HOL real.
function s2hR :: Set = real (s2hr(.))where

-z is MReal = s2hr(z) =3 undefined
| = is Element-of REALZU A 205 = s2hr(z) =3 Real.Real(s2hseq(rC x))
| © is Element-of REALZU A =05 = s2hr(z) =y 0
| is MReal N z#0s A — z is Element-of REALZ0 —

s2hRr(z) =# -n Real.Real(s2hseq(rC(-s® z)))

where for non-negative real number z, we use it to produce the sequence of rational
numbers rC z, which are subsequently transformed to a sequence of HOL reals s2hseq(rC
z), and finally we return the abstraction of the Cauchy sequence class to which the
sequence belongs. For negative real numbers, we use minus twice, analogously to the
integer and rational constructions. -y (...(-s® z))

In order to build the inverse transformation, we will construct the Dedekind cut
based on a real number. First, for any real number r, we start with one of the Cauchy
sequence real2seqL(r) belonging to its equivalence class r. We consider the equivalence
of this sequence in set theory: h2sseq(r). This sequence is non-decreasing and has non-
negative values if r is non-negative. Additionally, if r is positive, this sequence h2sseq(r)
is also positive starting from some index. This means that for any positive real r, the
sequence {s where s be Element-of RAT=0: s <@=° h2sseq(r).n }neN is non-empty (from
some position, to be precise when h2sseq(r).n #0s) and non-decreasing and its union
(seq2Dedekind) is a Dedekind cut.

definition real2seqL :: real = (nat=>rat) where
real2seqL(r) =4 (An:nat. Fract(|r % (2°n)],27n))

definition h2sseq :: real = Set (h2sseq(.)) where
h2sseq(r) = h2sf(s2hn,h2sQ,NAT,real2seqL(r))

mdef seq2Dedekind where
mlet f be Function-of NAT, RAT

func seq2Dedekind(f) — Subset-of RATZ0 means
Xit. V z:Element-of RATZ0. 2 in it «— (3k:Nat. z <® (f .k))

The final transformation that given a HOL real number extracts its Cauchy se-
quence and transforms it to an Isabelle/Mizar real is:
function h2sR :: real = Set (h2sg(.))where
z > 0 = h2sr(z) = GLUED(seq2Dedekind(h2sseq(z)))
| z =y 0 = h2sgr(z) = 0s
| 2 < 0 = h2sgr(z) = -s® GLUED(seq2Dedekind(h2sseq(-3 z)))

The two defined operations s2hr and h2sg are not as straightforward as for the
naturals or rationals. We do nonetheless prove (details are only in the formalization)

14 C. Kaliszyk, K. Pak

that they do indeed give an isomorphism and that this isomorphism preserves the basic
arithmetic operations and the standard less than order.

theorem belsoS_Real:
belsoS(h2sR,s2hR,REAL)

theorem Real_to_Real:

fixes z::real and y::real

assumes r be MReal and s be MReal

shows h2sg(z +4 y) =s h2sr(z) +sT h2sr(y)
s2hr(r +sT 5) =3 s2hR(7) +3 s2hR(S)
h2sgr(z #3 y) =s h2sgr(z) *s™ h2sr(y)
s2hR (T *s® s) =3, s2hR(T) *3 s2hR(5)
@ <y +— h2sg(z) < h2sg(y)
r <R s« s2hr(r) < s2hr(s)

We are now ready to practically move proved theorems about numbers between
HOL and Isabelle/Mizar.

6 Algebra

The structure representations used in higher-order logic and set theory are usually
different. This will be particularly visible when it comes to algebraic structures. In the
Isabelle/HOL formalization, algebraic structures are type-classes while in set theory a
common approach would be partial functions. We will illustrate the difference on the
example of groups. A type « forms a group when we can indicate a binary function
on this type that will serve as the group operation satisfying the group axioms. On
the other hand, in the usual set-theoretic approach a group in set theory would consist
of an explicitly given set (the carrier), and the group operation. With an intersection
type system, the fact that the given set with an operation is a group is specified by
intersecting the type of structures with the types that specify their individual properties
(i.e. a group is a non-empty associative Group-like multMagma)

There are two more differences in the particular formalizations we consider, that we
will not focus on, but we will only mention them in this paragraph and consider them
only in the formalization. First, the existence and uniqueness of the neutral element can
be either assumed in the group specification or derived from the axioms. We will not
focus on that, as this is only the choice of a group axiomatization. Second, in the Mizar
library, there are two theories of groups: additive groups and multiplicative groups.
Rings and fields inherit the latter, while some group-theoretic results are derived only
for the former. Even if the Isabelle/HOL group includes a field for the unit, we will
ignore it in the morphism, since the set-theoretic definition does not use one. The
neutral element along with the other properties is, however, necessary to justify that
the result of the morphism is a group in the set-theoretic sense.
definition h2sg (h2sc(.,.,-,.)) where

h2sc(s2hc,h2sc,c,g9) =s [#

carrier — c;
multF — h,@sBmOp(s,th,h,Qsc,c,mult(g)) #]

definition s2hg (s2ha(_,_,.)) where
$2ha (s2he,h2sc,g) =34 Igroup(
Collect(Az. h2sc(z) in the carrier of g),
thBmOp(Sth,hQSC,the multF of g),

Combining Higher-order Logic with Set Theory Formalizations 15

s2he(1.g))

For the dual morphism, we indicate the result of the operation selecting the neutral
element (1.4) as the field needed in the construction of the type-class element. With
its help, we can justify that the fields of the translated structure are translations of the
fields.

theorem s2hg_Prop:
assumes belsoS(h2sc,s2hc,c) and g be Group
and the carrier of g =s ¢
and z € carrier] (s2hg(s2he, h2sc, g))
y € carrierl (s2hg(s2he, h2sc, g))
shows one(s2hq(s2hc,h2sc,g)) =5 s2hc(1.g)

z ®32hc(52hc,h230,g) y =x s2hc(h2sc(z) ®g h2sc(y))
group (s2hg(s2hc,h2sc,q))

A number of proof assistant systems based both on higher-order logic (including
Isabelle/HOL) and set theory (including Mizar) support inheritance between their
algebraic structures. As part of our work aligning the libraries we also want to verify
that such inheritance is supported in the combined library. For this, we align the ring
structures present in the two libraries. The isomorphism between the structures is
defined in a similar way to the one for groups, we refer the interested reader to our
formalization.

We can show that the morphisms form an isomorphism and derive some basic
preservation properties. The most basic one is the fact that the isomorphism preserves
being a ring.
theorem s2hr_Prop:

assumes belsoS(h2sc,s2hc,c) and r be Ring

and the carrier of r =g ¢

and z € carrier] (s2hg(s2hc,h2sc,r)) y € carrierl (s2hr(s2hc,h2sc,r))

shows zero(s2hg(s2hc,h2sc,r)) =3 $2hc(0r)
one(s2hr(s2he,h2sc,r)) =34 s2hc(1r)
z @SQhR(Sth,hgsc,r) y =x s2he(h2sc(z) &r h2sc(y))
T ®soh p(s2he,h2se,r) Y =H s2hc(h2sc(z) @r h2sc(y))
ring (s2hgr(s2hc,h2sc,r))

Finally, we introduce the equivalent of the definition of the integer ring introduced
in the MML in [Sch99|. We have previously discussed the semantics of Mizar structures
and the way they are represented in Isabelle/Mizar in [KP17]. Here, with the previously
defined isomorphisms for the subfields, we can show that s2hr and h2si determine an
isomorphism between the fields of the rings developed in Isabelle/HOL and the Mizar
Mathematical Library.

mdef int_3_def.3 (Z-ring) where
func Z-ring — strict(doubleLoopStr) equals [#
carrier — INT;
addF +— addint;
ZeroF — 0g;
multF — multint;
OneF +— 1s#]

theorem H_Zring_to_S_Zring:
h2sgr(s2hz, h2sz,INT,Z) =5 Z-ring
s2hr(s2hz, h2sz, Z-ring) =y 2

16 C. Kaliszyk, K. Pak

7 Integrated Libraries: Practical Examples

We are now ready to use the existence of isomorphisms to automatically transform
theorems about continuity of functions, including the Intermediate Value Theorem
and the theorem that states that the image of a closed interval is a closed interval:

theorem continuous_atM:
fixes f a
assumes f be Function-of REAL,REAL a is MReal
shows isCont(s2hsR(f),s2hR(a)) <— f is_continuous_in a

theorem continuous_atl:
fixes f::real=real
shows isCont(f,a) «— (h2s;R(f)) is_continuous_in (h2sR(a))

theorem IVTmiz:
VY f:Function-of REAL,REAL. ¥V a,b,u:MReal. f. a <B v & v <B f b & a <B b &
f is_continuous_on [.a, b.] —
(Fz:MReal. a <Rz &z <R b & f. 2z = v)

theorem VT _img:
Y f:Function-of REAL,REAL. Y a,b:MReal.
a <® b A fis_continuous.on [.a, b.] —
(3c,d:MReal. ¢ <R dAf [a,b.]=5]cd.l)

We also show the projection theorem, which again states that the homomorphisms
agree and do not require any projections:
theorem
n is Nat = of -nat(s2hw(n)) =y of.int(s2hz(n))
i s Integer = of_int(s2hz(i)) =y of-rat(s2hgq (1))
q is Rat = of-rat(s2hq (q)) =n s2hr(q)

It is now possible to translate the Lagrange’s Four Squares theorem and Bertrand’s
postulate between the libraries. We can prove the Isabelle/Mizar counterpart of the
Isabelle/HOL theorem only using higher-order rewriting and the above properties.
theorem LagrangeFourSquares:

Vn:Nat. 3 a,b,c,d:Nat.
axsN a +5N bxsN b +5N cxsN ¢ +sN d xsN d =g n

theorem Bertrand:
Vn:Nat. 1s Cn —>
(3p:Nat. p be primes An Cp Ap C (25 *sN n))

This allows translating the proved Fermat’s last theorem for powers divisible by
3 and 4 from Isabelle/HOL to Isabelle/Mizar. The original proof involved quite some
computation and therefore has not been attempted in Mizar so far. However, thanks
to the isomorphisms, the translated version can be proved automatically (higher-order
rewriting combined with Isabelle/Mizar type automation):

theorem Fermat_divides_3_4:
V x,y,z:Integer. ¥ n:Nat.
(8s divides n V 4s divides n) A (z 1™ n) +s® (y I'n) =5 z1™n
—>z*3]Ry*5]Rz:5 Os

theorem Fermat_3:
V x:Integer. ¥V y:Integer. ¥ z:Integer.

Combining Higher-order Logic with Set Theory Formalizations 17

(21" 3s) +sB (yI735) = 21" 35 — = +sT y xsT 2 =5 0s

theorem rev_Rev:
assumes p be FinSequence
shows rev(s2hr (s2h,p)) =4 s2hr(s2h,Rev p)

8 Tarski’s axiom vs. Grothendieck Universes

The theoretical part of our previous work [BKP19| formally introduced a foundation
for computer verified proofs based on higher-order Tarski-Grothendieck set theory
(HOTG) and prove that this theory has a model if a 2-inaccessible cardinal exists.
Referring to the former as the axioms of Tarski-Grothendieck is, however, slightly mis-
leading, as there are two not immediately equivalent families of axioms. In particular,
the two axiom families are equivalent assuming the axiom of choice. Additionally, the
axiom of choice is a consequence of the Tarski axioms, but it is not the case for the
Grothendieck formulation. Both of these facts are now also formalized in Isabelle, and
shortly discussed in this section.

The formalization done in this section is done independently from Isabelle/HOL
or Isabelle/Mizar as its goal is to formally justify that Tarski’s axiom A is valid in the
model proposed in [BKP19]. Recall, that Tarski’s axiom A is used in the Mizar library
and in Isabelle/Mizar, whereas the existence of a Grothendieck universe is used for
example in Egal.

Tarski’s Axiom A states that every set N is a member of some Tarski universe M
which is closed under subsets, powersets, and every subset of the universe is either a
member of the universe or is equipotent with that universe. To state this formally, the
equipotence between the sets X and Y can be defined by a set of Kuratowski pairs,
which defines a bijection from X to Y using only a minimal set of definitions, as it is
done for example in the MML:
definition Tarski_aziom_A where

Tarski_axiom A =V N.3 M.
NeMA
VXY.XeMANYCX —YeMA

(VX. X € M — Pow X € M)A
V X. X CM — (3 b. b: bij X M) V X € M)

In the Grothendieck approach, for an arbitrary set X, we can explicitly obtain
the Grothendieck universe UnivX. The universe UnivX is transitive (Trans (Univ X)),
closed under union, powerset, and replacement (ZFclosed (Univ X)) and it is the
smallest set (w.r.t. set inclusion) having these properties.
axiomatization

Univ :: set = set where
Univin: X € Univ X and
UnivTransSet: Trans (Univ X) and

UnivZF: ZFclosed (Univ X) and
UniwMin: X € U N Trans U N ZFclosed U — Univ X C U

To compare these two axiomatizations, we have previously shown in the higher-
order logic of Egal that every Grothendieck universe, under the axiom of choice as-
sumption, satisfies Tarski’s Axiom A (see [BP19]), but, not vice versa. Tarski universes,
as opposed to Grothendieck universes, might not be transitive. We constructed such a

18 C. Kaliszyk, K. Pak

Tarski universe of a set N that is a proper subset of UnivN in [Pak20] in the first-order
logic of Mizar, as well as proved that UnivlV included in every Tarski universe of a set
N if N is transitive.

In particular, using these properties, we proved in Isabelle that assuming HOTG
and the axiom of choice, Univ N is a Tarski universe, i.e., that in the model [BKP19],
Tarski’s Axiom A is valid. Rather than repeat the proofs already described in [BP19]
we show the final statement that we proved under the axiom of choice as rendered by
Isabelle:

definition AC_aziom where
ACaziom =V X. {} ¢ X — 3 f. feX ->U X)A(VA. Ae X — f*A € A))

theorem
AC_axiom — Tarski_axiom_A

In order to even more closely show the adequacy of the HOTG model for importing
the Isabelle/HOL proofs, one might also consider polymorphism, which is present in
the foundations of the HOL families of provers. Andrew Pitts has provided a custom
semantics to HOL that factors in polymorphism [Pit93]. We however believe, that since
the polymorphism in HOL is shallow (rank-one), it can be considered a notation for
monomorphic HOL, namely all proofs can be translated to monomorphic ones and
that the Grothendieck universes offer enough room for the quantification incurred by
polymorphism. Extending the model to support all the custom extensions present in
Isabelle/HOL (such as e.g. type classes [HNI10| or local type definitions [KP19b]) is left
as future work.

9 Related Work

Since proof assistants based on plain higher-order logic lack the full expressivity of
set theory, the idea of adding set theory axioms on top of HOL has been tried mul-
tiple times. Gordon [Gor96| discusses approaches to combine the power of HOL and
set theory. Obua has proposed HOLZF [Obu06|, where Zermelo-Fraenkel axioms are
added on top of Isabelle/HOL. With this, he was able to show results on partisan
games, that would be hard to show in plain higher-order logic. Later, as part of the
ProofPeer project [OFSA14], the combination of HOL with ZF became the basis for an
LCF system, reducing the proofs in the higher-order logic part to a minimum (again,
since there was no guarantee, that combining the results is safe). Kuncéar [Kunl0]
attempted to import the Tarski-Grothendieck-based library into HOL Light. Here,
the set-theoretic concepts were immediately mapped to their HOL counterparts, but
it soon came out that without adding the axioms of set theory the system was not
strong enough. Brown [Brol4| proposed the Egal system which again combines a spec-
ification of higher-order logic with the axioms of set theory. The system uses explicit
universes, which is in fact the same presentation as given in this work. This work
therefore also gives a model for the Egal system. Finally, we have specified [KP18] and
imported [KP19al significant parts of the Mizar library into Isabelle. In this work, we
only use the specification of Mizar in Isabelle and the re-formalized parts of the MML.

The idea to combine proof assistant libraries across different foundations also arose
in the Flyspeck project |[HABT17| formalizing the proof of the Kepler conjecture
[HHM™10|. Krauss and Schropp [KSI0] specified and implemented a translation from
Isabelle/HOL proof terms to set-theoretic proved theorems. The translation is sound

Combining Higher-order Logic with Set Theory Formalizations 19

and only relies on the Isabelle/ZF logic, however, it is too slow to be useful in practice,
in fact, it is not possible to translate the basic Main library of Isabelle/HOL into set
theory in reasonable timﬂ It is also possible to deep embed multiple libraries in a
single meta-theory. Rabe [Rabl7] does this practically in the MMT framework deep
embedding various proof assistant foundations and providing category-theoretic map-
pings between some foundations. Logical frameworks allow importing multiple libraries
at the same time. In the Dedukti framework, Assaf and Cauderlier [AC15|[Ass15| have
combined properties originating from the Coq library and the HOL library. Both were
imported in the same system, based on the Aj; calculus modulo, however, the two parts
of the library relied on different rewrite rules.

Most implementations of set theory in logical frameworks could implicitly use some
higher-order features of the framework, as this is already used for the definition of the
object logic. The definition of the Zermelo-Fraenkel object logic [Pau93| in Isabelle
uses lambda abstractions and higher-order applications for example to specify the
quantifiers. This is also the case in Isabelle/TLA [Mer95|. These object logics are
normally careful to restrict the use of higher-order features to a minimum, however,
the system itself does not restrict this usage.

The first author together with Gauthier [GK19] has previously proposed heuris-
tics for automatically finding alignments across proof assistant libraries. Such align-
ments, even without merging the libraries can be useful for conjecturing new proper-
ties [MGK 17| as well as improving proof assistant automation [GK15).

The fact that Grothendieck universes are the same as transitive Tarski classes has
been formalized by Carneiro in MetamatPEl

10 Automated Transfer and Limitations of Current Work

In this section, we discuss transfer in higher-order logic based systems, transport in
intuitionistic type theory, and the limitations of the current work when it comes to
automating the transfer of theorems between the foundations.

Automating the transfer of theorems between different types in higher-order logic
has a long history. Today, higher-order rewriting-based packages for the creation of
quotient types are present in the libraries of most HOL-based proof assistants. These
packages can automatically translate theorems from the raw types to the quotient
types.

For example, HOL Light [Har09] includes the quot.ml package already since the
nineties. This package defines two ML functions: 1ift_function and 1ift_theorem.
The former automatically defines constants (often of higher-order function types) in a
quotient type based on corresponding constants in a raw type. The latter ML function
uses higher-order rewriting to transfer theorems that use the lifted constants to raw
ones.

The procedure has been further improved by Homeier [Hom05| in HOL4. The
HOL4 quotient package allows an explicit declaration of properties of functions and
relations (preserves and respects properties). These allow for quotients for polymor-
phic types. A similar architecture has been considered in the initial quotient package

2 As part of an ongoing project to export Isabelle proof to Dedukti and the project exporting
Isabelle to MMT [KRW20| some of the proofs in Isabelle/Main are being currently optimized.

3 http://us.metamath.org/mpeuni/grutsk.html

20 C. Kaliszyk, K. Pak

for Isabelle/HOL co-developed by the first author [KU11]. By further considering the
interplay between the transfer in the outside and inside types it is possible to auto-
matically quotient lists into finite sets with operations such as concatenation of a list
of lists automatically translated into a finite set union.

The Isabelle/HOL quotient package has been modularized by Huffman and Kuncar
[HK13|. The functionality has been separated into two packages: 1ifting and transfer.
Lifting allows the automated translation of definitions in a source type to definitions in a
target type (including quotient-based definitions). Transfer uses higher-order rewriting
to move theorems between types. This modular construction allows the use of transfer
also for cases of isomorphic types (including almost isomorphic ones, as was already
the case for example with quotients), but where the target is actually not defined as a
quotient of the source type.

A further improvement to the transfer mechanism in Isabelle/HOL has been devel-
oped by Kuncar and Popescu [KP19b| in their work on local type definitions. There,
the transfer package is extended to allow relativizing type-based statements to more
set-based forms in a principled way.

In the context of intuitionistic type theory, translating theorems from types to
their quotients is much more complex. This is because of the more intricate nature of
equality in type theories, which in particular does not allow replacing equal things in
all contexts (all above HOL packages rely not only on the axiom of choice but also
on extensionality). An traditional approach to moving theorems between types that
allows computation has been the use of setoids. This allows moving some theorems to
quotients for example in the CoRN project [CEGWO04].

More recently, foundations based on homotopy type theory [Awo12] have been pro-
posed. There, propositional equality between terms is interpreted as homotopy. The
univalence axiom of Voevodsky [Voell| assumed in such foundations allows trans-
porting properties and structures expressed over isomorphisms and equivalences. In
its simplest variant, transport in HoTT/UF is an operation that takes a type family
P:A— U, apath a=>5in A, and returns a function Pa — Pb [Mo6r21]. This allows
transport between isomorphic types but does not take computation into account. This
is further extended in cubical type theories [CCHM17|. There, it is possible to directly
manipulate n-dimensional cubes based on an interpretation of dependent type theory
in a cubical set model. Cubical type theories furthermore are specified in a way that
allows Voevodsky’s axiom to be provable. Transport in cubical type theories [BCH19|
can take as input a line of types A : I — U. This more primitive transport operation
can however take computation into account. We are not aware of any automated tac-
tics/packages allowing for transport of theorems between types in the same way as it
is possible in Isabelle/HOL’s transfer package.

The work presented here, similar to the higher-order automated transfer packages,
uses higher-order rewriting to translate the statements between the HOL types and the
set-based representation, however, we have not been able to use the Isabelle transfer
package for this. The reason for this is that on the Mizar side additional typing pred-
icates are needed to express soft types and reasoning about these types is necessary.
The Mizar soft types are additionally dependent. As such, we combine higher-order
rewriting with our dedicated Isabelle/Mizar tactic for proving the Mizar type obliga-
tions (the mty tactic). As the tactic is responsible for Prolog-style type inference on
the predicate level integrating its use with the existing Isabelle transfer package would
be rather involved.

Combining Higher-order Logic with Set Theory Formalizations 21

In principle, the equivalences provided by the isomorphisms allow translating the
statements both in the assumptions and in the conclusions, however, we cannot di-
rectly use the transfer package, since type constraints not present on the term level in
HOL correspond to explicit typing judgments in the set-theoretic types. Consider the
isomorphism between the Mizar finite sequences and Isabelle/HOL lists. All the proved
statements require the Mizar dependently typed assumptions stating that an argument
is of a finite sequence type over some Mizar domain | be FinSequence-of t as well as
an additional isomorphism for the domain. We have added the necessary assumptions
to the theorems, and in the automated proofs, the Isabelle/Mizar type inference (in-
cluding the automated proof of Mizar type inhabitation) is necessary to fulfill these
obligations. We believe, that is it possible to augment the lifting and transfer packages
to add soft type constraints on the term level and fulfill them wherever possible. The
details are however unclear and are left as future work.

11 Conclusion

We have used Isabelle HOTG to combine results proved in TG set theory with re-
sults proved in higher-order logic. This allows us to combine large parts of two major
proof assistant libraries: the Mizar Mathematical library and the Isabelle/HOL library.
Supplementary to the theorems and proofs coming from both, we define a number of
isomorphisms that allow us to translate theorems proved in part of one of these libraries
and use them in the corresponding part of the other library.

As part of the library merging, we have formally defined and proved in Isabelle
the necessary concepts. Apart from porting proofs to Isabelle/Mizar, the isomorphism
formalizations and the theorems moved using those amount to 10179 lines of proofs.
The formalization is available at:

http://cl-informatik.uibk.ac.at/cek/ckkp-jar2022-hotg.tgz

Apart from higher-order and set-theoretic foundations, the third most commonly
used foundation is dependent type theory. The most important future work direction
would investigate combining the results proved here with those proved in such type-
theoretic foundations.

So far, we have mostly moved results that have been proved in HOL to set theory. It
could be also interesting to transfer the Brouwer’s theorem for n-dimensional case (the
fixed point theorem [Pakl1l], the topological invariance of degree, and the topological
invariance of dimension [Pak14al) that are essential to define and develop topological

manifolds since the Mizar library results on manifolds are much developed than those
in Isabelle/HOL [IZ18].

Acknowledgements

This work has been supported by the European Research Council (ERC) Starting
Grant Number 714034 SMART, the Polish National Science Center granted by decision
n DEC-2015/19/D/ST6,/01473, and the COST Action CA20111 Number E-COST-
GRANT-CA20111-9d20b2ad.

http://cl-informatik.uibk.ac.at/cek/ckkp-jar2022-hotg.tgz

22

C. Kaliszyk, K. Pak

References

AC15.

Assl5.

Awol12.

BBGt17.

BCH19.

BHMN15.

BKP19.

BP19.

BRO2.

Brol4.

CCHM17.

CFGWO04.

EHN20.

GK15.

GK19.
GKN15.

Gor96.

HABT17.

Ali Assaf and Raphaél Cauderlier. Mixing HOL and Coq in Dedukti. In Cezary
Kaliszyk and Andrei Paskevich, editors, Proof eXchange for Theorem Proving
(PzTP 2015), volume 186 of EPTCS, pages 89-96, 2015.

Ali Assaf. A framework for defining computational higher-order logics. (Un cadre
de définition de logiques calculatoires d’ordre supérieur). PhD thesis, Ecole Poly-
technique, Palaiseau, France, 2015.

Steven Awodey. Type theory and homotopy. In Peter Dybjer, Sten Lindstrom, Erik
Palmgren, and Goéran Sundholm, editors, Epistemology versus Ontology - Essays
on the Philosophy and Foundations of Mathematics in Honour of Per Martin-
Léf, volume 27 of Logic, Epistemology, and the Unity of Science, pages 183—201.
Springer, 2012.

Grzegorz Bancerek, Czestaw Bylinski, Adam Grabowski, Artur Kornitowicz, Ro-
man Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Math-
ematical Library for interactive proof development in Mizar. Journal of Automated
Reasoning, 2017.

Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom in cubical
sets. J. Autom. Reason., 63(2):159-171, 2019.

Jasmin Christian Blanchette, Maximilian Haslbeck, Daniel Matichuk, and Tobias
Nipkow. Mining the Archive of Formal Proofs. In Manfred Kerber, Jacques Carette,
Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer
Mathematics (CICM 2015), volume 9150 of LNCS, pages 3-17. Springer, 2015.
Chad Brown, Cezary Kaliszyk, and Karol Pak. Higher-order Tarski Grothendieck
as a foundation for formal proof. In John Harrison, John O’Leary, and Andrew
Tolmach, editors, 10th International Conference on Interactive Theorem Proving
(ITP 2019), volume 141 of LIPIcs, pages 9:1-9:16. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2019.

Chad E. Brown and Karol Pak. A tale of two set theories. In Cezary Kaliszyk,
Edwin C. Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelli-
gent Computer Mathematics - 12th International Conference, CICM 2019, Prague,
Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in
Computer Science, pages 44—60. Springer, 2019.

Grzegorz Bancerek and Piotr Rudnicki. A Compendium of Continuous Lattices in
MIZAR. J. Autom. Reasoning, 29(3-4):189-224, 2002.

Chad E. Brown. The Egal Manual, 2014.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg. Cubical type
theory: A constructive interpretation of the univalence axiom. FLAP, 4(10):3127—
3170, 2017.

Luis Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-corn, the constructive
coq repository at nijmegen. In Andrea Asperti, Grzegorz Bancerek, and Andrzej
Trybulec, editors, Mathematical Knowledge Management (MKM 2004), volume
3119 of LNCS, pages 88-103. Springer, 2004.

Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. Verified analysis of random
binary tree structures. J. Autom. Reason., 64(5):879-910, 2020.

Thibault Gauthier and Cezary Kaliszyk. Sharing HOL4 and HOL Light proof
knowledge. In Martin Davis, Ansgar Fehnker, Annabelle Mclver, and Andrei
Voronkov, editors, 20th International Conference on Logic for Programming, Ar-
tificial Intelligence, and Reasoning (LPAR 2015), volume 9450 of Lecture Notes
in Computer Science, pages 372-386. Springer, 2015.

Thibault Gauthier and Cezary Kaliszyk. Aligning concepts across proof assistant
libraries. J. Symbolic Computation, 90:89-123, 2019.

Adam Grabowski, Artur Kornitlowicz, and Adam Naumowicz. Four decades of
Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.

Michael Gordon. Set theory, higher order logic or both? In Joakim von Wright,
Jim Grundy, and John Harrison, editors, Theorem Proving in Higher Order Logics,
TPHOLs’96, volume 1125 of LNCS, pages 191-201. Springer, 1996.

Thomas C. Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison,
Le Truong Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang
Nguyen, Quang Truong Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Ja-
son M. Rute, Alexey Solovyev, Thi Hoai An Ta, Nam Trung Tran, Thi Diep Trieu,

Combining Higher-order Logic with Set Theory Formalizations 23

Har09.

HHM*10.

HK13.

HN10.

HomO5.

HWO7.

1718.

Jas34.

KP17.

KP18.

KP19a.

KP19b.

KPU16.

KRW20.

KS10.

KU11.

Kunl0.

Josef Urban, Ky Vu, and Roland Zumkeller. A formal proof of the Kepler conjec-
ture. Forum of Mathematics, Pi, 5, 2017.

John Harrison. HOL light: An overview. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 60-66. Springer, 2009.

Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua,
and Roland Zumkeller. A revision of the proof of the kepler conjecture. Discret.
Comput. Geom., 44(1):1-34, 2010.

Brian Huffman and Ondfej Kunc¢ar. Lifting and transfer: A modular design for
quotients in Isabelle/HOL. In Georges Gonthier and Michael Norrish, editors,
Certified Programs and Proofs - Third International Conference, CPP 2013, Mel-
bourne, VIC, Australia, December 11-13, 2013, Proceedings, volume 8307 of LNCS,
pages 131-146. Springer, 2013.

Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite
systems. In Matthias Blume, Naoki Kobayashi, and German Vidal, editors, Func-
tional and Logic Programming, 10th International Symposium, FLOPS 2010, vol-
ume 6009 of LNCS, pages 103-117. Springer, 2010.

Peter V. Homeier. A design structure for higher order quotients. In Joe Hurd and
Thomas F. Melham, editors, Theorem Proving in Higher Order Logics, 18th Inter-
national Conference, TPHOLs 2005, Ozxford, UK, August 22-25, 2005, Proceed-
ings, volume 3603 of Lecture Notes in Computer Science, pages 130-146. Springer,
2005.

Florian Haftmann and Makarius Wenzel. Constructive type classes in Isabelle.
In Thorsten Altenkirch and Conor McBride, editors, Types for Proofs and Pro-
grams, International Workshop, TYPES 2006, volume 4502 of LNCS, pages 160—
174. Springer, 2007.

Fabian Immler and Bohua Zhan. Smooth manifolds. Archive of Formal Proofs, Oc-
tober 2018. https://isa-afp.org/entries/Smooth_Manifolds.html, Formal proof
development.

Stanistaw Jaskowski. On the rules of suppositions. Studia Logica, 1, 1934.

Cezary Kaliszyk and Karol Pak. Isabelle formalization of set theoretic structures
and set comprehensions. In Johannes Blamer, Temur Kutsia, and Dimitris Simos,
editors, Mathematical Aspects of Computer and Information Sciences, MACIS
2017, volume 10693 of LNCS. Springer, 2017.

Cezary Kaliszyk and Karol Pak. Semantics of Mizar as an Isabelle object logic.
Journal of Automated Reasoning, 2018.

Cezary Kaliszyk and Karol Pak. Declarative proof translation (short paper). In
John Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International
Conference on Interactive Theorem Proving (ITP 2019), volume 141 of LIPIcs,
pages 35:1-35:7, 2019.

Ondrej Kuncar and Andrei Popescu. From types to sets by local type definition in
higher-order logic. J. Autom. Reason., 62(2):237-260, 2019.

Cezary Kaliszyk, Karol Pak, and Josef Urban. Towards a Mizar environment for
Isabelle: Foundations and language. In Jeremy Avigad and Adam Chlipala, editors,
Proc. 5th Conference on Certified Programs and Proofs (CPP 2016), pages 58-65.
ACM, 2016.

Michael Kohlhase, Florian Rabe, and Makarius Wenzel. Making isabelle content
accessible in knowledge representation formats. CoRR, abs/2005.08884, 2020.
Alexander Krauss and Andreas Schropp. A mechanized translation from higher-
order logic to set theory. In Matt Kaufmann and Lawrence C. Paulson, editors,
Interactive Theorem Proving (ITP 2010), volume 6172 of LNCS, pages 323-338.
Springer, 2010.

Cezary Kaliszyk and Christian Urban. Quotients revisited for Isabelle/HOL. In
William C. Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung, editors,
Proc. of the 26th ACM Symposium on Applied Computing (SAC’11), pages 1639
1644. ACM, 2011.

Ondfej Kuncar. Reconstruction of the Mizar type system in the HOL Light sys-
tem. In Jiri Pavlu and Jana Safrankova, editors, WDS Proceedings of Contributed
Papers: Part I — Mathematics and Computer Sciences, pages 7-12. Matfyzpress,
2010.

https://isa-afp.org/entries/Smooth_Manifolds.html

24

C. Kaliszyk, K. Pak

Lam19.

LSBM19.

Mer95.

MGK*17.

Mor21.
NPWO02.

Obu06.

OFSA14.
Pakl1.
Pakl4a.
Pak14b.
Pak20.
Pau90.
Pau93.

Pit93.

Rabl7.
Sch99.

Voell.

Wen21.
WPNO8.

Peter Lammich. Refinement to imperative HOL. J. Autom. Reason., 62(4):481—
503, 2019.

Andreas Lochbihler, S. Reza Sefidgar, David A. Basin, and Ueli Maurer. Formal-
izing constructive cryptography using crypthol. In 382nd IEEE Computer Security
Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019, pages
152-166. IEEE, 2019.

Stephan Merz. Mechanizing TLA in Isabelle. In Robert Rodosek, editor, Workshop
on Verification in New Orientations, pages 54—74, Maribor, 1995. Univ. of Maribor.
Dennis Miiller, Thibault Gauthier, Cezary Kaliszyk, Michael Kohlhase, and Flo-
rian Rabe. Classification of alignments between concepts of formal mathematical
systems. In Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe,
and Olaf Teschke, editors, 10th International Conference on Intelligent Computer
Mathematics (CICM’17), volume 10383 of LNCS, pages 83-98. Springer, 2017.
Anders Mortberg. Cubical methods in homotopy type theory and univalent foun-
dations. Math. Struct. Comput. Sci., 31(10):1147-1184, 2021.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cav-
alcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing - ICTAC
2006, volume 4281 of LNCS, pages 272-286. Springer, 2006.

Steven Obua, Jacques D. Fleuriot, Phil Scott, and David Aspinall. ProofPeer:
Collaborative theorem proving. CoRR, abs/1404.6186, 2014.

Karol Pak. Brouwer Fixed Point Theorem in the General Case. Formalized Math-
ematics, 19(3):151-153, 2011.

Karol Pak. Brouwer Invariance of Domain Theorem. Formalized Mathematics,
22(1):21-28, 2014.

Karol Pak. Topological manifolds. Formalized Mathematics, 22(2):179-186, 2014.
Karol Pak. Grothendieck universes. Formalized Mathematics, 28(2):211-215, 2020.
Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio
Odifreddi, editor, Logic and Computer Science (1990), pages 361-386, 1990.
Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
J. Autom. Reasoning, 11(3):353-389, 1993.

A. Pitts. The HOL logic. In M. J. C. Gordon and T. F. Melham, editors, Intro-
duction to HOL: a theorem proving environment for higher order logic. Cambridge
University Press, Cambridge, 1993.

Florian Rabe. How to identify, translate and combine logics? J. Log. Comput.,
27(6):1753-1798, 2017.

Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers.
Formalized Mathematics, 8(1):29-34, 1999.

Vladimir Voevodsky. Univalent semantics of constructive type theories. In Jean-
Pierre Jouannaud and Zhong Shao, editors, Certified Programs and Proofs - First
International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Pro-
ceedings, volume 7086 of Lecture Notes in Computer Science, page 70. Springer,
2011.

Makarius Wenzel. The Isabelle/Isar Reference Manual, 2021.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle frame-
work. In Otmane Ait Mohamed, César A. Munoz, and Sofiéne Tahar, editors,
Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, volume 5170 of LNCS, pages 33—38. Springer, 2008.

	Introduction
	Isabelle and Isabelle/Mizar
	Proof Integration
	Integrating Basic Infrastructure: Functions and Lists
	Numbers
	Algebra
	Integrated Libraries: Practical Examples
	Tarski's axiom vs. Grothendieck Universes
	Related Work
	Automated Transfer and Limitations of Current Work
	Conclusion

