:: SURREALC semantic presentation
theorem
Th1
:
:: SURREALC:1
for r being
Real
holds
uReal
.
r
in
Day
omega
proof
let
r be
Real
;
:: thesis:
uReal
.
r
in
Day
omega
(
born_eq
(
sReal
.
r
)
c=
born
(
sReal
.
r
)
&
born
(
sReal
.
r
)
c=
omega
)
by
SURREALO:def 5
,
SURREALN:49
;
then
A1
:
born_eq
(
sReal
.
r
)
c=
omega
by
XBOOLE_1:1
;
uReal
.
r
=
Unique_No
(
sReal
.
r
)
by
SURREALN:def 7
;
then
(
born_eq
(
sReal
.
r
)
=
born_eq
(
uReal
.
r
)
&
born_eq
(
uReal
.
r
)
=
born
(
uReal
.
r
)
)
by
SURREALO:def 10
,
SURREALO:33
,
SURREALO:48
;
then
(
uReal
.
r
in
Day
(
born
(
uReal
.
r
)
)
&
Day
(
born
(
uReal
.
r
)
)
c=
Day
omega
)
by
A1
,
SURREAL0:def 18
,
SURREAL0:35
;
hence
uReal
.
r
in
Day
omega
;
:: thesis:
verum
end;
definition
func
No_omega
->
No_ordinal
uSurreal
equals
:: SURREALC:def 1
No_uOrdinal_op
omega
;
coherence
No_uOrdinal_op
omega
is
No_ordinal
uSurreal
;
end;
::
deftheorem
defines
No_omega
SURREALC:def 1 :
No_omega
=
No_uOrdinal_op
omega
;
definition
let
x, y be
Surreal
;
pred
x,y
are_commensurate
means
:: SURREALC:def 2
( ex n being
positive
Nat
st x
<
(
uInt
.
n
)
*
y & ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
x );
symmetry
for x, y being
Surreal
st ex n being
positive
Nat
st x
<
(
uInt
.
n
)
*
y & ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
x holds
( ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
x & ex n being
positive
Nat
st x
<
(
uInt
.
n
)
*
y )
;
end;
::
deftheorem
defines
are_commensurate
SURREALC:def 2 :
for x, y being
Surreal
holds
( x,y
are_commensurate
iff ( ex n being
positive
Nat
st x
<
(
uInt
.
n
)
*
y & ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
x ) );
theorem
Th2
:
:: SURREALC:2
for x being
Surreal
st x is
positive
holds
x,x
are_commensurate
proof
let
x be
Surreal
;
:: thesis:
( x is
positive
implies x,x
are_commensurate
)
assume
x is
positive
;
:: thesis:
x,x
are_commensurate
then
A1
:
( x
=
0_No
+
x &
0_No
+
x
<
x
+
x )
by
SURREALR:44
;
A2
:
1_No
+
1_No
=
uInt
.
(
1
+
1
)
by
SURREALN:11
,
SURREALN:13
;
1_No
*
x
=
x
;
then
x
+
x
==
(
1_No
+
1_No
)
*
x
by
SURREALR:67
;
then
x
<
(
uInt
.
(
1
+
1
)
)
*
x
by
A2
,
A1
,
SURREALO:4
;
hence
x,x
are_commensurate
;
:: thesis:
verum
end;
theorem
Th3
:
:: SURREALC:3
for x, y being
Surreal
st x,y
are_commensurate
holds
x is
positive
proof
let
x, y be
Surreal
;
:: thesis:
( x,y
are_commensurate
implies x is
positive
)
assume
that
A1
:
x,y
are_commensurate
and
A2
:
not x is
positive
;
:: thesis:
contradiction
consider
n being
positive
Nat
such that
A3
:
x
<
(
uInt
.
n
)
*
y
by
A1
;
consider
m being
positive
Nat
such that
A4
:
y
<
(
uInt
.
m
)
*
x
by
A1
;
uInt
.
n is
positive
;
then
A5
:
y
*
(
uInt
.
n
)
<
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
x
)
by
SURREALR:70
,
A4
;
(
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
x
)
==
(
(
uInt
.
n
)
*
(
uInt
.
m
)
)
*
x &
(
(
uInt
.
n
)
*
(
uInt
.
m
)
)
*
x
==
(
uInt
.
(
n
*
m
)
)
*
x )
by
SURREALR:51
,
SURREALR:69
,
SURREALN:15
;
then
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
x
)
==
(
uInt
.
(
n
*
m
)
)
*
x
by
SURREALO:4
;
then
A6
:
y
*
(
uInt
.
n
)
<=
(
uInt
.
(
n
*
m
)
)
*
x
by
A5
,
SURREALO:4
;
then
A7
:
x
<
(
uInt
.
(
n
*
m
)
)
*
x
by
A3
,
SURREALO:4
;
per
cases
( n
*
m
=
1 or ( x
<
0_No
& n
*
m
<>
1 ) or
0_No
<=
x )
;
suppose
n
*
m
=
1
;
:: thesis:
contradiction
hence
contradiction
by
A6
,
A3
,
SURREALN:11
;
:: thesis:
verum
end;
suppose
A8
:
( x
<
0_No
& n
*
m
<>
1 )
;
:: thesis:
contradiction
1
<=
n
*
m
by
NAT_1:14
;
then
1
<
n
*
m
by
A8
,
XXREAL_0:1
;
then
(
(
uInt
.
(
n
*
m
)
)
*
x
<
(
uInt
.
1
)
*
x &
(
uInt
.
1
)
*
x
=
1_No
*
x )
by
A8
,
SURREALR:71
,
SURREALN:9
,
SURREALN:11
;
then
(
uInt
.
(
n
*
m
)
)
*
x
<=
x
;
hence
contradiction
by
A6
,
A3
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
A9
:
0_No
<=
x
;
:: thesis:
contradiction
then
x
==
0_No
by
A2
;
then
(
(
uInt
.
(
n
*
m
)
)
*
x
==
(
uInt
.
(
n
*
m
)
)
*
0_No
&
(
uInt
.
(
n
*
m
)
)
*
0_No
=
0_No
)
by
SURREALR:51
;
hence
contradiction
by
A9
,
A7
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th4
:
:: SURREALC:4
for x, y, z being
Surreal
st x,y
are_commensurate
& y,z
are_commensurate
holds
x,z
are_commensurate
proof
let
x, y, z be
Surreal
;
:: thesis:
( x,y
are_commensurate
& y,z
are_commensurate
implies x,z
are_commensurate
)
assume
A1
:
( x,y
are_commensurate
& y,z
are_commensurate
)
;
:: thesis:
x,z
are_commensurate
thus
ex n being
positive
Nat
st x
<
(
uInt
.
n
)
*
z
:: according to
SURREALC:def 2
:: thesis:
ex n being
positive
Nat
st z
<
(
uInt
.
n
)
*
x
proof
consider
n being
positive
Nat
such that
A2
:
x
<
(
uInt
.
n
)
*
y
by
A1
;
consider
m being
positive
Nat
such that
A3
:
y
<
(
uInt
.
m
)
*
z
by
A1
;
take
nm = n
*
m;
:: thesis:
x
<
(
uInt
.
nm
)
*
z
uInt
.
n is
positive
;
then
A4
:
(
uInt
.
n
)
*
y
<
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
z
)
by
A3
,
SURREALR:70
;
(
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
z
)
==
(
(
uInt
.
n
)
*
(
uInt
.
m
)
)
*
z &
(
(
uInt
.
n
)
*
(
uInt
.
m
)
)
*
z
==
(
uInt
.
nm
)
*
z )
by
SURREALR:51
,
SURREALR:69
,
SURREALN:15
;
then
(
uInt
.
n
)
*
(
(
uInt
.
m
)
*
z
)
==
(
uInt
.
nm
)
*
z
by
SURREALO:4
;
then
(
uInt
.
n
)
*
y
<=
(
uInt
.
nm
)
*
z
by
A4
,
SURREALO:4
;
hence
x
<
(
uInt
.
nm
)
*
z
by
A2
,
SURREALO:4
;
:: thesis:
verum
end;
consider
n being
positive
Nat
such that
A5
:
y
<
(
uInt
.
n
)
*
x
by
A1
;
consider
m being
positive
Nat
such that
A6
:
z
<
(
uInt
.
m
)
*
y
by
A1
;
take
nm = n
*
m;
:: thesis:
z
<
(
uInt
.
nm
)
*
x
uInt
.
m is
positive
;
then
A7
:
(
uInt
.
m
)
*
y
<
(
uInt
.
m
)
*
(
(
uInt
.
n
)
*
x
)
by
A5
,
SURREALR:70
;
(
(
uInt
.
m
)
*
(
(
uInt
.
n
)
*
x
)
==
(
(
uInt
.
m
)
*
(
uInt
.
n
)
)
*
x &
(
(
uInt
.
m
)
*
(
uInt
.
n
)
)
*
x
==
(
uInt
.
nm
)
*
x )
by
SURREALR:51
,
SURREALR:69
,
SURREALN:15
;
then
(
uInt
.
m
)
*
(
(
uInt
.
n
)
*
x
)
==
(
uInt
.
nm
)
*
x
by
SURREALO:4
;
then
(
uInt
.
m
)
*
y
<=
(
uInt
.
nm
)
*
x
by
A7
,
SURREALO:4
;
hence
z
<
(
uInt
.
nm
)
*
x
by
A6
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th5
:
:: SURREALC:5
for x, y, z being
Surreal
st x
==
y & x,z
are_commensurate
holds
y,z
are_commensurate
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
==
y & x,z
are_commensurate
implies y,z
are_commensurate
)
assume
A1
:
( x
==
y & x,z
are_commensurate
)
;
:: thesis:
y,z
are_commensurate
thus
ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
z
:: according to
SURREALC:def 2
:: thesis:
ex n being
positive
Nat
st z
<
(
uInt
.
n
)
*
y
proof
consider
n being
positive
Nat
such that
A2
:
x
<
(
uInt
.
n
)
*
z
by
A1
;
y
<
(
uInt
.
n
)
*
z
by
A1
,
A2
,
SURREALO:4
;
hence
ex n being
positive
Nat
st y
<
(
uInt
.
n
)
*
z
;
:: thesis:
verum
end;
consider
n being
positive
Nat
such that
A3
:
z
<
(
uInt
.
n
)
*
x
by
A1
;
(
uInt
.
n
)
*
x
==
(
uInt
.
n
)
*
y
by
A1
,
SURREALR:51
;
then
z
<
(
uInt
.
n
)
*
y
by
A3
,
SURREALO:4
;
hence
ex n being
positive
Nat
st z
<
(
uInt
.
n
)
*
y
;
:: thesis:
verum
end;
theorem
:: SURREALC:6
for x, y, z being
Surreal
st x,z
are_commensurate
& x
<=
y & y
<=
z holds
( x,y
are_commensurate
& y,z
are_commensurate
)
proof
let
x, y, z be
Surreal
;
:: thesis:
( x,z
are_commensurate
& x
<=
y & y
<=
z implies ( x,y
are_commensurate
& y,z
are_commensurate
) )
assume
A1
:
( x,z
are_commensurate
& x
<=
y & y
<=
z )
;
:: thesis:
( x,y
are_commensurate
& y,z
are_commensurate
)
A2
:
( x is
positive
& z is
positive
)
by
A1
,
Th3
;
per
cases
( x
==
y or y
==
z or ( x
<
y & y
<
z ) )
by
A1
;
suppose
( x
==
y or y
==
z )
;
:: thesis:
( x,y
are_commensurate
& y,z
are_commensurate
)
hence
( x,y
are_commensurate
& y,z
are_commensurate
)
by
A1
,
Th5
,
A2
,
Th2
;
:: thesis:
verum
end;
suppose
A3
:
( x
<
y & y
<
z )
;
:: thesis:
( x,y
are_commensurate
& y,z
are_commensurate
)
consider
n being
positive
Nat
such that
A4
:
z
<
(
uInt
.
n
)
*
x
by
A1
;
y
<=
z
by
A3
;
then
A5
:
y
<
(
uInt
.
n
)
*
x
by
A4
,
SURREALO:4
;
0_No
<
uInt
.
n
by
SURREALI:def 8
;
then
(
uInt
.
n
)
*
x
<=
(
uInt
.
n
)
*
y
by
A3
,
SURREALR:70
;
then
A6
:
z
<
(
uInt
.
n
)
*
y
by
A4
,
SURREALO:4
;
A7
:
y
<
(
uInt
.
1
)
*
z
by
A3
,
SURREALN:11
;
y
=
(
uInt
.
1
)
*
y
by
SURREALN:11
;
hence
( x,y
are_commensurate
& y,z
are_commensurate
)
by
A3
,
A7
,
A6
,
A5
;
:: thesis:
verum
end;
end;
end;
theorem
Th7
:
:: SURREALC:7
for x, y being
Surreal
holds
( x,y
are_commensurate
iff ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x ) )
proof
let
x, y be
Surreal
;
:: thesis:
( x,y
are_commensurate
iff ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x ) )
thus
( x,y
are_commensurate
implies ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x ) )
:: thesis:
( ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x ) implies x,y
are_commensurate
)
proof
assume
A1
:
x,y
are_commensurate
;
:: thesis:
ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x )
A2
:
( x is
positive
& y is
positive
)
by
A1
,
Th3
;
consider
n being
positive
Nat
such that
A3
:
x
<
(
uInt
.
n
)
*
y
by
A1
;
consider
m being
positive
Nat
such that
A4
:
y
<
(
uInt
.
m
)
*
x
by
A1
;
take
n
+
m ;
:: thesis:
( x
<
(
uInt
.
(
n
+
m
)
)
*
y & y
<
(
uInt
.
(
n
+
m
)
)
*
x )
( n
+
0
<
n
+
m & m
+
0
<
n
+
m )
by
XREAL_1:6
;
then
(
(
uInt
.
n
)
*
y
<=
(
uInt
.
(
n
+
m
)
)
*
y &
(
uInt
.
m
)
*
x
<=
(
uInt
.
(
n
+
m
)
)
*
x )
by
A2
,
SURREALR:70
,
SURREALN:9
;
hence
( x
<
(
uInt
.
(
n
+
m
)
)
*
y & y
<
(
uInt
.
(
n
+
m
)
)
*
x )
by
A3
,
A4
,
SURREALO:4
;
:: thesis:
verum
end;
thus
( ex n being
positive
Nat
st
( x
<
(
uInt
.
n
)
*
y & y
<
(
uInt
.
n
)
*
x ) implies x,y
are_commensurate
)
;
:: thesis:
verum
end;
theorem
Th8
:
:: SURREALC:8
for x, y being
Surreal
st x is
positive
& x
==
y holds
x,y
are_commensurate
by
Th2
,
Th5
;
definition
let
x, y be
Surreal
;
pred
x
infinitely<
y
means
:: SURREALC:def 3
for r being
positive
Real
holds x
*
(
uReal
.
r
)
<
y;
end;
::
deftheorem
defines
infinitely<
SURREALC:def 3 :
for x, y being
Surreal
holds
( x
infinitely<
y iff for r being
positive
Real
holds x
*
(
uReal
.
r
)
<
y );
theorem
Th9
:
:: SURREALC:9
for x, y being
Surreal
st x
infinitely<
y holds
x
<
y
proof
let
x, y be
Surreal
;
:: thesis:
( x
infinitely<
y implies x
<
y )
assume
x
infinitely<
y
;
:: thesis:
x
<
y
then
x
*
1_No
<
y
by
SURREALN:48
;
hence
x
<
y
;
:: thesis:
verum
end;
theorem
:: SURREALC:10
for r being
Real
holds
uReal
.
r
infinitely<
No_omega
proof
let
r be
Real
;
:: thesis:
uReal
.
r
infinitely<
No_omega
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
(
uReal
.
r
)
*
(
uReal
.
s
)
<
No_omega
A1
:
(
r
*
s
)
+
0
<
(
r
*
s
)
+
1
by
XREAL_1:6
;
(
uReal
.
r
)
*
(
uReal
.
s
)
==
uReal
.
(
r
*
s
)
by
SURREALN:57
;
then
A2
:
(
uReal
.
r
)
*
(
uReal
.
s
)
<
uReal
.
(
(
r
*
s
)
+
1
)
by
A1
,
SURREALN:51
,
SURREALO:4
;
uReal
.
(
(
r
*
s
)
+
1
)
<=
No_omega
by
Th1
,
SURREALN:76
;
hence
(
uReal
.
r
)
*
(
uReal
.
s
)
<
No_omega
by
A2
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th11
:
:: SURREALC:11
for x, y, z being
Surreal
st x
<=
y & y
infinitely<
z holds
x
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
<=
y & y
infinitely<
z implies x
infinitely<
z )
assume
A1
:
( x
<=
y & y
infinitely<
z )
;
:: thesis:
x
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
x
*
(
uReal
.
r
)
<
z
0_No
<=
uReal
.
r
by
SURREALI:def 8
;
then
( x
*
(
uReal
.
r
)
<=
y
*
(
uReal
.
r
)
& y
*
(
uReal
.
r
)
<
z )
by
A1
,
SURREALR:75
;
hence
x
*
(
uReal
.
r
)
<
z
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
:: SURREALC:12
for x, y, z being
Surreal
st x
infinitely<
y & y
<=
z holds
x
infinitely<
z
by
SURREALO:4
;
theorem
Th13
:
:: SURREALC:13
for r being
positive
Real
for x, y being
Surreal
st x
infinitely<
y holds
( x
*
(
uReal
.
r
)
infinitely<
y & x
infinitely<
y
*
(
uReal
.
r
)
)
proof
let
r be
positive
Real
;
:: thesis:
for x, y being
Surreal
st x
infinitely<
y holds
( x
*
(
uReal
.
r
)
infinitely<
y & x
infinitely<
y
*
(
uReal
.
r
)
)
let
x, y be
Surreal
;
:: thesis:
( x
infinitely<
y implies ( x
*
(
uReal
.
r
)
infinitely<
y & x
infinitely<
y
*
(
uReal
.
r
)
) )
assume
A1
:
x
infinitely<
y
;
:: thesis:
( x
*
(
uReal
.
r
)
infinitely<
y & x
infinitely<
y
*
(
uReal
.
r
)
)
thus
x
*
(
uReal
.
r
)
infinitely<
y
:: thesis:
x
infinitely<
y
*
(
uReal
.
r
)
proof
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
s
)
<
y
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
s
)
==
x
*
(
(
uReal
.
s
)
*
(
uReal
.
r
)
)
& x
*
(
(
uReal
.
s
)
*
(
uReal
.
r
)
)
==
x
*
(
uReal
.
(
s
*
r
)
)
)
by
SURREALN:57
,
SURREALR:69
,
SURREALR:51
;
then
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
s
)
==
x
*
(
uReal
.
(
s
*
r
)
)
& x
*
(
uReal
.
(
s
*
r
)
)
<
y )
by
A1
,
SURREALO:4
;
hence
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
s
)
<
y
by
SURREALO:4
;
:: thesis:
verum
end;
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
x
*
(
uReal
.
s
)
<
y
*
(
uReal
.
r
)
A2
:
0_No
<
uReal
.
r
by
SURREALI:def 8
;
A3
:
(
x
*
(
uReal
.
(
s
*
(
1
/
r
)
)
)
)
*
(
uReal
.
r
)
<
y
*
(
uReal
.
r
)
by
A1
,
A2
,
SURREALR:70
;
s
*
(
(
1
/
r
)
*
r
)
=
s
*
1
by
XCMPLX_1:106
;
then
(
s
*
(
1
/
r
)
)
*
r
=
s
;
then
(
(
x
*
(
uReal
.
(
s
*
(
1
/
r
)
)
)
)
*
(
uReal
.
r
)
==
x
*
(
(
uReal
.
(
s
*
(
1
/
r
)
)
)
*
(
uReal
.
r
)
)
& x
*
(
(
uReal
.
(
s
*
(
1
/
r
)
)
)
*
(
uReal
.
r
)
)
==
x
*
(
uReal
.
s
)
)
by
SURREALR:69
,
SURREALR:51
,
SURREALN:57
;
then
(
x
*
(
uReal
.
(
s
*
(
1
/
r
)
)
)
)
*
(
uReal
.
r
)
==
x
*
(
uReal
.
s
)
by
SURREALO:4
;
hence
x
*
(
uReal
.
s
)
<
y
*
(
uReal
.
r
)
by
A3
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th14
:
:: SURREALC:14
for x, y, z being
Surreal
st x
infinitely<
y & y
infinitely<
z holds
x
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
infinitely<
y & y
infinitely<
z implies x
infinitely<
z )
assume
A1
:
( x
infinitely<
y & y
infinitely<
z )
;
:: thesis:
x
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
x
*
(
uReal
.
r
)
<
z
y
*
(
uReal
.
1
)
<
z
by
A1
;
then
y
<=
z
by
SURREALN:48
;
hence
x
*
(
uReal
.
r
)
<
z
by
A1
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th15
:
:: SURREALC:15
for x, y, z being
Surreal
st x,y
are_commensurate
& y
infinitely<
z holds
x
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
( x,y
are_commensurate
& y
infinitely<
z implies x
infinitely<
z )
assume
A1
:
( x,y
are_commensurate
& y
infinitely<
z )
;
:: thesis:
x
infinitely<
z
then
consider
n being
positive
Nat
such that
A2
:
x
<
y
*
(
uInt
.
n
)
;
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
x
*
(
uReal
.
r
)
<
z
0_No
<
uReal
.
r
by
SURREALI:def 8
;
then
A3
:
x
*
(
uReal
.
r
)
<
(
y
*
(
uInt
.
n
)
)
*
(
uReal
.
r
)
by
A2
,
SURREALR:70
;
(
uInt
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uReal
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
then
(
(
y
*
(
uInt
.
n
)
)
*
(
uReal
.
r
)
==
y
*
(
(
uInt
.
n
)
*
(
uReal
.
r
)
)
& y
*
(
(
uInt
.
n
)
*
(
uReal
.
r
)
)
==
y
*
(
uReal
.
(
n
*
r
)
)
)
by
SURREALR:69
,
SURREALR:51
,
SURREALN:57
;
then
(
y
*
(
uInt
.
n
)
)
*
(
uReal
.
r
)
==
y
*
(
uReal
.
(
n
*
r
)
)
by
SURREALO:4
;
then
x
*
(
uReal
.
r
)
<=
y
*
(
uReal
.
(
n
*
r
)
)
by
A3
,
SURREALO:4
;
hence
x
*
(
uReal
.
r
)
<
z
by
A1
,
SURREALO:4
;
:: thesis:
verum
end;
Lm1
:
for x being
Surreal
for r, r1 being
Real
holds
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
==
x
*
(
uReal
.
(
r
*
r1
)
)
proof
let
x be
Surreal
;
:: thesis:
for r, r1 being
Real
holds
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
==
x
*
(
uReal
.
(
r
*
r1
)
)
let
r, r1 be
Real
;
:: thesis:
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
==
x
*
(
uReal
.
(
r
*
r1
)
)
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
==
x
*
(
(
uReal
.
r
)
*
(
uReal
.
r1
)
)
& x
*
(
(
uReal
.
r
)
*
(
uReal
.
r1
)
)
==
x
*
(
uReal
.
(
r
*
r1
)
)
)
by
SURREALR:69
,
SURREALR:51
,
SURREALN:57
;
hence
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
==
x
*
(
uReal
.
(
r
*
r1
)
)
by
SURREALO:4
;
:: thesis:
verum
end;
Lm2
:
for x being
Surreal
for r being
Real
st r
<>
0
holds
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x
proof
let
x be
Surreal
;
:: thesis:
for r being
Real
st r
<>
0
holds
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x
let
r be
Real
;
:: thesis:
( r
<>
0
implies
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x )
assume
r
<>
0
;
:: thesis:
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x
then
(
1
/
r
)
*
r
=
1
by
XCMPLX_1:106
;
then
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x
*
(
uReal
.
1
)
by
Lm1
;
hence
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
(
1
/
r
)
)
==
x
by
SURREALN:48
;
:: thesis:
verum
end;
Lm3
:
for x being
Surreal
for r, r1, r2 being
Real
holds
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
)
*
(
uReal
.
r2
)
==
x
*
(
uReal
.
(
(
r
*
r1
)
*
r2
)
)
proof
let
x be
Surreal
;
:: thesis:
for r, r1, r2 being
Real
holds
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
)
*
(
uReal
.
r2
)
==
x
*
(
uReal
.
(
(
r
*
r1
)
*
r2
)
)
let
r, r1, r2 be
Real
;
:: thesis:
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
)
*
(
uReal
.
r2
)
==
x
*
(
uReal
.
(
(
r
*
r1
)
*
r2
)
)
(
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
)
*
(
uReal
.
r2
)
==
(
x
*
(
uReal
.
(
r
*
r1
)
)
)
*
(
uReal
.
r2
)
&
(
x
*
(
uReal
.
(
r
*
r1
)
)
)
*
(
uReal
.
r2
)
==
x
*
(
uReal
.
(
(
r
*
r1
)
*
r2
)
)
)
by
Lm1
,
SURREALR:51
;
hence
(
(
x
*
(
uReal
.
r
)
)
*
(
uReal
.
r1
)
)
*
(
uReal
.
r2
)
==
x
*
(
uReal
.
(
(
r
*
r1
)
*
r2
)
)
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th16
:
:: SURREALC:16
for x, y, z being
Surreal
st x,y
are_commensurate
& z
infinitely<
x holds
z
infinitely<
y
proof
let
x, y, z be
Surreal
;
:: thesis:
( x,y
are_commensurate
& z
infinitely<
x implies z
infinitely<
y )
assume
A1
:
( x,y
are_commensurate
& z
infinitely<
x )
;
:: thesis:
z
infinitely<
y
then
consider
n being
positive
Nat
such that
A2
:
x
<
y
*
(
uInt
.
n
)
;
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
z
*
(
uReal
.
r
)
<
y
z
*
(
uReal
.
(
r
*
n
)
)
<=
x
by
A1
;
then
A3
:
z
*
(
uReal
.
(
r
*
n
)
)
<
y
*
(
uInt
.
n
)
by
SURREALO:4
,
A2
;
A4
:
0_No
<
uReal
.
(
1
/
n
)
by
SURREALI:def 8
;
(
uInt
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uReal
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
then
(
(
z
*
(
uReal
.
(
r
*
n
)
)
)
*
(
uReal
.
(
1
/
n
)
)
<
(
y
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
&
(
y
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
==
y )
by
A4
,
Lm2
,
A3
,
SURREALR:70
;
then
A5
:
(
z
*
(
uReal
.
(
r
*
n
)
)
)
*
(
uReal
.
(
1
/
n
)
)
<
y
by
SURREALO:4
;
(
(
r
*
n
)
*
(
1
/
n
)
=
r
*
(
n
*
(
1
/
n
)
)
& r
*
(
n
*
(
1
/
n
)
)
=
r
*
1 )
by
XCMPLX_1:106
;
then
(
(
z
*
(
uReal
.
(
r
*
n
)
)
)
*
(
uReal
.
(
1
/
n
)
)
==
z
*
(
(
uReal
.
(
r
*
n
)
)
*
(
uReal
.
(
1
/
n
)
)
)
& z
*
(
(
uReal
.
(
r
*
n
)
)
*
(
uReal
.
(
1
/
n
)
)
)
==
z
*
(
uReal
.
r
)
)
by
SURREALR:69
,
SURREALR:51
,
SURREALN:57
;
then
(
z
*
(
uReal
.
(
r
*
n
)
)
)
*
(
uReal
.
(
1
/
n
)
)
==
z
*
(
uReal
.
r
)
by
SURREALO:4
;
hence
z
*
(
uReal
.
r
)
<
y
by
A5
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th17
:
:: SURREALC:17
for x, y, z being
Surreal
st x
==
y & y
infinitely<
z holds
x
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
==
y & y
infinitely<
z implies x
infinitely<
z )
assume
A1
:
( x
==
y & y
infinitely<
z )
;
:: thesis:
x
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
x
*
(
uReal
.
r
)
<
z
( x
*
(
uReal
.
r
)
==
y
*
(
uReal
.
r
)
& y
*
(
uReal
.
r
)
<
z )
by
A1
,
SURREALR:51
;
hence
x
*
(
uReal
.
r
)
<
z
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th18
:
:: SURREALC:18
for x, y, z being
Surreal
st x
infinitely<
z & y
infinitely<
z holds
x
+
y
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
infinitely<
z & y
infinitely<
z implies x
+
y
infinitely<
z )
assume
A1
:
( x
infinitely<
z & y
infinitely<
z )
;
:: thesis:
x
+
y
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
(
x
+
y
)
*
(
uReal
.
r
)
<
z
set
R =
uReal
.
r;
set
H =
uReal
.
(
1
/
2
)
;
A2
:
(
1
/
2
)
+
(
1
/
2
)
=
1
;
( x
infinitely<
z
*
(
uReal
.
(
1
/
2
)
)
& y
infinitely<
z
*
(
uReal
.
(
1
/
2
)
)
)
by
A1
,
Th13
;
then
( x
*
(
uReal
.
r
)
<
z
*
(
uReal
.
(
1
/
2
)
)
& y
*
(
uReal
.
r
)
<=
z
*
(
uReal
.
(
1
/
2
)
)
)
;
then
A3
:
(
x
*
(
uReal
.
r
)
)
+
(
y
*
(
uReal
.
r
)
)
<
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
by
SURREALR:44
;
(
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
==
z
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
& z
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
z
*
1_No
& z
*
1_No
=
z )
by
A2
,
SURREALN:55
,
SURREALN:48
,
SURREALR:51
,
SURREALR:67
;
then
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
==
z
by
SURREALO:4
;
then
(
(
x
+
y
)
*
(
uReal
.
r
)
==
(
x
*
(
uReal
.
r
)
)
+
(
y
*
(
uReal
.
r
)
)
&
(
x
*
(
uReal
.
r
)
)
+
(
y
*
(
uReal
.
r
)
)
<
z )
by
A3
,
SURREALO:4
,
SURREALR:67
;
hence
(
x
+
y
)
*
(
uReal
.
r
)
<
z
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
:: SURREALC:19
for x, y, z being
Surreal
st x
==
y & z
infinitely<
x holds
z
infinitely<
y
by
SURREALO:4
;
theorem
Th20
:
:: SURREALC:20
for x, y being
Surreal
for r being
Real
st
0_No
<=
x & x
infinitely<
y holds
x
*
(
uReal
.
r
)
<
y
proof
let
x, y be
Surreal
;
:: thesis:
for r being
Real
st
0_No
<=
x & x
infinitely<
y holds
x
*
(
uReal
.
r
)
<
y
let
r be
Real
;
:: thesis:
(
0_No
<=
x & x
infinitely<
y implies x
*
(
uReal
.
r
)
<
y )
assume
A1
:
(
0_No
<=
x & x
infinitely<
y )
;
:: thesis:
x
*
(
uReal
.
r
)
<
y
per
cases
( r is
positive
or r
<=
0
)
;
suppose
r is
positive
;
:: thesis:
x
*
(
uReal
.
r
)
<
y
hence
x
*
(
uReal
.
r
)
<
y
by
A1
;
:: thesis:
verum
end;
suppose
r
<=
0
;
:: thesis:
x
*
(
uReal
.
r
)
<
y
then
uReal
.
r
<=
0_No
by
SURREALN:51
,
SURREALN:47
;
then
(
uReal
.
r
)
*
x
<=
0_No
*
x
by
A1
,
SURREALR:75
;
then
(
(
uReal
.
r
)
*
x
<=
x & x
<
y )
by
A1
,
SURREALO:4
,
Th9
;
hence
x
*
(
uReal
.
r
)
<
y
by
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
definition
let
A be
Ordinal
;
func
No_omega_op
A
->
ManySortedSet
of
Day
A
means
:
Def4
:
:: SURREALC:def 4
ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A &
it
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) );
existence
ex b
1
being
ManySortedSet
of
Day
A ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & b
1
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) )
proof
deffunc
H
1
(
Ordinal
)
->
Element
of
bool
(
Games
$1
)
=
Day
$1;
deffunc
H
2
(
object
,
Function-yielding
c=-monotone
Sequence
)
->
object
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
$2
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
$1, r is
Element
of
REAL
: ( xL
in
L_
$1 & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
$2
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
$1, r is
Element
of
REAL
: ( xR
in
R_
$1 & r is
positive
)
}
]
;
A1
:
for S being
Function-yielding
c=-monotone
Sequence
st ( for A being
Ordinal
st A
in
dom
S holds
dom
(
S
.
A
)
=
H
1
(A) ) holds
for A being
Ordinal
for x being
object
st x
in
dom
(
S
.
A
)
holds
H
2
(x,S
|
A)
=
H
2
(x,S)
proof
let
S be
Function-yielding
c=-monotone
Sequence
;
:: thesis:
( ( for A being
Ordinal
st A
in
dom
S holds
dom
(
S
.
A
)
=
H
1
(A) ) implies for A being
Ordinal
for x being
object
st x
in
dom
(
S
.
A
)
holds
H
2
(x,S
|
A)
=
H
2
(x,S) )
assume
A2
:
for A being
Ordinal
st A
in
dom
S holds
dom
(
S
.
A
)
=
H
1
(A)
;
:: thesis:
for A being
Ordinal
for x being
object
st x
in
dom
(
S
.
A
)
holds
H
2
(x,S
|
A)
=
H
2
(x,S)
let
A be
Ordinal
;
:: thesis:
for x being
object
st x
in
dom
(
S
.
A
)
holds
H
2
(x,S
|
A)
=
H
2
(x,S)
let
x be
object
;
:: thesis:
( x
in
dom
(
S
.
A
)
implies H
2
(x,S
|
A)
=
H
2
(x,S) )
assume
A3
:
x
in
dom
(
S
.
A
)
;
:: thesis:
H
2
(x,S
|
A)
=
H
2
(x,S)
S
.
A
<>
{}
by
A3
;
then
A4
:
A
in
dom
S
by
FUNCT_1:def 2
;
then
A5
:
dom
(
S
.
A
)
=
H
1
(A)
by
A2
;
then
reconsider
x = x as
Surreal
by
A3
;
A6
:
x
=
[
(
L_
x
)
,
(
R_
x
)
]
;
A7
:
for y being
object
st y
in
(
L_
x
)
\/
(
R_
x
)
holds
ex B being
Ordinal
st
( y
in
dom
(
S
.
B
)
& B
in
A )
proof
let
y be
object
;
:: thesis:
( y
in
(
L_
x
)
\/
(
R_
x
)
implies ex B being
Ordinal
st
( y
in
dom
(
S
.
B
)
& B
in
A ) )
assume
y
in
(
L_
x
)
\/
(
R_
x
)
;
:: thesis:
ex B being
Ordinal
st
( y
in
dom
(
S
.
B
)
& B
in
A )
then
consider
O being
Ordinal
such that
A8
:
( O
in
A & y
in
Day
O )
by
A5
,
A3
,
A6
,
SURREAL0:46
;
dom
(
S
.
O
)
=
Day
O
by
A2
,
A4
,
A8
,
ORDINAL1:10
;
hence
ex B being
Ordinal
st
( y
in
dom
(
S
.
B
)
& B
in
A )
by
A8
;
:: thesis:
verum
end;
A9
:
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
c=
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
proof
let
y be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
or y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
assume
A10
:
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
;
:: thesis:
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
consider
xL being
Element
of
L_
x, r being
Element
of
REAL
such that
A11
:
( y
=
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
& xL
in
L_
x & r is
positive
)
by
A10
;
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A11
,
XBOOLE_0:def 3
;
then
ex B being
Ordinal
st
( xL
in
dom
(
S
.
B
)
& B
in
A )
by
A7
;
then
(
union
(
rng
(
S
|
A
)
)
)
.
xL
=
(
union
(
rng
S
)
)
.
xL
by
SURREALR:5
;
hence
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
by
A11
;
:: thesis:
verum
end;
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
c=
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
proof
let
y be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
or y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
assume
A12
:
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
;
:: thesis:
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
consider
xL being
Element
of
L_
x, r being
Element
of
REAL
such that
A13
:
( y
=
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
& xL
in
L_
x & r is
positive
)
by
A12
;
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A13
,
XBOOLE_0:def 3
;
then
ex B being
Ordinal
st
( xL
in
dom
(
S
.
B
)
& B
in
A )
by
A7
;
then
(
union
(
rng
(
S
|
A
)
)
)
.
xL
=
(
union
(
rng
S
)
)
.
xL
by
SURREALR:5
;
hence
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
by
A13
;
:: thesis:
verum
end;
then
A14
:
L_
H
2
(x,S
|
A)
=
L_
H
2
(x,S)
by
A9
,
XBOOLE_0:def 10
;
A15
:
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
c=
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
proof
let
y be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
or y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
)
assume
A16
:
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
;
:: thesis:
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
consider
xL being
Element
of
R_
x, r being
Element
of
REAL
such that
A17
:
( y
=
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
& xL
in
R_
x & r is
positive
)
by
A16
;
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A17
,
XBOOLE_0:def 3
;
then
ex B being
Ordinal
st
( xL
in
dom
(
S
.
B
)
& B
in
A )
by
A7
;
then
(
union
(
rng
(
S
|
A
)
)
)
.
xL
=
(
union
(
rng
S
)
)
.
xL
by
SURREALR:5
;
hence
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
by
A17
;
:: thesis:
verum
end;
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
c=
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
proof
let
y be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
or y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
)
assume
A18
:
y
in
{
(
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
;
:: thesis:
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
consider
xL being
Element
of
R_
x, r being
Element
of
REAL
such that
A19
:
( y
=
(
(
union
(
rng
(
S
|
A
)
)
)
.
xL
)
*'
(
uReal
.
r
)
& xL
in
R_
x & r is
positive
)
by
A18
;
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A19
,
XBOOLE_0:def 3
;
then
ex B being
Ordinal
st
( xL
in
dom
(
S
.
B
)
& B
in
A )
by
A7
;
then
(
union
(
rng
(
S
|
A
)
)
)
.
xL
=
(
union
(
rng
S
)
)
.
xL
by
SURREALR:5
;
hence
y
in
{
(
(
(
union
(
rng
S
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
R_
x, r is
Element
of
REAL
: ( xL
in
R_
x & r is
positive
)
}
by
A19
;
:: thesis:
verum
end;
hence
H
2
(x,S
|
A)
=
H
2
(x,S)
by
A14
,
A15
,
XBOOLE_0:def 10
;
:: thesis:
verum
end;
A20
:
for A, B being
Ordinal
st A
c=
B holds
H
1
(A)
c=
H
1
(B)
by
SURREAL0:35
;
consider
S being
Function-yielding
c=-monotone
Sequence
such that
A21
:
(
dom
S
=
succ
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S
|
B) ) ) ) )
from
SURREALR:sch 1
(
A1
,
A20
);
A
in
succ
A
by
ORDINAL1:8
;
then
consider
SB being
ManySortedSet
of H
1
(A)
such that
A22
:
( S
.
A
=
SB & ( for x being
object
st x
in
H
1
(A) holds
SB
.
x
=
H
2
(x,S
|
A) ) )
by
A21
;
take
SB ;
:: thesis:
ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & SB
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) )
take
S ;
:: thesis:
(
dom
S
=
succ
A & SB
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) )
thus
(
dom
S
=
succ
A & SB
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) )
by
A21
,
A22
;
:: thesis:
verum
end;
uniqueness
for b
1
, b
2
being
ManySortedSet
of
Day
A st ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & b
1
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) & ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & b
2
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) holds
b
1
=
b
2
proof
deffunc
H
1
(
Ordinal
)
->
Element
of
bool
(
Games
$1
)
=
Day
$1;
deffunc
H
2
(
object
,
Function-yielding
c=-monotone
Sequence
)
->
object
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
$2
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
$1, r is
Element
of
REAL
: ( xL
in
L_
$1 & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
$2
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
$1, r is
Element
of
REAL
: ( xR
in
R_
$1 & r is
positive
)
}
]
;
let
O1, O2 be
ManySortedSet
of H
1
(A);
:: thesis:
( ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & O1
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) & ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & O2
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) implies O1
=
O2 )
given
S1 being
Function-yielding
c=-monotone
Sequence
such that
A23
:
(
dom
S1
=
succ
A & S1
.
A
=
O1 & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S1
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S1
|
B) ) ) ) )
;
:: thesis:
( for S being
Function-yielding
c=-monotone
Sequence
holds
( not
dom
S
=
succ
A or not O2
=
S
.
A or ex B being
Ordinal
st
( B
in
succ
A & ( for SB being
ManySortedSet
of
Day
B holds
( not S
.
B
=
SB or ex x being
object
st
( x
in
Day
B & not SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) ) or O1
=
O2 )
given
S2 being
Function-yielding
c=-monotone
Sequence
such that
A24
:
(
dom
S2
=
succ
A & S2
.
A
=
O2 & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S2
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S2
|
B) ) ) ) )
;
:: thesis:
O1
=
O2
A25
:
for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S1
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S1
|
B) ) )
by
A23
;
A26
:
for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S2
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S2
|
B) ) )
by
A24
;
A27
:
(
succ
A
c=
dom
S1 &
succ
A
c=
dom
S2 )
by
A23
,
A24
;
S1
|
(
succ
A
)
=
S2
|
(
succ
A
)
from
SURREALR:sch 2
(
A27
,
A25
,
A26
);
then
S1
=
S2
|
(
succ
A
)
by
A23
;
hence
O1
=
O2
by
A23
,
A24
;
:: thesis:
verum
end;
end;
::
deftheorem
Def4
defines
No_omega_op
SURREALC:def 4 :
for A being
Ordinal
for b
2
being
ManySortedSet
of
Day
A holds
( b
2
=
No_omega_op
A iff ex S being
Function-yielding
c=-monotone
Sequence
st
(
dom
S
=
succ
A & b
2
=
S
.
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) ) );
theorem
Th21
:
:: SURREALC:21
for S being
Function-yielding
c=-monotone
Sequence
st ( for B being
Ordinal
st B
in
dom
S holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) holds
for A being
Ordinal
st A
in
dom
S holds
No_omega_op
A
=
S
.
A
proof
deffunc
H
1
(
Ordinal
)
->
Element
of
bool
(
Games
$1
)
=
Day
$1;
deffunc
H
2
(
object
,
Function-yielding
c=-monotone
Sequence
)
->
object
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
$2
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
$1, r is
Element
of
REAL
: ( xL
in
L_
$1 & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
$2
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
$1, r is
Element
of
REAL
: ( xR
in
R_
$1 & r is
positive
)
}
]
;
let
S1 be
Function-yielding
c=-monotone
Sequence
;
:: thesis:
( ( for B being
Ordinal
st B
in
dom
S1 holds
ex SB being
ManySortedSet
of
Day
B st
( S1
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
[
(
{
0_No
}
\/
{
(
(
(
union
(
rng
(
S1
|
B
)
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of
L_
x, r is
Element
of
REAL
: ( xL
in
L_
x & r is
positive
)
}
)
,
{
(
(
(
union
(
rng
(
S1
|
B
)
)
)
.
xR
)
*'
(
uReal
.
r
)
)
where xR is
Element
of
R_
x, r is
Element
of
REAL
: ( xR
in
R_
x & r is
positive
)
}
]
) ) ) implies for A being
Ordinal
st A
in
dom
S1 holds
No_omega_op
A
=
S1
.
A )
assume
A1
:
for B being
Ordinal
st B
in
dom
S1 holds
ex SB being
ManySortedSet
of H
1
(B) st
( S1
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S1
|
B) ) )
;
:: thesis:
for A being
Ordinal
st A
in
dom
S1 holds
No_omega_op
A
=
S1
.
A
let
A be
Ordinal
;
:: thesis:
( A
in
dom
S1 implies
No_omega_op
A
=
S1
.
A )
assume
A2
:
A
in
dom
S1
;
:: thesis:
No_omega_op
A
=
S1
.
A
A3
:
succ
A
c=
dom
S1
by
A2
,
ORDINAL1:21
;
consider
S2 being
Function-yielding
c=-monotone
Sequence
such that
A4
:
(
dom
S2
=
succ
A & S2
.
A
=
No_omega_op
A & ( for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S2
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S2
|
B) ) ) ) )
by
Def4
;
A5
:
for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S1
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S1
|
B) ) )
by
A1
,
A3
;
A6
:
for B being
Ordinal
st B
in
succ
A holds
ex SB being
ManySortedSet
of H
1
(B) st
( S2
.
B
=
SB & ( for x being
object
st x
in
H
1
(B) holds
SB
.
x
=
H
2
(x,S2
|
B) ) )
by
A4
;
A7
:
(
succ
A
c=
dom
S1 &
succ
A
c=
dom
S2 )
by
A2
,
ORDINAL1:21
,
A4
;
A8
:
S1
|
(
succ
A
)
=
S2
|
(
succ
A
)
from
SURREALR:sch 2
(
A7
,
A5
,
A6
);
A
in
succ
A
by
ORDINAL1:8
;
hence
No_omega_op
A
=
S1
.
A
by
A4
,
A8
,
FUNCT_1:49
;
:: thesis:
verum
end;
definition
let
x be
Surreal
;
func
No_omega^
x
->
set
equals
:: SURREALC:def 5
(
No_omega_op
(
born
x
)
)
.
x;
coherence
(
No_omega_op
(
born
x
)
)
.
x is
set
;
end;
::
deftheorem
defines
No_omega^
SURREALC:def 5 :
for x being
Surreal
holds
No_omega^
x
=
(
No_omega_op
(
born
x
)
)
.
x;
Lm4
:
for o being
object
for x being
Surreal
holds
(
No_omega^
x is
pair
& ( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) & ( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
) & ( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) ) & ( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
) )
proof
let
o be
object
;
:: thesis:
for x being
Surreal
holds
(
No_omega^
x is
pair
& ( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) & ( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
) & ( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) ) & ( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
) )
let
x be
Surreal
;
:: thesis:
(
No_omega^
x is
pair
& ( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) & ( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
) & ( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) ) & ( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
) )
set
A =
born
x;
deffunc
H
1
(
set
,
Function-yielding
c=-monotone
Sequence
)
->
set
=
{
(
(
(
union
(
rng
$2
)
)
.
xL
)
*'
(
uReal
.
r
)
)
where xL is
Element
of $1, r is
Element
of
REAL
: ( xL
in
$1 & r is
positive
)
}
;
deffunc
H
2
(
object
,
Function-yielding
c=-monotone
Sequence
)
->
object
=
[
(
{
0_No
}
\/
H
1
(
L_
$1,$2)
)
,H
1
(
R_
$1,$2)
]
;
consider
S being
Function-yielding
c=-monotone
Sequence
such that
A1
:
(
dom
S
=
succ
(
born
x
)
&
No_omega_op
(
born
x
)
=
S
.
(
born
x
)
)
and
A2
:
for B being
Ordinal
st B
in
succ
(
born
x
)
holds
ex SB being
ManySortedSet
of
Day
B st
( S
.
B
=
SB & ( for x being
object
st x
in
Day
B holds
SB
.
x
=
H
2
(x,S
|
B) ) )
by
Def4
;
consider
SA being
ManySortedSet
of
Day
(
born
x
)
such that
A3
:
S
.
(
born
x
)
=
SA
and
A4
:
for x being
object
st x
in
Day
(
born
x
)
holds
SA
.
x
=
H
2
(x,S
|
(
born
x
)
)
by
A2
,
ORDINAL1:6
;
x
in
Day
(
born
x
)
by
SURREAL0:def 18
;
then
A5
:
No_omega^
x
=
H
2
(x,S
|
(
born
x
)
)
by
A1
,
A3
,
A4
;
hence
No_omega^
x is
pair
;
:: thesis:
( ( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) & ( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
) & ( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) ) & ( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
) )
A6
:
for T being
surreal-membered
set
st ( T
=
L_
x or T
=
R_
x ) holds
for o being
object
holds
( o
in
H
1
(T,S
|
(
born
x
)
) iff ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) )
proof
let
T be
surreal-membered
set
;
:: thesis:
( ( T
=
L_
x or T
=
R_
x ) implies for o being
object
holds
( o
in
H
1
(T,S
|
(
born
x
)
) iff ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) ) )
assume
A7
:
( T
=
L_
x or T
=
R_
x )
;
:: thesis:
for o being
object
holds
( o
in
H
1
(T,S
|
(
born
x
)
) iff ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) )
let
o be
object
;
:: thesis:
( o
in
H
1
(T,S
|
(
born
x
)
) iff ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) )
thus
( o
in
H
1
(T,S
|
(
born
x
)
) implies ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) )
:: thesis:
( ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
) implies o
in
H
1
(T,S
|
(
born
x
)
) )
proof
assume
o
in
H
1
(T,S
|
(
born
x
)
)
;
:: thesis:
ex y being
Surreal
ex r being
positive
Real
st
( y
in
T & o
=
(
No_omega^
y
)
*'
(
uReal
.
r
)
)
then
consider
a being
Element
of T, r being
Element
of
REAL
such that
A8
:
( o
=
(
(
union
(
rng
(
S
|
(
born
x
)
)
)
)
.
a
)
*'
(
uReal
.
r
)
& a
in
T & r is
positive
)
;
reconsider
a = a as
Surreal
by
SURREAL0:def 16
,
A8
;
reconsider
r = r as
positive
Real
by
A8
;
take
a ;
:: thesis:
ex r being
positive
Real
st
( a
in
T & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
take
r ;
:: thesis:
( a
in
T & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
set
B =
born
a;
A9
:
a
in
(
L_
x
)
\/
(
R_
x
)
by
A7
,
A8
,
XBOOLE_0:def 3
;
then
A10
:
born
a
in
born
x
by
SURREALO:1
;
A11
:
born
a
in
succ
(
born
x
)
by
A9
,
SURREALO:1
,
ORDINAL1:8
;
then
consider
SB being
ManySortedSet
of
Day
(
born
a
)
such that
A12
:
( S
.
(
born
a
)
=
SB & ( for x being
object
st x
in
Day
(
born
a
)
holds
SB
.
x
=
H
2
(x,S
|
(
born
a
)
) ) )
by
A2
;
A13
:
dom
SB
=
Day
(
born
a
)
by
PARTFUN1:def 2
;
A14
:
a
in
Day
(
born
a
)
by
SURREAL0:def 18
;
A15
:
SB
.
a
=
(
union
(
rng
S
)
)
.
a
by
SURREALR:2
,
A12
,
A13
,
A14
,
A11
,
A1
;
SB
.
a
=
No_omega^
a
by
A11
,
A1
,
A2
,
Th21
,
A12
;
hence
( a
in
T & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
by
SURREALR:5
,
A10
,
A13
,
A14
,
A12
,
A8
,
A15
;
:: thesis:
verum
end;
given
a being
Surreal
, r being
positive
Real
such that
A16
:
( a
in
T & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
;
:: thesis:
o
in
H
1
(T,S
|
(
born
x
)
)
set
B =
born
a;
A17
:
a
in
(
L_
x
)
\/
(
R_
x
)
by
A7
,
A16
,
XBOOLE_0:def 3
;
then
A18
:
born
a
in
born
x
by
SURREALO:1
;
A19
:
born
a
in
succ
(
born
x
)
by
A17
,
SURREALO:1
,
ORDINAL1:8
;
then
consider
SB being
ManySortedSet
of
Day
(
born
a
)
such that
A20
:
( S
.
(
born
a
)
=
SB & ( for x being
object
st x
in
Day
(
born
a
)
holds
SB
.
x
=
H
2
(x,S
|
(
born
a
)
) ) )
by
A2
;
A21
:
No_omega_op
(
born
a
)
=
S
.
(
born
a
)
by
A19
,
A1
,
A2
,
Th21
;
A22
:
dom
SB
=
Day
(
born
a
)
by
PARTFUN1:def 2
;
A23
:
a
in
Day
(
born
a
)
by
SURREAL0:def 18
;
SB
.
a
=
(
union
(
rng
S
)
)
.
a
by
SURREALR:2
,
A20
,
A22
,
A23
,
A19
,
A1
;
then
A24
:
(
union
(
rng
(
S
|
(
born
x
)
)
)
)
.
a
=
No_omega^
a
by
SURREALR:5
,
A18
,
A22
,
A23
,
A20
,
A21
;
r
in
REAL
by
XREAL_0:def 1
;
hence
o
in
H
1
(T,S
|
(
born
x
)
)
by
A16
,
A24
;
:: thesis:
verum
end;
thus
( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
:: thesis:
( ( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
) & ( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) ) & ( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
) )
proof
assume
( o
in
L_
(
No_omega^
x
)
& o
<>
0_No
)
;
:: thesis:
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
then
o
in
H
1
(
L_
x,S
|
(
born
x
)
)
by
A5
,
ZFMISC_1:136
;
hence
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
by
A6
;
:: thesis:
verum
end;
thus
( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
)
:: thesis:
( o
in
R_
(
No_omega^
x
)
iff ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) )
proof
assume
( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
;
:: thesis:
o
in
L_
(
No_omega^
x
)
per
cases
then
( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
;
suppose
o
=
0_No
;
:: thesis:
o
in
L_
(
No_omega^
x
)
hence
o
in
L_
(
No_omega^
x
)
by
A5
,
ZFMISC_1:136
;
:: thesis:
verum
end;
suppose
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
;
:: thesis:
o
in
L_
(
No_omega^
x
)
then
o
in
H
1
(
L_
x,S
|
(
born
x
)
)
by
A6
;
hence
o
in
L_
(
No_omega^
x
)
by
A5
,
XBOOLE_0:def 3
;
:: thesis:
verum
end;
end;
end;
thus
( o
in
R_
(
No_omega^
x
)
implies ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
R_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
by
A5
,
A6
;
:: thesis:
( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
)
assume
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
R_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
;
:: thesis:
o
in
R_
(
No_omega^
x
)
hence
o
in
R_
(
No_omega^
x
)
by
A5
,
A6
;
:: thesis:
verum
end;
Lm5
:
for x being
Surreal
holds
(
No_omega^
x is
positive
Surreal
& ( for y1, y2, Ny1, Ny2 being
Surreal
st Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) ) )
proof
let
x be
Surreal
;
:: thesis:
(
No_omega^
x is
positive
Surreal
& ( for y1, y2, Ny1, Ny2 being
Surreal
st Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) ) )
defpred
S
1
[
Ordinal
]
means
( ( for x being
Surreal
st x
in
Day
$1 holds
No_omega^
x is
positive
Surreal
) & ( for y1, y2, Ny1, Ny2 being
Surreal
st y1
in
Day
$1 & y2
in
Day
$1 & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) ) );
A1
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A2
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
thus
A3
:
for x being
Surreal
st x
in
Day
D holds
No_omega^
x is
positive
Surreal
:: thesis:
for y1, y2, Ny1, Ny2 being
Surreal
st y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
proof
let
x be
Surreal
;
:: thesis:
( x
in
Day
D implies
No_omega^
x is
positive
Surreal
)
assume
A4
:
x
in
Day
D
;
:: thesis:
No_omega^
x is
positive
Surreal
reconsider
N =
No_omega^
x as
pair
set
by
Lm4
;
A5
:
born
x
c=
D
by
A4
,
SURREAL0:def 18
;
(
L_
N
)
\/
(
R_
N
)
is
surreal-membered
proof
let
o be
object
;
:: according to
SURREAL0:def 16
:: thesis:
( not o
in
(
L_
N
)
\/
(
R_
N
)
or o is
surreal
)
assume
A6
:
o
in
(
L_
N
)
\/
(
R_
N
)
;
:: thesis:
o is
surreal
per
cases
( o
=
0_No
or ( o
<>
0_No
& o
in
L_
N ) or o
in
R_
N )
by
A6
,
XBOOLE_0:def 3
;
suppose
o
=
0_No
;
:: thesis:
o is
surreal
hence
o is
surreal
;
:: thesis:
verum
end;
suppose
( o
<>
0_No
& o
in
L_
N )
;
:: thesis:
o is
surreal
then
consider
a being
Surreal
, r being
positive
Real
such that
A7
:
( a
in
L_
x & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
by
Lm4
;
thus
o is
surreal
by
A7
;
:: thesis:
verum
end;
suppose
o
in
R_
N
;
:: thesis:
o is
surreal
then
consider
a being
Surreal
, r being
positive
Real
such that
A8
:
( a
in
R_
x & o
=
(
No_omega^
a
)
*'
(
uReal
.
r
)
)
by
Lm4
;
thus
o is
surreal
by
A8
;
:: thesis:
verum
end;
end;
end;
then
consider
M being
Ordinal
such that
A9
:
for o being
object
st o
in
(
L_
N
)
\/
(
R_
N
)
holds
ex A being
Ordinal
st
( A
in
M & o
in
Day
A )
by
SURREAL0:47
;
L_
N
<<
R_
N
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
L_
N or not b
in
R_
N or not b
<=
a )
assume
A10
:
( a
in
L_
N & b
in
R_
N )
;
:: thesis:
not b
<=
a
consider
xR being
Surreal
, r being
positive
Real
such that
A11
:
( xR
in
R_
x & b
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
)
by
A10
,
Lm4
;
xR
in
(
L_
x
)
\/
(
R_
x
)
by
A11
,
XBOOLE_0:def 3
;
then
A12
:
born
xR
in
born
x
by
SURREALO:1
;
then
A13
:
born
xR
in
D
by
A5
;
A14
:
xR
in
Day
(
born
xR
)
by
SURREAL0:def 18
;
then
reconsider
NxR =
No_omega^
xR as
positive
Surreal
by
A12
,
A2
,
A5
;
A15
:
NxR
*
(
uReal
.
r
)
is
positive
;
per
cases
( a
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & a
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
by
A10
,
Lm4
;
suppose
a
=
0_No
;
:: thesis:
not b
<=
a
hence
not b
<=
a
by
A15
,
A11
;
:: thesis:
verum
end;
suppose
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & a
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
;
:: thesis:
not b
<=
a
then
consider
xL being
Surreal
, s being
positive
Real
such that
A16
:
( xL
in
L_
x & a
=
(
No_omega^
xL
)
*'
(
uReal
.
s
)
)
;
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A16
,
XBOOLE_0:def 3
;
then
A17
:
born
xL
in
born
x
by
SURREALO:1
;
then
A18
:
born
xL
in
D
by
A5
;
set
B =
(
born
xL
)
\/
(
born
xR
)
;
A19
:
(
born
xL
)
\/
(
born
xR
)
in
D
by
A13
,
A18
,
ORDINAL3:12
;
A20
:
xL
in
Day
(
born
xL
)
by
SURREAL0:def 18
;
then
reconsider
NxL =
No_omega^
xL as
positive
Surreal
by
A17
,
A5
,
A2
;
A21
:
(
Day
(
born
xL
)
c=
Day
(
(
born
xL
)
\/
(
born
xR
)
)
&
Day
(
born
xR
)
c=
Day
(
(
born
xL
)
\/
(
born
xR
)
)
)
by
XBOOLE_1:7
,
SURREAL0:35
;
L_
x
<<
R_
x
by
SURREAL0:45
;
then
xL
<
xR
by
A16
,
A11
;
then
NxL
infinitely<
NxR
by
A19
,
A21
,
A20
,
A14
,
A2
;
then
NxL
infinitely<
NxR
*
(
uReal
.
r
)
by
Th13
;
then
NxL
*
(
uReal
.
s
)
<
NxR
*
(
uReal
.
r
)
;
hence
not b
<=
a
by
A16
,
A11
;
:: thesis:
verum
end;
end;
end;
then
[
(
L_
N
)
,
(
R_
N
)
]
in
Day
M
by
A9
,
SURREAL0:46
;
then
reconsider
N = N as
Surreal
;
A22
:
0_No
in
L_
N
by
Lm4
;
(
L_
N
<<
{
N
}
& N
in
{
N
}
)
by
SURREALO:11
,
TARSKI:def 1
;
hence
No_omega^
x is
positive
Surreal
by
A22
,
SURREALI:def 8
;
:: thesis:
verum
end;
defpred
S
2
[
Ordinal
]
means
for y1, y2, Ny1, Ny2 being
Surreal
st
(
born
y1
)
(+)
(
born
y2
)
=
$1 & y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) );
A23
:
for E being
Ordinal
st ( for F being
Ordinal
st F
in
E holds
S
2
[F] ) holds
S
2
[E]
proof
let
E be
Ordinal
;
:: thesis:
( ( for F being
Ordinal
st F
in
E holds
S
2
[F] ) implies S
2
[E] )
assume
A24
:
for F being
Ordinal
st F
in
E holds
S
2
[F]
;
:: thesis:
S
2
[E]
let
y1, y2, Ny1, Ny2 be
Surreal
;
:: thesis:
(
(
born
y1
)
(+)
(
born
y2
)
=
E & y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 implies ( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) )
assume
A25
:
(
(
born
y1
)
(+)
(
born
y2
)
=
E & y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 )
;
:: thesis:
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
thus
( y1
<=
y2 implies Ny1
<=
Ny2 )
:: thesis:
( y1
<
y2 implies Ny1
infinitely<
Ny2 )
proof
assume
y1
<=
y2
;
:: thesis:
Ny1
<=
Ny2
then
A26
:
(
L_
y1
<<
{
y2
}
&
{
y1
}
<<
R_
y2 )
by
SURREAL0:43
;
A27
:
L_
Ny1
<<
{
Ny2
}
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
L_
Ny1 or not b
in
{
Ny2
}
or not b
<=
a )
assume
A28
:
( a
in
L_
Ny1 & b
in
{
Ny2
}
)
;
:: thesis:
not b
<=
a
per
cases
( a
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
y1 & a
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
) )
by
A28
,
Lm4
,
A25
;
suppose
A29
:
a
=
0_No
;
:: thesis:
not b
<=
a
Ny2 is
positive
by
A3
,
A25
;
hence
not b
<=
a
by
A29
,
A28
,
TARSKI:def 1
;
:: thesis:
verum
end;
suppose
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
y1 & a
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
;
:: thesis:
not b
<=
a
then
consider
xL being
Surreal
, r being
positive
Real
such that
A30
:
( xL
in
L_
y1 & a
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
;
A31
:
xL
in
(
L_
y1
)
\/
(
R_
y1
)
by
A30
,
XBOOLE_0:def 3
;
then
(
born
xL
c=
born
y1 &
born
y1
c=
D )
by
SURREALO:1
,
SURREAL0:def 18
,
ORDINAL1:def 2
,
A25
;
then
born
xL
c=
D
by
XBOOLE_1:1
;
then
A32
:
( xL
in
Day
(
born
xL
)
&
Day
(
born
xL
)
c=
Day
D )
by
SURREAL0:def 18
,
SURREAL0:35
;
then
reconsider
NxL =
No_omega^
xL as
positive
Surreal
by
A3
;
y2
in
{
y2
}
by
TARSKI:def 1
;
then
A33
:
xL
<
y2
by
A26
,
A30
;
(
born
xL
)
(+)
(
born
y2
)
in
E
by
A31
,
SURREALO:1
,
A25
,
ORDINAL7:94
;
then
NxL
infinitely<
Ny2
by
A25
,
A32
,
A33
,
A24
;
then
NxL
*
(
uReal
.
r
)
<
Ny2
;
hence
not b
<=
a
by
A30
,
A28
,
TARSKI:def 1
;
:: thesis:
verum
end;
end;
end;
{
Ny1
}
<<
R_
Ny2
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
{
Ny1
}
or not b
in
R_
Ny2 or not b
<=
a )
assume
A34
:
( a
in
{
Ny1
}
& b
in
R_
Ny2 )
;
:: thesis:
not b
<=
a
consider
xR being
Surreal
, r being
positive
Real
such that
A35
:
( xR
in
R_
y2 & b
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
)
by
A25
,
A34
,
Lm4
;
A36
:
xR
in
(
L_
y2
)
\/
(
R_
y2
)
by
A35
,
XBOOLE_0:def 3
;
then
(
born
xR
c=
born
y2 &
born
y2
c=
D )
by
SURREALO:1
,
SURREAL0:def 18
,
ORDINAL1:def 2
,
A25
;
then
born
xR
c=
D
by
XBOOLE_1:1
;
then
A37
:
( xR
in
Day
(
born
xR
)
&
Day
(
born
xR
)
c=
Day
D )
by
SURREAL0:def 18
,
SURREAL0:35
;
then
reconsider
NxR =
No_omega^
xR as
positive
Surreal
by
A3
;
y1
in
{
y1
}
by
TARSKI:def 1
;
then
A38
:
y1
<
xR
by
A26
,
A35
;
(
born
y1
)
(+)
(
born
xR
)
in
E
by
A36
,
SURREALO:1
,
A25
,
ORDINAL7:94
;
then
Ny1
infinitely<
NxR
by
A25
,
A37
,
A38
,
A24
;
then
Ny1
infinitely<
NxR
*
(
uReal
.
r
)
by
Th13
;
then
Ny1
*
(
uReal
.
1
)
<
NxR
*
(
uReal
.
r
)
;
hence
not b
<=
a
by
A35
,
SURREALN:48
,
A34
,
TARSKI:def 1
;
:: thesis:
verum
end;
hence
Ny1
<=
Ny2
by
A27
,
SURREAL0:43
;
:: thesis:
verum
end;
assume
A39
:
y1
<
y2
;
:: thesis:
Ny1
infinitely<
Ny2
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
Ny1
*
(
uReal
.
r
)
<
Ny2
A40
:
(
born
y1
c=
D &
born
y2
c=
D )
by
A25
,
SURREAL0:def 18
;
per
cases
( ex y1R being
Surreal
st
( y1R
in
R_
y1 & y1
<
y1R & y1R
<=
y2 ) or ex y2L being
Surreal
st
( y2L
in
L_
y2 & y1
<=
y2L & y2L
<
y2 ) )
by
A39
,
SURREALO:13
;
suppose
ex y1R being
Surreal
st
( y1R
in
R_
y1 & y1
<
y1R & y1R
<=
y2 )
;
:: thesis:
Ny1
*
(
uReal
.
r
)
<
Ny2
then
consider
y1R being
Surreal
such that
A41
:
( y1R
in
R_
y1 & y1
<
y1R & y1R
<=
y2 )
;
A42
:
y1R
in
(
L_
y1
)
\/
(
R_
y1
)
by
A41
,
XBOOLE_0:def 3
;
then
A43
:
born
y1R
in
born
y1
by
SURREALO:1
;
y1R
in
Day
(
born
y1R
)
by
SURREAL0:def 18
;
then
reconsider
Ny1R =
No_omega^
y1R as
positive
Surreal
by
A43
,
A40
,
A2
;
A44
:
( Ny1
in
{
Ny1
}
&
{
Ny1
}
<<
R_
Ny1 )
by
TARSKI:def 1
,
SURREALO:11
;
A45
:
Ny1
<
Ny1R
*
(
uReal
.
(
1
/
r
)
)
by
A44
,
A41
,
A25
,
Lm4
;
uReal
.
r is
positive
;
then
A46
:
Ny1
*
(
uReal
.
r
)
<
(
Ny1R
*
(
uReal
.
(
1
/
r
)
)
)
*
(
uReal
.
r
)
by
A45
,
SURREALR:70
;
(
1
/
r
)
*
r
=
1
by
XCMPLX_1:106
;
then
(
(
Ny1R
*
(
uReal
.
(
1
/
r
)
)
)
*
(
uReal
.
r
)
==
Ny1R
*
(
(
uReal
.
(
1
/
r
)
)
*
(
uReal
.
r
)
)
& Ny1R
*
(
(
uReal
.
(
1
/
r
)
)
*
(
uReal
.
r
)
)
==
Ny1R
*
1_No
)
by
SURREALR:51
,
SURREALR:69
,
SURREALN:48
,
SURREALN:57
;
then
(
(
Ny1R
*
(
uReal
.
(
1
/
r
)
)
)
*
(
uReal
.
r
)
==
Ny1R
*
1_No
& Ny1R
*
1_No
=
Ny1R )
by
SURREALO:4
;
then
A47
:
Ny1
*
(
uReal
.
r
)
<
Ny1R
by
A46
,
SURREALO:4
;
(
born
y1R
c=
born
y1 &
born
y1
c=
D )
by
ORDINAL1:def 2
,
SURREAL0:def 18
,
SURREALO:1
,
A25
,
A42
;
then
born
y1R
c=
D
by
XBOOLE_1:1
;
then
A48
:
( y1R
in
Day
(
born
y1R
)
&
Day
(
born
y1R
)
c=
Day
D )
by
SURREAL0:def 18
,
SURREAL0:35
;
(
born
y1R
)
(+)
(
born
y2
)
in
(
born
y1
)
(+)
(
born
y2
)
by
A42
,
SURREALO:1
,
ORDINAL7:94
;
then
Ny1R
<=
Ny2
by
A41
,
A48
,
A25
,
A24
;
hence
Ny1
*
(
uReal
.
r
)
<
Ny2
by
A47
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
ex y2L being
Surreal
st
( y2L
in
L_
y2 & y1
<=
y2L & y2L
<
y2 )
;
:: thesis:
Ny1
*
(
uReal
.
r
)
<
Ny2
then
consider
y2L being
Surreal
such that
A49
:
( y2L
in
L_
y2 & y1
<=
y2L & y2L
<
y2 )
;
A50
:
y2L
in
(
L_
y2
)
\/
(
R_
y2
)
by
A49
,
XBOOLE_0:def 3
;
then
A51
:
born
y2L
in
born
y2
by
SURREALO:1
;
y2L
in
Day
(
born
y2L
)
by
SURREAL0:def 18
;
then
reconsider
Ny2L =
No_omega^
y2L as
positive
Surreal
by
A51
,
A40
,
A2
;
A52
:
(
L_
Ny2
<<
{
Ny2
}
& Ny2
in
{
Ny2
}
)
by
TARSKI:def 1
,
SURREALO:11
;
A53
:
Ny2L
*
(
uReal
.
r
)
in
L_
Ny2
by
A49
,
A25
,
Lm4
;
(
born
y2L
c=
born
y2 &
born
y2
c=
D )
by
ORDINAL1:def 2
,
SURREAL0:def 18
,
SURREALO:1
,
A25
,
A50
;
then
born
y2L
c=
D
by
XBOOLE_1:1
;
then
A54
:
( y2L
in
Day
(
born
y2L
)
&
Day
(
born
y2L
)
c=
Day
D )
by
SURREAL0:def 18
,
SURREAL0:35
;
(
born
y1
)
(+)
(
born
y2L
)
in
(
born
y1
)
(+)
(
born
y2
)
by
A50
,
SURREALO:1
,
ORDINAL7:94
;
then
A55
:
Ny1
<=
Ny2L
by
A54
,
A49
,
A25
,
A24
;
uReal
.
r is
positive
;
then
0_No
<=
uReal
.
r
;
then
Ny1
*
(
uReal
.
r
)
<=
Ny2L
*
(
uReal
.
r
)
by
SURREALR:75
,
A55
;
hence
Ny1
*
(
uReal
.
r
)
<
Ny2
by
A53
,
A52
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
A56
:
for E being
Ordinal
holds S
2
[E]
from
ORDINAL1:sch 2
(
A23
);
let
y1, y2, Ny1, Ny2 be
Surreal
;
:: thesis:
( y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 implies ( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) )
assume
A57
:
( y1
in
Day
D & y2
in
Day
D & Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 )
;
:: thesis:
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
S
2
[
(
born
y1
)
(+)
(
born
y2
)
]
by
A56
;
hence
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
by
A57
;
:: thesis:
verum
end;
A58
:
for E being
Ordinal
holds S
1
[E]
from
ORDINAL1:sch 2
(
A1
);
x
in
Day
(
born
x
)
by
SURREAL0:def 18
;
hence
No_omega^
x is
positive
Surreal
by
A58
;
:: thesis:
for y1, y2, Ny1, Ny2 being
Surreal
st Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 holds
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
let
y1, y2, Ny1, Ny2 be
Surreal
;
:: thesis:
( Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 implies ( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) ) )
assume
A59
:
( Ny1
=
No_omega^
y1 & Ny2
=
No_omega^
y2 )
;
:: thesis:
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
A60
:
( y1
in
Day
(
born
y1
)
& y2
in
Day
(
born
y2
)
)
by
SURREAL0:def 18
;
(
Day
(
born
y1
)
c=
Day
(
(
born
y1
)
\/
(
born
y2
)
)
&
Day
(
born
y2
)
c=
Day
(
(
born
y1
)
\/
(
born
y2
)
)
)
by
XBOOLE_1:7
,
SURREAL0:35
;
hence
( ( y1
<=
y2 implies Ny1
<=
Ny2 ) & ( y1
<
y2 implies Ny1
infinitely<
Ny2 ) )
by
A59
,
A60
,
A58
;
:: thesis:
verum
end;
registration
let
x be
Surreal
;
cluster
No_omega^
x
->
surreal
;
coherence
No_omega^
x is
surreal
by
Lm5
;
end;
registration
let
x be
Surreal
;
cluster
No_omega^
x
->
positive
;
coherence
No_omega^
x is
positive
by
Lm5
;
end;
theorem
Th22
:
:: SURREALC:22
for o being
object
for x being
Surreal
holds
( o
in
L_
(
No_omega^
x
)
iff ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) ) )
proof
let
o be
object
;
:: thesis:
for x being
Surreal
holds
( o
in
L_
(
No_omega^
x
)
iff ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) ) )
let
x be
Surreal
;
:: thesis:
( o
in
L_
(
No_omega^
x
)
iff ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) ) )
thus
( not o
in
L_
(
No_omega^
x
)
or o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) )
:: thesis:
( ( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) ) implies o
in
L_
(
No_omega^
x
)
)
proof
assume
( o
in
L_
(
No_omega^
x
)
& not o
=
0_No
)
;
:: thesis:
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
then
consider
xL being
Surreal
, r being
positive
Real
such that
A1
:
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*'
(
uReal
.
r
)
)
by
Lm4
;
o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
by
A1
;
hence
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
by
A1
;
:: thesis:
verum
end;
assume
( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) )
;
:: thesis:
o
in
L_
(
No_omega^
x
)
per
cases
then
( o
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) )
;
suppose
o
=
0_No
;
:: thesis:
o
in
L_
(
No_omega^
x
)
hence
o
in
L_
(
No_omega^
x
)
by
Lm4
;
:: thesis:
verum
end;
suppose
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
;
:: thesis:
o
in
L_
(
No_omega^
x
)
hence
o
in
L_
(
No_omega^
x
)
by
Lm4
;
:: thesis:
verum
end;
end;
end;
theorem
Th23
:
:: SURREALC:23
for o being
object
for x being
Surreal
holds
( o
in
R_
(
No_omega^
x
)
iff ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) )
proof
let
o be
object
;
:: thesis:
for x being
Surreal
holds
( o
in
R_
(
No_omega^
x
)
iff ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) )
let
x be
Surreal
;
:: thesis:
( o
in
R_
(
No_omega^
x
)
iff ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) )
thus
( o
in
R_
(
No_omega^
x
)
implies ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) )
:: thesis:
( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
)
proof
assume
o
in
R_
(
No_omega^
x
)
;
:: thesis:
ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
then
consider
xR being
Surreal
, r being
positive
Real
such that
A1
:
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*'
(
uReal
.
r
)
)
by
Lm4
;
o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
by
A1
;
hence
ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
by
A1
;
:: thesis:
verum
end;
thus
( ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
x & o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
) implies o
in
R_
(
No_omega^
x
)
)
by
Lm4
;
:: thesis:
verum
end;
theorem
:: SURREALC:24
for x, y being
Surreal
st x
<=
y holds
No_omega^
x
<=
No_omega^
y
by
Lm5
;
theorem
Th25
:
:: SURREALC:25
for x, y being
Surreal
st x
<
y holds
No_omega^
x
infinitely<
No_omega^
y
by
Lm5
;
theorem
Th26
:
:: SURREALC:26
No_omega^
0_No
=
1_No
proof
set
O =
No_omega^
0_No
;
A1
:
0_No
in
L_
(
No_omega^
0_No
)
by
Th22
;
L_
(
No_omega^
0_No
)
c=
{
0_No
}
proof
let
o be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not o
in
L_
(
No_omega^
0_No
)
or o
in
{
0_No
}
)
assume
A2
:
( o
in
L_
(
No_omega^
0_No
)
& not o
in
{
0_No
}
)
;
:: thesis:
contradiction
o
<>
0_No
by
A2
,
TARSKI:def 1
;
then
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
0_No
& o
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
by
A2
,
Th22
;
hence
contradiction
;
:: thesis:
verum
end;
then
A3
:
L_
(
No_omega^
0_No
)
=
{
0_No
}
by
A1
,
ZFMISC_1:33
;
R_
(
No_omega^
0_No
)
=
{}
proof
assume
R_
(
No_omega^
0_No
)
<>
{}
;
:: thesis:
contradiction
then
consider
o being
object
such that
A4
:
o
in
R_
(
No_omega^
0_No
)
by
XBOOLE_0:def 1
;
ex xR being
Surreal
ex r being
positive
Real
st
( xR
in
R_
0_No
& o
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
by
A4
,
Th23
;
hence
contradiction
;
:: thesis:
verum
end;
hence
No_omega^
0_No
=
1_No
by
A3
;
:: thesis:
verum
end;
theorem
Th27
:
:: SURREALC:27
for x, y being
Surreal
holds
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
proof
let
x, y be
Surreal
;
:: thesis:
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
defpred
S
1
[
Ordinal
]
means
for x, y being
Surreal
st
(
born
x
)
(+)
(
born
y
)
=
$1 holds
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
;
A1
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A2
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
let
x, y be
Surreal
;
:: thesis:
(
(
born
x
)
(+)
(
born
y
)
=
D implies
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
)
assume
A3
:
(
born
x
)
(+)
(
born
y
)
=
D
;
:: thesis:
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
set
Nx =
No_omega^
x;
set
Ny =
No_omega^
y;
set
xy = x
+
y;
set
Nxy =
No_omega^
(
x
+
y
)
;
A4
:
(
No_omega^
x
)
*
(
No_omega^
y
)
=
[
(
(
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
)
\/
(
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
)
)
,
(
(
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
)
\/
(
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
)
)
]
by
SURREALR:50
;
A5
:
x
+
y
=
[
(
(
(
L_
x
)
++
{
y
}
)
\/
(
{
x
}
++
(
L_
y
)
)
)
,
(
(
(
R_
x
)
++
{
y
}
)
\/
(
{
x
}
++
(
R_
y
)
)
)
]
by
SURREALR:28
;
A6
:
for a being
Surreal
st a
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
holds
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
proof
let
a be
Surreal
;
:: thesis:
( a
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
implies ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b ) )
assume
A7
:
a
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
per
cases
( a
in
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
) or a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
) )
by
A7
,
A4
,
XBOOLE_0:def 3
;
suppose
a
in
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
consider
x1, y1 being
Surreal
such that
A8
:
( a
=
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
& x1
in
R_
(
No_omega^
x
)
& y1
in
R_
(
No_omega^
y
)
)
by
SURREALR:def 15
;
consider
xL being
Surreal
, r being
positive
Real
such that
A9
:
( xL
in
R_
x & x1
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
by
A8
,
Th23
;
consider
yL being
Surreal
, s being
positive
Real
such that
A10
:
( yL
in
R_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
by
A8
,
Th23
;
A11
:
0_No
<
y1
by
A10
,
SURREALI:def 8
;
A12
:
0_No
<
x1
by
A9
,
SURREALI:def 8
;
set
H =
uReal
.
(
1
/
2
)
;
(
1
/
2
)
+
(
1
/
2
)
=
1
;
then
(
(
(
x1
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
x1
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
==
(
x1
*
y1
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
&
(
x1
*
y1
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
x1
*
y1
)
*
1_No
&
(
x1
*
y1
)
*
1_No
=
x1
*
y1 )
by
SURREALN:55
,
SURREALN:48
,
SURREALR:51
,
SURREALR:67
;
then
A13
:
(
(
x1
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
x1
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
==
x1
*
y1
by
SURREALO:4
;
( x
in
{
x
}
&
{
x
}
<<
R_
x )
by
TARSKI:def 1
,
SURREALO:11
;
then
No_omega^
x
infinitely<
No_omega^
xL
by
A9
,
Th25
;
then
No_omega^
x
infinitely<
x1
by
A9
,
Th13
;
then
No_omega^
x
infinitely<
(
uReal
.
(
1
/
2
)
)
*
x1
by
Th13
;
then
No_omega^
x
<
(
uReal
.
(
1
/
2
)
)
*
x1
by
Th9
;
then
(
(
No_omega^
x
)
*
y1
<=
(
(
uReal
.
(
1
/
2
)
)
*
x1
)
*
y1 &
(
(
uReal
.
(
1
/
2
)
)
*
x1
)
*
y1
==
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
)
by
SURREALR:70
,
A11
,
SURREALR:69
;
then
A14
:
(
No_omega^
x
)
*
y1
<=
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
by
SURREALO:4
;
( y
in
{
y
}
&
{
y
}
<<
R_
y )
by
TARSKI:def 1
,
SURREALO:11
;
then
No_omega^
y
infinitely<
No_omega^
yL
by
A10
,
Th25
;
then
No_omega^
y
infinitely<
y1
by
Th13
,
A10
;
then
No_omega^
y
infinitely<
(
uReal
.
(
1
/
2
)
)
*
y1
by
Th13
;
then
No_omega^
y
<
(
uReal
.
(
1
/
2
)
)
*
y1
by
Th9
;
then
(
(
No_omega^
y
)
*
x1
<=
(
(
uReal
.
(
1
/
2
)
)
*
y1
)
*
x1 &
(
(
uReal
.
(
1
/
2
)
)
*
y1
)
*
x1
==
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
)
by
SURREALR:70
,
A12
,
SURREALR:69
;
then
(
No_omega^
y
)
*
x1
<=
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
by
SURREALO:4
;
then
(
(
No_omega^
x
)
*
y1
)
+
(
(
No_omega^
y
)
*
x1
)
<=
(
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
)
+
(
(
uReal
.
(
1
/
2
)
)
*
(
x1
*
y1
)
)
by
SURREALR:43
,
A14
;
then
(
(
No_omega^
x
)
*
y1
)
+
(
(
No_omega^
y
)
*
x1
)
<=
x1
*
y1
by
A13
,
SURREALO:4
;
then
( a
<=
0_No
&
0_No
in
L_
(
No_omega^
(
x
+
y
)
)
)
by
A8
,
Th22
,
SURREALR:45
;
hence
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
;
:: thesis:
verum
end;
suppose
a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
consider
x1, y1 being
Surreal
such that
A15
:
( a
=
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
& x1
in
L_
(
No_omega^
x
)
& y1
in
L_
(
No_omega^
y
)
)
by
SURREALR:def 15
;
per
cases
( x1
=
0_No
or ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & x1
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
) )
by
A15
,
Th22
;
suppose
A16
:
x1
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
per
cases
( y1
=
0_No
or ex yL being
Surreal
ex s being
positive
Real
st
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
) )
by
A15
,
Th22
;
suppose
y1
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
a
in
L_
(
No_omega^
(
x
+
y
)
)
by
Th22
,
A16
,
A15
;
hence
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
;
:: thesis:
verum
end;
suppose
ex yL being
Surreal
ex s being
positive
Real
st
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
consider
yL being
Surreal
, s being
positive
Real
such that
A17
:
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
;
yL
in
(
L_
y
)
\/
(
R_
y
)
by
A17
,
XBOOLE_0:def 3
;
then
A18
:
(
born
x
)
(+)
(
born
yL
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
a19
:
( a
==
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
&
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
by
A17
,
A18
,
A3
,
A2
,
SURREALR:69
,
SURREALR:54
,
A15
,
A16
;
x
in
{
x
}
by
TARSKI:def 1
;
then
x
+
yL
in
{
x
}
++
(
L_
y
)
by
A17
,
SURREALR:def 8
;
then
x
+
yL
in
L_
(
x
+
y
)
by
A5
,
XBOOLE_0:def 3
;
then
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
in
L_
(
No_omega^
(
x
+
y
)
)
by
Th22
;
hence
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
by
a19
,
SURREALO:9
;
:: thesis:
verum
end;
end;
end;
suppose
ex xL being
Surreal
ex r being
positive
Real
st
( xL
in
L_
x & x1
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
consider
xL being
Surreal
, r being
positive
Real
such that
A20
:
( xL
in
L_
x & x1
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
;
A21
:
xL
in
(
L_
x
)
\/
(
R_
x
)
by
A20
,
XBOOLE_0:def 3
;
then
born
xL
in
born
x
by
SURREALO:1
;
then
A22
:
(
No_omega^
xL
)
*
(
No_omega^
y
)
==
No_omega^
(
xL
+
y
)
by
A3
,
A2
,
ORDINAL7:94
;
A23
:
(
(
(
uReal
.
r
)
*
(
No_omega^
xL
)
)
*
(
No_omega^
y
)
==
(
uReal
.
r
)
*
(
(
No_omega^
xL
)
*
(
No_omega^
y
)
)
&
(
uReal
.
r
)
*
(
(
No_omega^
xL
)
*
(
No_omega^
y
)
)
==
(
uReal
.
r
)
*
(
No_omega^
(
xL
+
y
)
)
)
by
A22
,
SURREALR:69
,
SURREALR:54
;
then
A24
:
(
(
uReal
.
r
)
*
(
No_omega^
xL
)
)
*
(
No_omega^
y
)
==
(
uReal
.
r
)
*
(
No_omega^
(
xL
+
y
)
)
by
SURREALO:9
;
per
cases
( y1
=
0_No
or ex yL being
Surreal
ex s being
positive
Real
st
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
) )
by
A15
,
Th22
;
suppose
A25
:
y1
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
y
in
{
y
}
by
TARSKI:def 1
;
then
xL
+
y
in
(
L_
x
)
++
{
y
}
by
A20
,
SURREALR:def 8
;
then
xL
+
y
in
L_
(
x
+
y
)
by
A5
,
XBOOLE_0:def 3
;
then
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
r
)
in
L_
(
No_omega^
(
x
+
y
)
)
by
Th22
;
hence
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
by
A20
,
A23
,
SURREALO:9
,
A15
,
A25
;
:: thesis:
verum
end;
suppose
ex yL being
Surreal
ex s being
positive
Real
st
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
consider
yL being
Surreal
, s being
positive
Real
such that
A27
:
( yL
in
L_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
;
yL
in
(
L_
y
)
\/
(
R_
y
)
by
A27
,
XBOOLE_0:def 3
;
then
(
(
born
xL
)
(+)
(
born
yL
)
in
(
born
x
)
(+)
(
born
yL
)
&
(
born
x
)
(+)
(
born
yL
)
in
(
born
x
)
(+)
(
born
y
)
)
by
A21
,
SURREALO:1
,
ORDINAL7:94
;
then
(
(
No_omega^
x
)
*
y1
==
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
&
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
by
A3
,
A2
,
A27
,
SURREALR:69
,
SURREALR:54
;
then
A28
:
(
No_omega^
x
)
*
y1
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
by
SURREALO:9
;
A29
:
(
-
(
x1
*
y1
)
<=
-
0_No
&
-
0_No
=
0_No
)
by
A20
,
A27
,
SURREALI:def 8
,
SURREALR:10
;
x
in
{
x
}
by
TARSKI:def 1
;
then
x
+
yL
in
{
x
}
++
(
L_
y
)
by
A27
,
SURREALR:def 8
;
then
A30
:
x
+
yL
in
L_
(
x
+
y
)
by
A5
,
XBOOLE_0:def 3
;
y
in
{
y
}
by
TARSKI:def 1
;
then
xL
+
y
in
(
L_
x
)
++
{
y
}
by
A20
,
SURREALR:def 8
;
then
A31
:
xL
+
y
in
L_
(
x
+
y
)
by
A5
,
XBOOLE_0:def 3
;
per
cases
( xL
+
y
<=
x
+
yL or x
+
yL
<=
xL
+
y )
;
suppose
xL
+
y
<=
x
+
yL
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
A32
:
No_omega^
(
xL
+
y
)
<=
No_omega^
(
x
+
yL
)
by
Lm5
;
0_No
<=
uReal
.
r
by
SURREALI:def 8
;
then
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
r
)
<=
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
r
)
by
A32
,
SURREALR:75
;
then
x1
*
(
No_omega^
y
)
<=
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
r
)
by
A20
,
A24
,
SURREALO:4
;
then
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
<=
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
r
)
)
+
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
&
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
r
)
)
+
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
by
A28
,
SURREALR:43
,
SURREALR:67
;
then
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
<=
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
by
SURREALO:4
;
then
A33
:
(
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
)
+
(
-
(
x1
*
y1
)
)
<=
(
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
+
0_No
&
(
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
+
0_No
=
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
by
A29
,
SURREALR:43
;
A34
:
(
No_omega^
(
x
+
yL
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
(
r
+
s
)
)
by
SURREALR:54
,
SURREALN:55
;
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
(
r
+
s
)
)
in
L_
(
No_omega^
(
x
+
y
)
)
by
A30
,
Th22
;
hence
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
by
A34
,
A33
,
A15
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
x
+
yL
<=
xL
+
y
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
b )
then
A35
:
No_omega^
(
x
+
yL
)
<=
No_omega^
(
xL
+
y
)
by
Lm5
;
0_No
<=
uReal
.
s
by
SURREALI:def 8
;
then
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
<=
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
s
)
by
A35
,
SURREALR:75
;
then
(
No_omega^
x
)
*
y1
<=
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
s
)
by
A28
,
SURREALO:4
;
then
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
<=
(
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
r
)
)
+
(
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
s
)
)
&
(
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
r
)
)
+
(
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
s
)
)
==
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
by
A20
,
A24
,
SURREALR:43
,
SURREALR:67
;
then
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
<=
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
by
SURREALO:4
;
then
A36
:
(
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
)
+
(
-
(
x1
*
y1
)
)
<=
(
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
+
0_No
&
(
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
+
0_No
=
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
)
by
A29
,
SURREALR:43
;
A37
:
(
No_omega^
(
xL
+
y
)
)
*
(
(
uReal
.
r
)
+
(
uReal
.
s
)
)
==
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
(
r
+
s
)
)
by
SURREALR:54
,
SURREALN:55
;
take
Y2 =
(
No_omega^
(
xL
+
y
)
)
*
(
uReal
.
(
r
+
s
)
)
;
:: thesis:
( Y2
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
Y2 )
thus
( Y2
in
L_
(
No_omega^
(
x
+
y
)
)
& a
<=
Y2 )
by
A37
,
A31
,
Th22
,
A36
,
A15
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
end;
end;
end;
end;
end;
end;
A38
:
for a being
Surreal
st a
in
R_
(
No_omega^
(
x
+
y
)
)
holds
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
proof
let
a be
Surreal
;
:: thesis:
( a
in
R_
(
No_omega^
(
x
+
y
)
)
implies ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a ) )
assume
A39
:
a
in
R_
(
No_omega^
(
x
+
y
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
consider
xR being
Surreal
, r being
positive
Real
such that
A40
:
( xR
in
R_
(
x
+
y
)
& a
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
by
A39
,
Th23
;
per
cases
( xR
in
(
R_
x
)
++
{
y
}
or xR
in
{
x
}
++
(
R_
y
)
)
by
A40
,
A5
,
XBOOLE_0:def 3
;
suppose
xR
in
(
R_
x
)
++
{
y
}
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
then
consider
x1, y1 being
Surreal
such that
A41
:
( x1
in
R_
x & y1
in
{
y
}
& xR
=
x1
+
y1 )
by
SURREALR:def 8
;
set
R =
(
No_omega^
x1
)
*
(
uReal
.
r
)
;
set
A =
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
;
A42
:
(
No_omega^
x1
)
*
(
uReal
.
r
)
in
R_
(
No_omega^
x
)
by
A41
,
Th23
;
0_No
in
L_
(
No_omega^
y
)
by
Th22
;
then
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
in
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
by
A42
,
SURREALR:def 15
;
then
A43
:
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
by
XBOOLE_0:def 3
,
A4
;
A44
:
a
=
(
No_omega^
(
x1
+
y
)
)
*
(
uReal
.
r
)
by
A40
,
A41
,
TARSKI:def 1
;
x1
in
(
L_
x
)
\/
(
R_
x
)
by
A41
,
XBOOLE_0:def 3
;
then
(
born
x1
)
(+)
(
born
y
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
then
( a
==
(
(
No_omega^
y
)
*
(
No_omega^
x1
)
)
*
(
uReal
.
r
)
&
(
(
No_omega^
y
)
*
(
No_omega^
x1
)
)
*
(
uReal
.
r
)
==
(
No_omega^
y
)
*
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
)
by
A3
,
A2
,
SURREALR:54
,
A44
,
SURREALR:69
;
hence
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
by
A43
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
xR
in
{
x
}
++
(
R_
y
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
then
consider
x1, y1 being
Surreal
such that
A45
:
( x1
in
{
x
}
& y1
in
R_
y & xR
=
x1
+
y1 )
by
SURREALR:def 8
;
set
R =
(
No_omega^
y1
)
*
(
uReal
.
r
)
;
set
A =
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
;
A46
:
(
No_omega^
y1
)
*
(
uReal
.
r
)
in
R_
(
No_omega^
y
)
by
A45
,
Th23
;
0_No
in
L_
(
No_omega^
x
)
by
Th22
;
then
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
by
A46
,
SURREALR:def 15
;
then
A47
:
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
by
XBOOLE_0:def 3
,
A4
;
A48
:
a
=
(
No_omega^
(
x
+
y1
)
)
*
(
uReal
.
r
)
by
A40
,
A45
,
TARSKI:def 1
;
y1
in
(
L_
y
)
\/
(
R_
y
)
by
A45
,
XBOOLE_0:def 3
;
then
(
born
x
)
(+)
(
born
y1
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
then
( a
==
(
(
No_omega^
x
)
*
(
No_omega^
y1
)
)
*
(
uReal
.
r
)
&
(
(
No_omega^
x
)
*
(
No_omega^
y1
)
)
*
(
uReal
.
r
)
==
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
by
A3
,
A2
,
SURREALR:54
,
A48
,
SURREALR:69
;
hence
ex b being
Surreal
st
( b
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& b
<=
a )
by
A47
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
A49
:
(
(
No_omega^
x
)
*
(
No_omega^
y
)
=
[
(
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
)
,
(
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
)
]
&
No_omega^
(
x
+
y
)
=
[
(
L_
(
No_omega^
(
x
+
y
)
)
)
,
(
R_
(
No_omega^
(
x
+
y
)
)
)
]
)
;
A50
:
for a being
Surreal
st a
in
L_
(
No_omega^
(
x
+
y
)
)
holds
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
proof
let
a be
Surreal
;
:: thesis:
( a
in
L_
(
No_omega^
(
x
+
y
)
)
implies ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b ) )
assume
A51
:
a
in
L_
(
No_omega^
(
x
+
y
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
per
cases
( a
=
0_No
or not a
=
0_No
)
;
suppose
A52
:
a
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
set
A =
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
0_No
*
0_No
)
;
(
0_No
in
L_
(
No_omega^
x
)
&
0_No
in
L_
(
No_omega^
y
)
)
by
Th22
;
then
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
0_No
*
0_No
)
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
by
SURREALR:def 15
;
then
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
0_No
*
0_No
)
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
by
XBOOLE_0:def 3
,
A4
;
hence
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
by
A52
;
:: thesis:
verum
end;
suppose
not a
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
then
consider
xR being
Surreal
, r being
positive
Real
such that
A53
:
( xR
in
L_
(
x
+
y
)
& a
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
by
A51
,
Th22
;
per
cases
( xR
in
(
L_
x
)
++
{
y
}
or xR
in
{
x
}
++
(
L_
y
)
)
by
A53
,
A5
,
XBOOLE_0:def 3
;
suppose
xR
in
(
L_
x
)
++
{
y
}
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
then
consider
x1, y1 being
Surreal
such that
A54
:
( x1
in
L_
x & y1
in
{
y
}
& xR
=
x1
+
y1 )
by
SURREALR:def 8
;
set
R =
(
No_omega^
x1
)
*
(
uReal
.
r
)
;
set
A =
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
;
A55
:
(
No_omega^
x1
)
*
(
uReal
.
r
)
in
L_
(
No_omega^
x
)
by
A54
,
Th22
;
0_No
in
L_
(
No_omega^
y
)
by
Th22
;
then
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
by
A55
,
SURREALR:def 15
;
then
A56
:
(
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
0_No
)
)
-
(
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
*
0_No
)
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
by
XBOOLE_0:def 3
,
A4
;
A57
:
a
=
(
No_omega^
(
x1
+
y
)
)
*
(
uReal
.
r
)
by
A54
,
TARSKI:def 1
,
A53
;
x1
in
(
L_
x
)
\/
(
R_
x
)
by
A54
,
XBOOLE_0:def 3
;
then
(
born
x1
)
(+)
(
born
y
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
then
( a
==
(
(
No_omega^
y
)
*
(
No_omega^
x1
)
)
*
(
uReal
.
r
)
&
(
(
No_omega^
y
)
*
(
No_omega^
x1
)
)
*
(
uReal
.
r
)
==
(
No_omega^
y
)
*
(
(
No_omega^
x1
)
*
(
uReal
.
r
)
)
)
by
A3
,
A2
,
SURREALR:54
,
A57
,
SURREALR:69
;
hence
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
by
A56
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
xR
in
{
x
}
++
(
L_
y
)
;
:: thesis:
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
then
consider
x1, y1 being
Surreal
such that
A58
:
( x1
in
{
x
}
& y1
in
L_
y & xR
=
x1
+
y1 )
by
SURREALR:def 8
;
A59
:
x1
=
x
by
A58
,
TARSKI:def 1
;
set
R =
(
No_omega^
y1
)
*
(
uReal
.
r
)
;
set
A =
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
;
A60
:
(
No_omega^
y1
)
*
(
uReal
.
r
)
in
L_
(
No_omega^
y
)
by
A58
,
Th22
;
0_No
in
L_
(
No_omega^
x
)
by
Th22
;
then
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
by
A60
,
SURREALR:def 15
;
then
A61
:
(
(
0_No
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
)
-
(
0_No
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
by
XBOOLE_0:def 3
,
A4
;
y1
in
(
L_
y
)
\/
(
R_
y
)
by
A58
,
XBOOLE_0:def 3
;
then
(
born
x
)
(+)
(
born
y1
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
then
( a
==
(
(
No_omega^
x
)
*
(
No_omega^
y1
)
)
*
(
uReal
.
r
)
&
(
(
No_omega^
x
)
*
(
No_omega^
y1
)
)
*
(
uReal
.
r
)
==
(
No_omega^
x
)
*
(
(
No_omega^
y1
)
*
(
uReal
.
r
)
)
)
by
A3
,
A2
,
SURREALR:54
,
A53
,
A58
,
A59
,
SURREALR:69
;
hence
ex b being
Surreal
st
( b
in
L_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
& a
<=
b )
by
A61
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
end;
end;
A62
:
for x, y, a being
Surreal
st
(
born
x
)
(+)
(
born
y
)
=
D & a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
) holds
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
proof
let
x, y, a be
Surreal
;
:: thesis:
(
(
born
x
)
(+)
(
born
y
)
=
D & a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
) implies ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a ) )
assume
A63
:
(
born
x
)
(+)
(
born
y
)
=
D
;
:: thesis:
( not a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
) or ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a ) )
set
Nx =
No_omega^
x;
set
Ny =
No_omega^
y;
assume
a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
then
consider
x1, y1 being
Surreal
such that
A64
:
( a
=
(
(
x1
*
(
No_omega^
y
)
)
+
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
& x1
in
L_
(
No_omega^
x
)
& y1
in
R_
(
No_omega^
y
)
)
by
SURREALR:def 15
;
A65
:
x
+
y
=
[
(
(
(
L_
x
)
++
{
y
}
)
\/
(
{
x
}
++
(
L_
y
)
)
)
,
(
(
(
R_
x
)
++
{
y
}
)
\/
(
{
x
}
++
(
R_
y
)
)
)
]
by
SURREALR:28
;
consider
yL being
Surreal
, s being
positive
Real
such that
A66
:
( yL
in
R_
y & y1
=
(
No_omega^
yL
)
*
(
uReal
.
s
)
)
by
A64
,
Th23
;
yL
in
(
L_
y
)
\/
(
R_
y
)
by
A66
,
XBOOLE_0:def 3
;
then
A67
:
(
born
x
)
(+)
(
born
yL
)
in
(
born
x
)
(+)
(
born
y
)
by
ORDINAL7:94
,
SURREALO:1
;
per
cases
( x1
=
0_No
or x1
<>
0_No
)
;
suppose
A68
:
x1
=
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
( a
==
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
&
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
by
A66
,
A64
,
A68
,
A67
,
A63
,
A2
,
SURREALR:69
,
SURREALR:54
;
then
A69
:
a
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
by
SURREALO:9
;
x
in
{
x
}
by
TARSKI:def 1
;
then
x
+
yL
in
{
x
}
++
(
R_
y
)
by
A66
,
SURREALR:def 8
;
then
x
+
yL
in
R_
(
x
+
y
)
by
A65
,
XBOOLE_0:def 3
;
hence
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
by
A69
,
Th23
;
:: thesis:
verum
end;
suppose
x1
<>
0_No
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
then
consider
xL being
Surreal
, r being
positive
Real
such that
A70
:
( xL
in
L_
x & x1
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
by
A64
,
Th22
;
(
(
No_omega^
x
)
*
y1
==
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
&
(
(
No_omega^
x
)
*
(
No_omega^
yL
)
)
*
(
uReal
.
s
)
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
by
A66
,
A67
,
A63
,
A2
,
SURREALR:69
,
SURREALR:54
;
then
A71
:
(
No_omega^
x
)
*
y1
==
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
by
SURREALO:9
;
x
in
{
x
}
by
TARSKI:def 1
;
then
x
+
yL
in
{
x
}
++
(
R_
y
)
by
A66
,
SURREALR:def 8
;
then
A72
:
x
+
yL
in
R_
(
x
+
y
)
by
A65
,
XBOOLE_0:def 3
;
A73
:
0_No
<=
y1
by
A66
,
SURREALI:def 8
;
A74
:
0_No
<=
x1
*
(
No_omega^
y
)
by
A70
,
SURREALI:def 8
;
set
H =
uReal
.
(
1
/
2
)
;
(
1
/
2
)
+
(
1
/
2
)
=
1
;
then
(
(
(
(
No_omega^
x
)
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
(
No_omega^
x
)
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
==
(
(
No_omega^
x
)
*
y1
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
&
(
(
No_omega^
x
)
*
y1
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
(
No_omega^
x
)
*
y1
)
*
1_No
&
(
(
No_omega^
x
)
*
y1
)
*
1_No
=
(
No_omega^
x
)
*
y1 )
by
SURREALN:55
,
SURREALN:48
,
SURREALR:51
,
SURREALR:67
;
then
(
(
(
No_omega^
x
)
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
(
No_omega^
x
)
*
y1
)
*
(
uReal
.
(
1
/
2
)
)
)
==
(
No_omega^
x
)
*
y1
by
SURREALO:4
;
then
A75
:
(
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
)
+
(
-
(
x1
*
y1
)
)
==
(
(
No_omega^
x
)
*
y1
)
+
(
-
(
x1
*
y1
)
)
by
SURREALR:32
;
( x
in
{
x
}
&
L_
x
<<
{
x
}
)
by
TARSKI:def 1
,
SURREALO:11
;
then
No_omega^
xL
infinitely<
No_omega^
x
by
A70
,
Th25
;
then
x1
infinitely<
No_omega^
x
by
A70
,
Th13
;
then
x1
infinitely<
(
uReal
.
(
1
/
2
)
)
*
(
No_omega^
x
)
by
Th13
;
then
x1
<=
(
uReal
.
(
1
/
2
)
)
*
(
No_omega^
x
)
by
Th9
;
then
( x1
*
y1
<=
(
(
uReal
.
(
1
/
2
)
)
*
(
No_omega^
x
)
)
*
y1 &
(
(
uReal
.
(
1
/
2
)
)
*
(
No_omega^
x
)
)
*
y1
==
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
by
A73
,
SURREALR:75
,
SURREALR:69
;
then
x1
*
y1
<=
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
by
SURREALO:4
;
then
0_No
<=
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
by
SURREALR:46
;
then
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
=
0_No
+
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
&
0_No
+
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
<=
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
(
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
)
&
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
(
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
-
(
x1
*
y1
)
)
=
(
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
)
+
(
-
(
x1
*
y1
)
)
)
by
SURREALR:43
,
SURREALR:37
;
then
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
<=
(
(
No_omega^
x
)
*
y1
)
+
(
-
(
x1
*
y1
)
)
by
A75
,
SURREALO:4
;
then
A76
:
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
=
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
0_No
&
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
)
+
0_No
<=
(
x1
*
(
No_omega^
y
)
)
+
(
(
(
No_omega^
x
)
*
y1
)
+
(
-
(
x1
*
y1
)
)
)
&
(
x1
*
(
No_omega^
y
)
)
+
(
(
(
No_omega^
x
)
*
y1
)
+
(
-
(
x1
*
y1
)
)
)
=
a )
by
A74
,
A64
,
SURREALR:43
,
SURREALR:37
;
(
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
==
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
&
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
(
x
+
yL
)
)
*
(
uReal
.
s
)
)
==
(
(
uReal
.
(
1
/
2
)
)
*
(
uReal
.
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
)
by
A71
,
SURREALR:54
,
SURREALR:69
;
then
A77
:
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
==
(
(
uReal
.
(
1
/
2
)
)
*
(
uReal
.
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
by
SURREALO:4
;
(
(
uReal
.
(
1
/
2
)
)
*
(
uReal
.
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
==
(
uReal
.
(
(
1
/
2
)
*
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
by
SURREALR:54
,
SURREALN:57
;
then
(
uReal
.
(
1
/
2
)
)
*
(
(
No_omega^
x
)
*
y1
)
==
(
uReal
.
(
(
1
/
2
)
*
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
by
A77
,
SURREALO:4
;
then
(
uReal
.
(
(
1
/
2
)
*
s
)
)
*
(
No_omega^
(
x
+
yL
)
)
<=
a
by
A76
,
SURREALO:4
;
hence
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
by
A72
,
Th23
;
:: thesis:
verum
end;
end;
end;
for a being
Surreal
st a
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
holds
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
proof
let
a be
Surreal
;
:: thesis:
( a
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
implies ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a ) )
assume
a
in
R_
(
(
No_omega^
x
)
*
(
No_omega^
y
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
per
cases
then
( a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
) or a
in
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
) )
by
A4
,
XBOOLE_0:def 3
;
suppose
a
in
comp
(
(
L_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
R_
(
No_omega^
y
)
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
hence
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
by
A62
,
A3
;
:: thesis:
verum
end;
suppose
a
in
comp
(
(
R_
(
No_omega^
x
)
)
,
(
No_omega^
x
)
,
(
No_omega^
y
)
,
(
L_
(
No_omega^
y
)
)
)
;
:: thesis:
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
then
a
in
comp
(
(
L_
(
No_omega^
y
)
)
,
(
No_omega^
y
)
,
(
No_omega^
x
)
,
(
R_
(
No_omega^
x
)
)
)
by
SURREALR:53
;
hence
ex b being
Surreal
st
( b
in
R_
(
No_omega^
(
x
+
y
)
)
& b
<=
a )
by
A62
,
A3
;
:: thesis:
verum
end;
end;
end;
hence
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
by
A6
,
A38
,
SURREAL0:44
,
A49
,
A50
;
:: thesis:
verum
end;
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A1
);
hence
(
No_omega^
x
)
*
(
No_omega^
y
)
==
No_omega^
(
x
+
y
)
;
:: thesis:
verum
end;
theorem
:: SURREALC:28
for x being
Surreal
holds
(
No_omega^
x
)
"
==
No_omega^
(
-
x
)
proof
let
x be
Surreal
;
:: thesis:
(
No_omega^
x
)
"
==
No_omega^
(
-
x
)
set
X =
No_omega^
x;
A1
:
not
No_omega^
x
==
0_No
by
SURREALI:def 8
;
x
-
x
==
0_No
by
SURREALR:39
;
then
A2
:
(
No_omega^
(
x
-
x
)
==
No_omega^
0_No
&
No_omega^
0_No
=
1_No
)
by
Th26
,
Lm5
;
(
No_omega^
x
)
*
(
No_omega^
(
-
x
)
)
==
No_omega^
(
x
-
x
)
by
Th27
;
then
(
(
No_omega^
x
)
*
(
No_omega^
(
-
x
)
)
==
No_omega^
0_No
&
No_omega^
0_No
=
1_No
)
by
A2
,
SURREALO:4
;
hence
(
No_omega^
x
)
"
==
No_omega^
(
-
x
)
by
SURREALI:42
,
A1
;
:: thesis:
verum
end;
theorem
Th29
:
:: SURREALC:29
for y, xL, x being
Surreal
st xL
<=
x & xL,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
holds
No_omega^
y
infinitely<
x
proof
let
y be
Surreal
;
:: thesis:
for xL, x being
Surreal
st xL
<=
x & xL,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
holds
No_omega^
y
infinitely<
x
set
O =
No_omega^
y;
let
xL, x be
Surreal
;
:: thesis:
( xL
<=
x & xL,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
implies
No_omega^
y
infinitely<
x )
assume
that
A1
:
( xL
<=
x & xL,
No_omega^
y
are_commensurate
)
and
A2
:
not x,
No_omega^
y
are_commensurate
and
A3
:
not
No_omega^
y
infinitely<
x
;
:: thesis:
contradiction
consider
r being
positive
Real
such that
A4
:
not
(
No_omega^
y
)
*
(
uReal
.
r
)
<
x
by
A3
;
consider
n being
Nat
such that
A5
:
r
<
n
by
SEQ_4:3
;
reconsider
n = n as
positive
Nat
by
A5
;
A6
:
No_omega^
y is
positive
;
(
uReal
.
r
<
uReal
.
n &
uReal
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uInt
.
n )
by
A5
,
SURREALN:51
,
SURREALN:46
,
SURREALN:def 5
;
then
(
No_omega^
y
)
*
(
uReal
.
r
)
<
(
No_omega^
y
)
*
(
uInt
.
n
)
by
A6
,
SURREALR:70
;
then
A7
:
x
<
(
No_omega^
y
)
*
(
uInt
.
n
)
by
A4
,
SURREALO:4
;
consider
k being
positive
Nat
such that
A8
:
No_omega^
y
<
(
uInt
.
k
)
*
xL
by
A1
;
uInt
.
k is
positive
;
then
0_No
<=
uInt
.
k
;
then
(
uInt
.
k
)
*
xL
<=
(
uInt
.
k
)
*
x
by
A1
,
SURREALR:75
;
then
No_omega^
y
<
(
uInt
.
k
)
*
x
by
A8
,
SURREALO:4
;
hence
contradiction
by
A2
,
A7
;
:: thesis:
verum
end;
theorem
Th30
:
:: SURREALC:30
for y, x, xR being
Surreal
st
0_No
<
x & x
<=
xR & xR,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
holds
x
infinitely<
No_omega^
y
proof
let
y be
Surreal
;
:: thesis:
for x, xR being
Surreal
st
0_No
<
x & x
<=
xR & xR,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
holds
x
infinitely<
No_omega^
y
set
O =
No_omega^
y;
let
x, xR be
Surreal
;
:: thesis:
(
0_No
<
x & x
<=
xR & xR,
No_omega^
y
are_commensurate
& not x,
No_omega^
y
are_commensurate
implies x
infinitely<
No_omega^
y )
assume
that
A1
:
(
0_No
<
x & x
<=
xR & xR,
No_omega^
y
are_commensurate
)
and
A2
:
not x,
No_omega^
y
are_commensurate
and
A3
:
not x
infinitely<
No_omega^
y
;
:: thesis:
contradiction
consider
r being
positive
Real
such that
A4
:
not x
*
(
uReal
.
r
)
<
No_omega^
y
by
A3
;
consider
n being
Nat
such that
A5
:
r
<
n
by
SEQ_4:3
;
reconsider
n = n as
positive
Nat
by
A5
;
(
uReal
.
r
<
uReal
.
n &
uReal
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uInt
.
n )
by
A5
,
SURREALN:51
,
SURREALN:46
,
SURREALN:def 5
;
then
x
*
(
uReal
.
r
)
<
x
*
(
uInt
.
n
)
by
A1
,
SURREALR:70
;
then
A6
:
No_omega^
y
<
x
*
(
uInt
.
n
)
by
A4
,
SURREALO:4
;
consider
k being
positive
Nat
such that
A7
:
xR
<
(
uInt
.
k
)
*
(
No_omega^
y
)
by
A1
;
x
<
(
uInt
.
k
)
*
(
No_omega^
y
)
by
A7
,
A1
,
SURREALO:4
;
hence
contradiction
by
A2
,
A6
;
:: thesis:
verum
end;
definition
let
x be
Surreal
;
func
|.
x
.|
->
Surreal
equals
:
Def6
:
:: SURREALC:def 6
x
if
0_No
<=
x
otherwise
-
x;
coherence
( (
0_No
<=
x implies x is
Surreal
) & ( not
0_No
<=
x implies
-
x is
Surreal
) )
;
correctness
consistency
for b
1
being
Surreal
holds verum
;
;
end;
::
deftheorem
Def6
defines
|.
SURREALC:def 6 :
for x being
Surreal
holds
( (
0_No
<=
x implies
|.
x
.|
=
x ) & ( not
0_No
<=
x implies
|.
x
.|
=
-
x ) );
theorem
Th31
:
:: SURREALC:31
for x being
Surreal
holds
0_No
<=
|.
x
.|
proof
let
x be
Surreal
;
:: thesis:
0_No
<=
|.
x
.|
per
cases
(
0_No
<=
x or x
<
0_No
)
;
suppose
0_No
<=
x
;
:: thesis:
0_No
<=
|.
x
.|
hence
0_No
<=
|.
x
.|
by
Def6
;
:: thesis:
verum
end;
suppose
A1
:
x
<
0_No
;
:: thesis:
0_No
<=
|.
x
.|
then
(
0_No
=
-
0_No
&
-
0_No
<
-
x )
by
SURREALR:10
;
hence
0_No
<=
|.
x
.|
by
Def6
,
A1
;
:: thesis:
verum
end;
end;
end;
theorem
:: SURREALC:32
for x being
Surreal
holds
(
|.
x
.|
=
x or
|.
x
.|
=
-
x )
by
Def6
;
theorem
:: SURREALC:33
for x being
Surreal
holds
( x
==
0_No
iff
|.
x
.|
==
0_No
)
proof
let
x be
Surreal
;
:: thesis:
( x
==
0_No
iff
|.
x
.|
==
0_No
)
thus
( x
==
0_No
implies
|.
x
.|
==
0_No
)
by
Def6
;
:: thesis:
(
|.
x
.|
==
0_No
implies x
==
0_No
)
assume
A1
:
|.
x
.|
==
0_No
;
:: thesis:
x
==
0_No
thus
x
<=
0_No
by
A1
,
Def6
;
:: according to
SURREALO:def 2
:: thesis:
0_No
<=
x
assume
x
<
0_No
;
:: thesis:
contradiction
then
(
0_No
=
-
0_No
&
-
0_No
<
-
x &
|.
x
.|
=
-
x )
by
Def6
,
SURREALR:10
;
hence
contradiction
by
A1
;
:: thesis:
verum
end;
theorem
Th34
:
:: SURREALC:34
for x being
Surreal
holds
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
proof
let
x be
Surreal
;
:: thesis:
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
per
cases
(
0_No
<=
x or x
<
0_No
)
;
suppose
A1
:
0_No
<=
x
;
:: thesis:
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
then
A2
:
|.
x
.|
=
x
by
Def6
;
(
-
x
<=
-
0_No
&
-
0_No
=
0_No
)
by
A1
,
SURREALR:10
;
hence
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
by
A2
,
A1
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
A3
:
x
<
0_No
;
:: thesis:
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
then
A4
:
(
0_No
=
-
0_No
&
-
0_No
<=
-
x )
by
SURREALR:10
;
|.
x
.|
=
-
x
by
A3
,
Def6
;
hence
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
)
by
A4
,
A3
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th35
:
:: SURREALC:35
for x, y being
Surreal
holds
( (
-
y
<=
x & x
<=
y ) iff
|.
x
.|
<=
y )
proof
let
x, y be
Surreal
;
:: thesis:
( (
-
y
<=
x & x
<=
y ) iff
|.
x
.|
<=
y )
thus
(
-
y
<=
x & x
<=
y implies
|.
x
.|
<=
y )
:: thesis:
(
|.
x
.|
<=
y implies (
-
y
<=
x & x
<=
y ) )
proof
assume
A1
:
(
-
y
<=
x & x
<=
y )
;
:: thesis:
|.
x
.|
<=
y
then
(
-
x
<=
-
(
-
y
)
&
-
(
-
y
)
=
y )
by
SURREALR:10
;
hence
|.
x
.|
<=
y
by
A1
,
Def6
;
:: thesis:
verum
end;
assume
A2
:
|.
x
.|
<=
y
;
:: thesis:
(
-
y
<=
x & x
<=
y )
0_No
<=
|.
x
.|
by
Th31
;
then
A3
:
0_No
<=
y
by
A2
,
SURREALO:4
;
per
cases
(
0_No
<=
x or x
<
0_No
)
;
suppose
A4
:
0_No
<=
x
;
:: thesis:
(
-
y
<=
x & x
<=
y )
(
-
y
<=
-
0_No
&
-
0_No
=
0_No
)
by
A3
,
SURREALR:10
;
hence
(
-
y
<=
x & x
<=
y )
by
A2
,
Def6
,
A4
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
A5
:
x
<
0_No
;
:: thesis:
(
-
y
<=
x & x
<=
y )
-
x
<=
-
(
-
y
)
by
A2
,
A5
,
Def6
;
hence
(
-
y
<=
x & x
<=
y )
by
SURREALR:10
,
A3
,
A5
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th36
:
:: SURREALC:36
for x being
Surreal
st not x
==
0_No
holds
|.
x
.|
is
positive
proof
let
x be
Surreal
;
:: thesis:
( not x
==
0_No
implies
|.
x
.|
is
positive
)
assume
not x
==
0_No
;
:: thesis:
|.
x
.|
is
positive
per
cases
then
(
0_No
<
x or x
<
0_No
)
;
suppose
A1
:
0_No
<
x
;
:: thesis:
|.
x
.|
is
positive
then
0_No
<=
x
;
hence
|.
x
.|
is
positive
by
A1
,
Def6
;
:: thesis:
verum
end;
suppose
A2
:
x
<
0_No
;
:: thesis:
|.
x
.|
is
positive
then
|.
x
.|
=
-
x
by
Def6
;
hence
|.
x
.|
is
positive
by
A2
,
SURREALR:10
,
SURREALR:23
;
:: thesis:
verum
end;
end;
end;
theorem
Th37
:
:: SURREALC:37
for x, y being
Surreal
holds
|.
(
x
+
y
)
.|
<=
|.
x
.|
+
|.
y
.|
proof
let
x, y be
Surreal
;
:: thesis:
|.
(
x
+
y
)
.|
<=
|.
x
.|
+
|.
y
.|
(
-
|.
x
.|
<=
x & x
<=
|.
x
.|
&
-
|.
y
.|
<=
y & y
<=
|.
y
.|
)
by
Th34
;
then
(
-
(
|.
x
.|
+
|.
y
.|
)
=
(
-
|.
x
.|
)
+
(
-
|.
y
.|
)
&
(
-
|.
x
.|
)
+
(
-
|.
y
.|
)
<=
x
+
y & x
+
y
<=
|.
x
.|
+
|.
y
.|
)
by
SURREALR:40
,
SURREALR:43
;
hence
|.
(
x
+
y
)
.|
<=
|.
x
.|
+
|.
y
.|
by
Th35
;
:: thesis:
verum
end;
theorem
Th38
:
:: SURREALC:38
for x being
Surreal
st x
==
0_No
holds
|.
(
-
x
)
.|
==
|.
x
.|
proof
let
x be
Surreal
;
:: thesis:
( x
==
0_No
implies
|.
(
-
x
)
.|
==
|.
x
.|
)
assume
A1
:
x
==
0_No
;
:: thesis:
|.
(
-
x
)
.|
==
|.
x
.|
then
(
-
x
==
-
0_No
&
-
0_No
=
0_No
)
by
SURREALR:10
;
then
(
|.
(
-
x
)
.|
==
0_No
&
|.
x
.|
==
0_No
)
by
A1
,
Def6
;
hence
|.
(
-
x
)
.|
==
|.
x
.|
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th39
:
:: SURREALC:39
for x being
Surreal
st not x
==
0_No
holds
|.
(
-
x
)
.|
=
|.
x
.|
proof
let
x be
Surreal
;
:: thesis:
( not x
==
0_No
implies
|.
(
-
x
)
.|
=
|.
x
.|
)
assume
not x
==
0_No
;
:: thesis:
|.
(
-
x
)
.|
=
|.
x
.|
per
cases
then
(
0_No
<
x or x
<
0_No
)
;
suppose
A1
:
0_No
<
x
;
:: thesis:
|.
(
-
x
)
.|
=
|.
x
.|
then
A2
:
|.
(
-
x
)
.|
=
-
(
-
x
)
by
SURREALR:10
,
SURREALR:23
,
Def6
;
0_No
<=
x
by
A1
;
hence
|.
(
-
x
)
.|
=
|.
x
.|
by
Def6
,
A2
;
:: thesis:
verum
end;
suppose
A3
:
x
<
0_No
;
:: thesis:
|.
(
-
x
)
.|
=
|.
x
.|
then
0_No
<=
-
x
by
SURREALR:10
,
SURREALR:23
;
then
|.
(
-
x
)
.|
=
-
x
by
Def6
;
hence
|.
(
-
x
)
.|
=
|.
x
.|
by
A3
,
Def6
;
:: thesis:
verum
end;
end;
end;
theorem
Th40
:
:: SURREALC:40
for x being
Surreal
holds
|.
(
-
x
)
.|
==
|.
x
.|
by
Th39
,
Th38
;
theorem
Th41
:
:: SURREALC:41
for x, y, z being
Surreal
st
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z holds
|.
(
x
+
y
)
.|
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
(
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z implies
|.
(
x
+
y
)
.|
infinitely<
z )
assume
A1
:
(
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z )
;
:: thesis:
|.
(
x
+
y
)
.|
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
|.
(
x
+
y
)
.|
*
(
uReal
.
r
)
<
z
set
R =
uReal
.
r;
set
H =
uReal
.
(
1
/
2
)
;
A2
:
(
1
/
2
)
+
(
1
/
2
)
=
1
;
(
|.
x
.|
infinitely<
z
*
(
uReal
.
(
1
/
2
)
)
&
|.
y
.|
infinitely<
z
*
(
uReal
.
(
1
/
2
)
)
)
by
A1
,
Th13
;
then
(
|.
x
.|
*
(
uReal
.
r
)
<
z
*
(
uReal
.
(
1
/
2
)
)
&
|.
y
.|
*
(
uReal
.
r
)
<=
z
*
(
uReal
.
(
1
/
2
)
)
)
;
then
A3
:
(
|.
x
.|
*
(
uReal
.
r
)
)
+
(
|.
y
.|
*
(
uReal
.
r
)
)
<
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
by
SURREALR:44
;
(
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
==
z
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
& z
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
z
*
1_No
& z
*
1_No
=
z )
by
A2
,
SURREALN:55
,
SURREALN:48
,
SURREALR:51
,
SURREALR:67
;
then
(
z
*
(
uReal
.
(
1
/
2
)
)
)
+
(
z
*
(
uReal
.
(
1
/
2
)
)
)
==
z
by
SURREALO:4
;
then
A4
:
(
|.
x
.|
*
(
uReal
.
r
)
)
+
(
|.
y
.|
*
(
uReal
.
r
)
)
<
z
by
A3
,
SURREALO:4
;
A5
:
0_No
<=
uReal
.
r
by
SURREALI:def 8
;
(
|.
(
x
+
y
)
.|
*
(
uReal
.
r
)
<=
(
|.
x
.|
+
|.
y
.|
)
*
(
uReal
.
r
)
&
(
|.
x
.|
+
|.
y
.|
)
*
(
uReal
.
r
)
==
(
|.
x
.|
*
(
uReal
.
r
)
)
+
(
|.
y
.|
*
(
uReal
.
r
)
)
)
by
Th37
,
A5
,
SURREALR:75
,
SURREALR:67
;
then
|.
(
x
+
y
)
.|
*
(
uReal
.
r
)
<=
(
|.
x
.|
*
(
uReal
.
r
)
)
+
(
|.
y
.|
*
(
uReal
.
r
)
)
by
SURREALO:4
;
hence
|.
(
x
+
y
)
.|
*
(
uReal
.
r
)
<
z
by
A4
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th42
:
:: SURREALC:42
for x, z being
Surreal
st
|.
x
.|
infinitely<
z holds
|.
(
-
x
)
.|
infinitely<
z
proof
let
x, z be
Surreal
;
:: thesis:
(
|.
x
.|
infinitely<
z implies
|.
(
-
x
)
.|
infinitely<
z )
assume
A1
:
|.
x
.|
infinitely<
z
;
:: thesis:
|.
(
-
x
)
.|
infinitely<
z
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
|.
(
-
x
)
.|
*
(
uReal
.
r
)
<
z
(
|.
(
-
x
)
.|
*
(
uReal
.
r
)
==
|.
x
.|
*
(
uReal
.
r
)
&
|.
x
.|
*
(
uReal
.
r
)
<
z )
by
Th40
,
A1
,
SURREALR:51
;
hence
|.
(
-
x
)
.|
*
(
uReal
.
r
)
<
z
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th43
:
:: SURREALC:43
for x, y, z being
Surreal
st
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z holds
|.
(
x
-
y
)
.|
infinitely<
z
proof
let
x, y, z be
Surreal
;
:: thesis:
(
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z implies
|.
(
x
-
y
)
.|
infinitely<
z )
assume
A1
:
(
|.
x
.|
infinitely<
z &
|.
y
.|
infinitely<
z )
;
:: thesis:
|.
(
x
-
y
)
.|
infinitely<
z
then
|.
(
-
y
)
.|
infinitely<
z
by
Th42
;
hence
|.
(
x
-
y
)
.|
infinitely<
z
by
Th41
,
A1
;
:: thesis:
verum
end;
theorem
Th44
:
:: SURREALC:44
for x, y being
Surreal
st
|.
y
.|
infinitely<
x holds
not x
+
y
==
0_No
proof
let
x, y be
Surreal
;
:: thesis:
(
|.
y
.|
infinitely<
x implies not x
+
y
==
0_No
)
assume
A1
:
|.
y
.|
infinitely<
x
;
:: thesis:
not x
+
y
==
0_No
then
A2
:
|.
y
.|
<
x
by
Th9
;
per
cases
(
0_No
<=
y or y
<
0_No
)
;
suppose
A3
:
0_No
<=
y
;
:: thesis:
not x
+
y
==
0_No
then
y
<
x
by
A2
,
Def6
;
then
A4
:
y
+
y
<
x
+
y
by
SURREALR:44
;
(
0_No
=
0_No
+
0_No
&
0_No
+
0_No
<=
y
+
y )
by
A3
,
SURREALR:43
;
hence
not x
+
y
==
0_No
by
A4
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
y
<
0_No
;
:: thesis:
not x
+
y
==
0_No
then
|.
y
.|
=
-
y
by
Def6
;
then
A5
:
(
-
y
)
+
y
<
x
+
y
by
A1
,
Th9
,
SURREALR:44
;
y
-
y
==
0_No
by
SURREALR:39
;
hence
not x
+
y
==
0_No
by
A5
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th45
:
:: SURREALC:45
for x, y being
Surreal
st
|.
y
.|
infinitely<
|.
x
.|
holds
not x
+
y
==
0_No
proof
let
x, y be
Surreal
;
:: thesis:
(
|.
y
.|
infinitely<
|.
x
.|
implies not x
+
y
==
0_No
)
assume
A1
:
|.
y
.|
infinitely<
|.
x
.|
;
:: thesis:
not x
+
y
==
0_No
per
cases
(
|.
x
.|
=
x or
|.
x
.|
=
-
x )
by
Def6
;
suppose
|.
x
.|
=
x
;
:: thesis:
not x
+
y
==
0_No
hence
not x
+
y
==
0_No
by
A1
,
Th44
;
:: thesis:
verum
end;
suppose
|.
x
.|
=
-
x
;
:: thesis:
not x
+
y
==
0_No
then
A2
:
|.
(
-
y
)
.|
infinitely<
-
x
by
Th40
,
Th17
,
A1
;
(
-
x
)
+
(
-
y
)
=
-
(
x
+
y
)
by
SURREALR:40
;
hence
not x
+
y
==
0_No
by
A2
,
Th44
,
SURREALR:24
;
:: thesis:
verum
end;
end;
end;
theorem
Th46
:
:: SURREALC:46
for x, y being
Surreal
st
|.
y
.|
infinitely<
x holds
not x
==
0_No
proof
let
x, y be
Surreal
;
:: thesis:
(
|.
y
.|
infinitely<
x implies not x
==
0_No
)
assume
|.
y
.|
infinitely<
x
;
:: thesis:
not x
==
0_No
then
(
0_No
<=
|.
y
.|
&
|.
y
.|
<
x )
by
Th9
,
Th31
;
hence
not x
==
0_No
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th47
:
:: SURREALC:47
for x, y being
Surreal
st
|.
y
.|
infinitely<
|.
x
.|
holds
not x
==
0_No
proof
let
x, y be
Surreal
;
:: thesis:
(
|.
y
.|
infinitely<
|.
x
.|
implies not x
==
0_No
)
assume
A1
:
|.
y
.|
infinitely<
|.
x
.|
;
:: thesis:
not x
==
0_No
(
|.
x
.|
=
x or
|.
x
.|
=
-
x )
by
Def6
;
hence
not x
==
0_No
by
SURREALR:24
,
A1
,
Th46
;
:: thesis:
verum
end;
theorem
Th48
:
:: SURREALC:48
for x, y being
Surreal
st x
==
y holds
|.
x
.|
==
|.
y
.|
proof
let
x, y be
Surreal
;
:: thesis:
( x
==
y implies
|.
x
.|
==
|.
y
.|
)
assume
A1
:
x
==
y
;
:: thesis:
|.
x
.|
==
|.
y
.|
per
cases
(
0_No
<=
x or x
<
0_No
)
;
suppose
0_No
<=
x
;
:: thesis:
|.
x
.|
==
|.
y
.|
then
(
|.
x
.|
=
x &
0_No
<=
y )
by
Def6
,
A1
,
SURREALO:4
;
hence
|.
x
.|
==
|.
y
.|
by
A1
,
Def6
;
:: thesis:
verum
end;
suppose
x
<
0_No
;
:: thesis:
|.
x
.|
==
|.
y
.|
then
(
|.
x
.|
=
-
x & y
<
0_No
&
-
x
==
-
y )
by
Def6
,
A1
,
SURREALO:4
,
SURREALR:10
;
hence
|.
x
.|
==
|.
y
.|
by
Def6
;
:: thesis:
verum
end;
end;
end;
theorem
Th49
:
:: SURREALC:49
for x, y being
Surreal
holds
|.
(
|.
x
.|
-
|.
y
.|
)
.|
<=
|.
(
x
-
y
)
.|
proof
let
x, y be
Surreal
;
:: thesis:
|.
(
|.
x
.|
-
|.
y
.|
)
.|
<=
|.
(
x
-
y
)
.|
y
-
y
==
0_No
by
SURREALR:39
;
then
( x
=
x
+
0_No
& x
+
0_No
==
x
+
(
y
+
(
-
y
)
)
& x
+
(
y
+
(
-
y
)
)
=
(
x
+
(
-
y
)
)
+
y )
by
SURREALR:43
,
SURREALR:37
;
then
(
|.
x
.|
==
|.
(
(
x
+
(
-
y
)
)
+
y
)
.|
&
|.
(
(
x
+
(
-
y
)
)
+
y
)
.|
<=
|.
(
x
+
(
-
y
)
)
.|
+
|.
y
.|
)
by
Th37
,
Th48
;
then
|.
x
.|
<=
|.
(
x
+
(
-
y
)
)
.|
+
|.
y
.|
by
SURREALO:4
;
then
A1
:
|.
x
.|
-
|.
y
.|
<=
|.
(
x
+
(
-
y
)
)
.|
by
SURREALR:42
;
x
-
x
==
0_No
by
SURREALR:39
;
then
( y
=
y
+
0_No
& y
+
0_No
==
y
+
(
x
+
(
-
x
)
)
& y
+
(
x
+
(
-
x
)
)
=
(
y
+
(
-
x
)
)
+
x )
by
SURREALR:43
,
SURREALR:37
;
then
(
|.
y
.|
==
|.
(
(
y
+
(
-
x
)
)
+
x
)
.|
&
|.
(
(
y
+
(
-
x
)
)
+
x
)
.|
<=
|.
(
y
+
(
-
x
)
)
.|
+
|.
x
.|
)
by
Th37
,
Th48
;
then
A2
:
|.
y
.|
<=
|.
(
y
+
(
-
x
)
)
.|
+
|.
x
.|
by
SURREALO:4
;
-
(
x
+
(
-
y
)
)
=
(
-
x
)
+
(
-
(
-
y
)
)
by
SURREALR:40
.=
(
-
x
)
+
y ;
then
(
|.
(
y
+
(
-
x
)
)
.|
=
|.
(
-
(
x
+
(
-
y
)
)
)
.|
&
|.
(
-
(
x
+
(
-
y
)
)
)
.|
==
|.
(
x
+
(
-
y
)
)
.|
)
by
Th39
,
Th38
;
then
|.
(
y
+
(
-
x
)
)
.|
+
|.
x
.|
==
|.
(
x
+
(
-
y
)
)
.|
+
|.
x
.|
by
SURREALR:43
;
then
|.
y
.|
<=
|.
(
x
+
(
-
y
)
)
.|
+
|.
x
.|
by
A2
,
SURREALO:4
;
then
(
(
-
|.
(
x
-
y
)
.|
)
-
|.
x
.|
=
-
(
|.
(
x
-
y
)
.|
+
|.
x
.|
)
&
-
(
|.
(
x
-
y
)
.|
+
|.
x
.|
)
<=
-
|.
y
.|
)
by
SURREALR:40
,
SURREALR:10
;
then
-
|.
(
x
-
y
)
.|
<=
|.
x
.|
-
|.
y
.|
by
SURREALR:42
;
hence
|.
(
|.
x
.|
-
|.
y
.|
)
.|
<=
|.
(
x
-
y
)
.|
by
A1
,
Th35
;
:: thesis:
verum
end;
theorem
:: SURREALC:50
for x being
Surreal
holds
|.
|.
x
.|
.|
=
|.
x
.|
by
Th31
,
Def6
;
theorem
Th51
:
:: SURREALC:51
for x, y, z being
Surreal
st x
<=
y & y
<=
z holds
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
proof
let
x, y, z be
Surreal
;
:: thesis:
( x
<=
y & y
<=
z implies
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
)
assume
A1
:
( x
<=
y & y
<=
z )
;
:: thesis:
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
per
cases
(
0_No
<=
y or y
<
0_No
)
;
suppose
0_No
<=
y
;
:: thesis:
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
then
A2
:
(
|.
y
.|
=
y &
|.
z
.|
=
z )
by
A1
,
SURREALO:4
,
Def6
;
0_No
<=
|.
x
.|
by
Th31
;
then
(
|.
z
.|
=
0_No
+
|.
z
.|
&
0_No
+
|.
z
.|
<=
|.
x
.|
+
|.
z
.|
)
by
SURREALR:43
;
hence
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
by
A2
,
A1
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
A3
:
y
<
0_No
;
:: thesis:
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
then
x
<
0_No
by
A1
,
SURREALO:4
;
then
(
|.
y
.|
=
-
y &
|.
x
.|
=
-
x )
by
A3
,
Def6
;
then
A4
:
|.
y
.|
<=
|.
x
.|
by
A1
,
SURREALR:10
;
0_No
<=
|.
z
.|
by
Th31
;
then
(
|.
x
.|
=
0_No
+
|.
x
.|
&
0_No
+
|.
x
.|
<=
|.
x
.|
+
|.
z
.|
)
by
SURREALR:43
;
hence
|.
y
.|
<=
|.
x
.|
+
|.
z
.|
by
A4
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th52
:
:: SURREALC:52
for x, y being
Surreal
holds
( (
-
y
<
x & x
<
y ) iff
|.
x
.|
<
y )
proof
let
x, y be
Surreal
;
:: thesis:
( (
-
y
<
x & x
<
y ) iff
|.
x
.|
<
y )
thus
(
-
y
<
x & x
<
y implies
|.
x
.|
<
y )
:: thesis:
(
|.
x
.|
<
y implies (
-
y
<
x & x
<
y ) )
proof
assume
A1
:
(
-
y
<
x & x
<
y )
;
:: thesis:
|.
x
.|
<
y
then
(
-
x
<
-
(
-
y
)
&
-
(
-
y
)
=
y )
by
SURREALR:10
;
hence
|.
x
.|
<
y
by
A1
,
Def6
;
:: thesis:
verum
end;
assume
A2
:
|.
x
.|
<
y
;
:: thesis:
(
-
y
<
x & x
<
y )
0_No
<=
|.
x
.|
by
Th31
;
then
A3
:
0_No
<=
y
by
A2
,
SURREALO:4
;
per
cases
(
0_No
<=
x or x
<
0_No
)
;
suppose
A4
:
0_No
<=
x
;
:: thesis:
(
-
y
<
x & x
<
y )
0_No
<=
|.
x
.|
by
Th31
;
then
0_No
<
y
by
A2
,
SURREALO:4
;
then
(
-
y
<
-
0_No
&
-
0_No
=
0_No
)
by
SURREALR:10
;
hence
(
-
y
<
x & x
<
y )
by
A2
,
A4
,
Def6
,
SURREALO:4
;
:: thesis:
verum
end;
suppose
A5
:
x
<
0_No
;
:: thesis:
(
-
y
<
x & x
<
y )
then
-
x
<
-
(
-
y
)
by
A2
,
Def6
;
hence
(
-
y
<
x & x
<
y )
by
SURREALR:10
,
A3
,
A5
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
theorem
Th53
:
:: SURREALC:53
for x, y being
Surreal
for r being
Real
st
0_No
<=
x & x
infinitely<
y holds
|.
(
x
*
(
uReal
.
r
)
)
.|
infinitely<
y
proof
let
x, y be
Surreal
;
:: thesis:
for r being
Real
st
0_No
<=
x & x
infinitely<
y holds
|.
(
x
*
(
uReal
.
r
)
)
.|
infinitely<
y
let
r be
Real
;
:: thesis:
(
0_No
<=
x & x
infinitely<
y implies
|.
(
x
*
(
uReal
.
r
)
)
.|
infinitely<
y )
assume
A1
:
(
0_No
<=
x & x
infinitely<
y )
;
:: thesis:
|.
(
x
*
(
uReal
.
r
)
)
.|
infinitely<
y
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
<
y
per
cases
(
0_No
<=
x
*
(
uReal
.
r
)
or x
*
(
uReal
.
r
)
<
0_No
)
;
suppose
0_No
<=
x
*
(
uReal
.
r
)
;
:: thesis:
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
<
y
then
|.
(
x
*
(
uReal
.
r
)
)
.|
=
x
*
(
uReal
.
r
)
by
Def6
;
then
(
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
==
x
*
(
uReal
.
(
r
*
s
)
)
& x
*
(
uReal
.
(
r
*
s
)
)
<
y )
by
Th20
,
A1
,
Lm1
;
hence
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
<
y
by
SURREALO:4
;
:: thesis:
verum
end;
suppose
x
*
(
uReal
.
r
)
<
0_No
;
:: thesis:
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
<
y
then
A2
:
|.
(
x
*
(
uReal
.
r
)
)
.|
=
-
(
x
*
(
uReal
.
r
)
)
by
Def6
;
x
*
(
-
(
uReal
.
r
)
)
==
x
*
(
uReal
.
(
-
r
)
)
by
SURREALN:56
,
SURREALR:51
;
then
-
(
x
*
(
uReal
.
r
)
)
==
x
*
(
uReal
.
(
-
r
)
)
by
SURREALR:58
;
then
(
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
==
(
x
*
(
uReal
.
(
-
r
)
)
)
*
(
uReal
.
s
)
&
(
x
*
(
uReal
.
(
-
r
)
)
)
*
(
uReal
.
s
)
==
x
*
(
uReal
.
(
(
-
r
)
*
s
)
)
)
by
A2
,
SURREALR:51
,
Lm1
;
then
(
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
==
x
*
(
uReal
.
(
(
-
r
)
*
s
)
)
& x
*
(
uReal
.
(
(
-
r
)
*
s
)
)
<
y )
by
Th20
,
A1
,
SURREALO:4
;
hence
|.
(
x
*
(
uReal
.
r
)
)
.|
*
(
uReal
.
s
)
<
y
by
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
Lm6
:
for x being
Surreal
st x is
positive
holds
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
proof
let
x be
Surreal
;
:: thesis:
( x is
positive
implies ex y being
Surreal
st x,
No_omega^
y
are_commensurate
)
assume
A1
:
x is
positive
;
:: thesis:
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
defpred
S
1
[
Ordinal
]
means
for x being
Surreal
st x is
positive
&
born
x
=
$1 holds
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
;
A2
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A3
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
let
x be
Surreal
;
:: thesis:
( x is
positive
&
born
x
=
D implies ex y being
Surreal
st x,
No_omega^
y
are_commensurate
)
assume
A4
:
( x is
positive
&
born
x
=
D )
;
:: thesis:
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
set
X =
||.
x
.||
;
per
cases
( ex x1, y being
Surreal
st
( x1
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& x1,
No_omega^
y
are_commensurate
& x,
No_omega^
y
are_commensurate
) or for x1, y being
Surreal
st x1
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& x1,
No_omega^
y
are_commensurate
holds
not x,
No_omega^
y
are_commensurate
)
;
suppose
ex x1, y being
Surreal
st
( x1
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& x1,
No_omega^
y
are_commensurate
& x,
No_omega^
y
are_commensurate
)
;
:: thesis:
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
then
consider
x1, y being
Surreal
such that
A5
:
( x1
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& x1,
No_omega^
y
are_commensurate
& x,
No_omega^
y
are_commensurate
)
;
take
y ;
:: thesis:
x,
No_omega^
y
are_commensurate
thus
x,
No_omega^
y
are_commensurate
by
A5
;
:: thesis:
verum
end;
suppose
A6
:
for x1, y being
Surreal
st x1
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& x1,
No_omega^
y
are_commensurate
holds
not x,
No_omega^
y
are_commensurate
;
:: thesis:
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
defpred
S
2
[
object
,
object
]
means
( $2 is
Surreal
& ( for a, b being
Surreal
st a
=
$1 & $2
=
b holds
a,
No_omega^
b
are_commensurate
) );
A7
:
for o being
object
st o
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
holds
ex u being
object
st S
2
[o,u]
proof
let
o be
object
;
:: thesis:
( o
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
implies ex u being
object
st S
2
[o,u] )
assume
A8
:
o
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
;
:: thesis:
ex u being
object
st S
2
[o,u]
reconsider
o = o as
Surreal
by
A8
,
SURREAL0:def 16
;
reconsider
o = o as
positive
Surreal
by
A4
,
A8
,
SURREALI:21
;
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
c=
(
L_
x
)
\/
(
R_
x
)
by
A4
,
SURREALI:20
;
then
born
o
in
born
x
by
A8
,
SURREALO:1
;
then
consider
y being
Surreal
such that
A9
:
o,
No_omega^
y
are_commensurate
by
A3
,
A4
;
take
y ;
:: thesis:
S
2
[o,y]
thus
S
2
[o,y]
by
A9
;
:: thesis:
verum
end;
consider
Y being
Function
such that
A10
:
(
dom
Y
=
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
& ( for o being
object
st o
in
(
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
)
\
{
0_No
}
holds
S
2
[o,Y
.
o] ) )
from
CLASSES1:sch 1
(
A7
);
set
Y1 = Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
;
set
Y2 = Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
;
dom
Y
=
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
\/
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
by
A10
,
XBOOLE_1:42
;
then
A11
:
(
rng
Y
=
Y
.:
(
dom
Y
)
& Y
.:
(
dom
Y
)
=
(
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
)
\/
(
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
)
)
by
RELAT_1:113
,
RELAT_1:120
;
rng
Y is
surreal-membered
proof
let
o be
object
;
:: according to
SURREAL0:def 16
:: thesis:
( not o
in
rng
Y or o is
surreal
)
assume
o
in
rng
Y
;
:: thesis:
o is
surreal
then
ex a being
object
st
( a
in
dom
Y & Y
.
a
=
o )
by
FUNCT_1:def 3
;
hence
o is
surreal
by
A10
;
:: thesis:
verum
end;
then
consider
M being
Ordinal
such that
A12
:
for o being
object
st o
in
(
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
)
\/
(
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
)
holds
ex A being
Ordinal
st
( A
in
M & o
in
Day
A )
by
A11
,
SURREAL0:47
;
A13
:
( x
in
{
x
}
&
L_
x
<<
{
x
}
&
{
x
}
<<
R_
x )
by
SURREALO:11
,
TARSKI:def 1
;
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
<<
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
or not b
in
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
or not b
<=
a )
assume
that
A14
:
( a
in
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
& b
in
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
)
and
A15
:
not a
<
b
;
:: thesis:
contradiction
consider
a1 being
object
such that
A16
:
( a1
in
dom
Y & a1
in
(
L_
||.
x
.||
)
\
{
0_No
}
& a
=
Y
.
a1 )
by
A14
,
FUNCT_1:def 6
;
reconsider
a1 = a1 as
Surreal
by
SURREAL0:def 16
,
A16
;
A17
:
a1,
No_omega^
a
are_commensurate
by
A16
,
A10
;
( a1
in
L_
||.
x
.||
& a1
<>
0_No
)
by
A16
,
ZFMISC_1:56
;
then
a1
in
L_
x
by
A4
,
SURREALI:def 9
;
then
A18
:
a1
<=
x
by
A13
;
not x,
No_omega^
a
are_commensurate
by
A6
,
A16
,
A10
,
A17
;
then
A19
:
No_omega^
a
infinitely<
x
by
Th29
,
A16
,
A10
,
A18
;
consider
b1 being
object
such that
A20
:
( b1
in
dom
Y & b1
in
(
R_
||.
x
.||
)
\
{
0_No
}
& b
=
Y
.
b1 )
by
A14
,
FUNCT_1:def 6
;
reconsider
b1 = b1 as
Surreal
by
A20
,
SURREAL0:def 16
;
A21
:
b1,
No_omega^
b
are_commensurate
by
A20
,
A10
;
b1
in
R_
x
by
A20
,
A4
,
SURREALI:def 9
;
then
A22
:
x
<=
b1
by
A13
;
not x,
No_omega^
b
are_commensurate
by
A6
,
A20
,
A10
,
A21
;
then
x
infinitely<
No_omega^
b
by
Th30
,
A20
,
A10
,
A4
,
A22
;
then
No_omega^
a
<
No_omega^
b
by
Th9
,
A19
,
Th14
;
hence
contradiction
by
A15
,
Lm5
;
:: thesis:
verum
end;
then
[
(
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
)
,
(
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
)
]
in
Day
M
by
A12
,
SURREAL0:46
;
then
reconsider
YY =
[
(
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
)
,
(
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
)
]
as
Surreal
;
set
N =
No_omega^
YY;
A23
:
(
L_
(
No_omega^
YY
)
<<
{
(
No_omega^
YY
)
}
&
{
(
No_omega^
YY
)
}
<<
R_
(
No_omega^
YY
)
&
No_omega^
YY
in
{
(
No_omega^
YY
)
}
)
by
SURREALO:11
,
TARSKI:def 1
;
A24
:
L_
||.
x
.||
<<
{
(
No_omega^
YY
)
}
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
L_
||.
x
.||
or not b
in
{
(
No_omega^
YY
)
}
or not b
<=
a )
assume
A25
:
( a
in
L_
||.
x
.||
& b
in
{
(
No_omega^
YY
)
}
)
;
:: thesis:
not b
<=
a
A26
:
b
=
No_omega^
YY
by
A25
,
TARSKI:def 1
;
A27
:
a
in
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
by
A25
,
XBOOLE_0:def 3
;
per
cases
( a
=
0_No
or a
<>
0_No
)
;
suppose
a
=
0_No
;
:: thesis:
not b
<=
a
hence
not b
<=
a
by
A26
,
SURREALI:def 8
;
:: thesis:
verum
end;
suppose
a
<>
0_No
;
:: thesis:
not b
<=
a
then
A28
:
( a
in
(
L_
||.
x
.||
)
\
{
0_No
}
& a
in
dom
Y )
by
A10
,
A27
,
A25
,
ZFMISC_1:56
;
then
A29
:
( Y
.
a
in
Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
& Y
.:
(
(
L_
||.
x
.||
)
\
{
0_No
}
)
=
YY
`1
)
by
FUNCT_1:def 6
;
then
reconsider
Ya = Y
.
a as
Surreal
by
SURREAL0:def 16
;
a,
No_omega^
Ya
are_commensurate
by
A28
,
A10
;
then
consider
n being
positive
Nat
such that
A30
:
a
<
(
No_omega^
Ya
)
*
(
uInt
.
n
)
;
(
uInt
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uReal
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
then
A31
:
a
<=
(
No_omega^
Ya
)
*
(
uReal
.
n
)
by
A30
;
(
No_omega^
Ya
)
*
(
uReal
.
n
)
in
L_
(
No_omega^
YY
)
by
Th22
,
A29
;
hence
not b
<=
a
by
A23
,
A25
,
A31
,
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
A32
:
{
(
No_omega^
YY
)
}
<<
R_
||.
x
.||
proof
let
b, a be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not b
in
{
(
No_omega^
YY
)
}
or not a
in
R_
||.
x
.||
or not a
<=
b )
assume
A33
:
( b
in
{
(
No_omega^
YY
)
}
& a
in
R_
||.
x
.||
)
;
:: thesis:
not a
<=
b
A34
:
b
=
No_omega^
YY
by
A33
,
TARSKI:def 1
;
A35
:
a
in
(
L_
||.
x
.||
)
\/
(
R_
||.
x
.||
)
by
A33
,
XBOOLE_0:def 3
;
a is
positive
by
A33
,
A4
,
SURREALI:def 9
;
then
a
<>
0_No
by
SURREALO:3
;
then
A36
:
( a
in
(
R_
||.
x
.||
)
\
{
0_No
}
& a
in
dom
Y )
by
A10
,
A35
,
A33
,
ZFMISC_1:56
;
then
A37
:
( Y
.
a
in
Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
& Y
.:
(
(
R_
||.
x
.||
)
\
{
0_No
}
)
=
R_
YY )
by
FUNCT_1:def 6
;
then
reconsider
Ya = Y
.
a as
Surreal
by
SURREAL0:def 16
;
a,
No_omega^
Ya
are_commensurate
by
A36
,
A10
;
then
consider
n being
positive
Nat
such that
A38
:
No_omega^
Ya
<
a
*
(
uInt
.
n
)
;
A39
:
uReal
.
(
1
/
n
)
is
positive
;
(
uInt
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uReal
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
then
A40
:
(
No_omega^
Ya
)
*
(
uReal
.
(
1
/
n
)
)
<
(
a
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
by
A38
,
A39
,
SURREALR:70
;
(
1
/
n
)
*
n
=
1
by
XCMPLX_1:106
;
then
(
(
a
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
==
a
*
(
(
uReal
.
(
1
/
n
)
)
*
(
uReal
.
n
)
)
& a
*
(
(
uReal
.
(
1
/
n
)
)
*
(
uReal
.
n
)
)
==
a
*
1_No
& a
*
1_No
=
a )
by
SURREALN:57
,
SURREALN:48
,
SURREALR:69
,
SURREALR:51
;
then
(
a
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
<=
a
by
SURREALO:4
;
then
A41
:
(
No_omega^
Ya
)
*
(
uReal
.
(
1
/
n
)
)
<
a
by
A40
,
SURREALO:4
;
No_omega^
YY
<=
(
No_omega^
Ya
)
*
(
uReal
.
(
1
/
n
)
)
by
A23
,
Th23
,
A37
;
hence
not a
<=
b
by
A34
,
A41
,
SURREALO:4
;
:: thesis:
verum
end;
A42
:
x
==
||.
x
.||
by
A4
,
SURREALI:18
;
A43
:
x,
||.
x
.||
are_commensurate
by
Th8
,
A4
,
SURREALI:18
;
A44
:
{
||.
x
.||
}
<<
R_
(
No_omega^
YY
)
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
{
||.
x
.||
}
or not b
in
R_
(
No_omega^
YY
)
or not b
<=
a )
assume
A45
:
( a
in
{
||.
x
.||
}
& b
in
R_
(
No_omega^
YY
)
)
;
:: thesis:
not b
<=
a
consider
xR being
Surreal
, r being
positive
Real
such that
A46
:
( xR
in
R_
YY & b
=
(
No_omega^
xR
)
*
(
uReal
.
r
)
)
by
A45
,
Th23
;
consider
b1 being
object
such that
A47
:
( b1
in
dom
Y & b1
in
(
R_
||.
x
.||
)
\
{
0_No
}
& xR
=
Y
.
b1 )
by
A46
,
FUNCT_1:def 6
;
reconsider
b1 = b1 as
Surreal
by
A47
,
SURREAL0:def 16
;
A48
:
b1,
No_omega^
xR
are_commensurate
by
A47
,
A10
;
b1
in
R_
x
by
A47
,
A4
,
SURREALI:def 9
;
then
A49
:
x
<=
b1
by
A13
;
not x,
No_omega^
xR
are_commensurate
by
A6
,
A47
,
A10
,
A48
;
then
x
infinitely<
No_omega^
xR
by
Th30
,
A47
,
A10
,
A4
,
A49
;
then
x
infinitely<
b
by
A46
,
Th13
;
then
||.
x
.||
<
b
by
Th9
,
A43
,
Th15
;
hence
not b
<=
a
by
A45
,
TARSKI:def 1
;
:: thesis:
verum
end;
A50
:
L_
(
No_omega^
YY
)
<<
{
||.
x
.||
}
proof
let
a, b be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not a
in
L_
(
No_omega^
YY
)
or not b
in
{
||.
x
.||
}
or not b
<=
a )
assume
A51
:
( a
in
L_
(
No_omega^
YY
)
& b
in
{
||.
x
.||
}
)
;
:: thesis:
not b
<=
a
per
cases
( a
=
0_No
or a
<>
0_No
)
;
suppose
a
=
0_No
;
:: thesis:
not b
<=
a
then
a
<
||.
x
.||
by
SURREALI:def 8
;
hence
not b
<=
a
by
A51
,
TARSKI:def 1
;
:: thesis:
verum
end;
suppose
a
<>
0_No
;
:: thesis:
not b
<=
a
then
consider
xL being
Surreal
, r being
positive
Real
such that
A52
:
( xL
in
L_
YY & a
=
(
No_omega^
xL
)
*
(
uReal
.
r
)
)
by
A51
,
Th22
;
consider
a1 being
object
such that
A53
:
( a1
in
dom
Y & a1
in
(
L_
||.
x
.||
)
\
{
0_No
}
& xL
=
Y
.
a1 )
by
A52
,
FUNCT_1:def 6
;
reconsider
a1 = a1 as
Surreal
by
A53
,
SURREAL0:def 16
;
A54
:
a1,
No_omega^
xL
are_commensurate
by
A53
,
A10
;
( a1
in
L_
||.
x
.||
& a1
<>
0_No
)
by
A53
,
ZFMISC_1:56
;
then
a1
in
L_
x
by
A4
,
SURREALI:def 9
;
then
A55
:
a1
<=
x
by
A13
;
not x,
No_omega^
xL
are_commensurate
by
A6
,
A53
,
A10
,
A54
;
then
No_omega^
xL
infinitely<
x
by
Th29
,
A53
,
A10
,
A55
;
then
a
<
||.
x
.||
by
A52
,
A42
,
SURREALO:4
;
hence
not b
<=
a
by
A51
,
TARSKI:def 1
;
:: thesis:
verum
end;
end;
end;
No_omega^
YY
==
||.
x
.||
by
SURREAL0:43
,
A24
,
A44
,
A50
,
A32
;
then
x,
No_omega^
YY
are_commensurate
by
Th8
,
A42
,
Th5
;
hence
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
;
:: thesis:
verum
end;
end;
end;
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A2
);
then
S
1
[
born
x]
;
hence
ex y being
Surreal
st x,
No_omega^
y
are_commensurate
by
A1
;
:: thesis:
verum
end;
Lm7
:
for x being
Surreal
st x is
positive
holds
for y1, y2 being
Surreal
st x,
No_omega^
y1
are_commensurate
& x,
No_omega^
y2
are_commensurate
holds
y1
<=
y2
proof
let
x be
Surreal
;
:: thesis:
( x is
positive
implies for y1, y2 being
Surreal
st x,
No_omega^
y1
are_commensurate
& x,
No_omega^
y2
are_commensurate
holds
y1
<=
y2 )
assume
x is
positive
;
:: thesis:
for y1, y2 being
Surreal
st x,
No_omega^
y1
are_commensurate
& x,
No_omega^
y2
are_commensurate
holds
y1
<=
y2
let
y1, y2 be
Surreal
;
:: thesis:
( x,
No_omega^
y1
are_commensurate
& x,
No_omega^
y2
are_commensurate
implies y1
<=
y2 )
assume
that
A1
:
( x,
No_omega^
y1
are_commensurate
& x,
No_omega^
y2
are_commensurate
)
and
A2
:
y2
<
y1
;
:: thesis:
contradiction
No_omega^
y2
infinitely<
No_omega^
y1
by
Lm5
,
A2
;
then
x
infinitely<
No_omega^
y1
by
Th15
,
A1
;
then
x
<
x
by
Th9
,
Th16
,
A1
;
hence
contradiction
by
SURREALO:3
;
:: thesis:
verum
end;
definition
let
x be
Surreal
;
assume
A1
:
not x
==
0_No
;
func
omega-exp
x
->
uSurreal
means
:
Def7
:
:: SURREALC:def 7
|.
x
.|
,
No_omega^
it
are_commensurate
;
existence
ex b
1
being
uSurreal
st
|.
x
.|
,
No_omega^
b
1
are_commensurate
proof
consider
y being
Surreal
such that
A2
:
|.
x
.|
,
No_omega^
y
are_commensurate
by
A1
,
Th36
,
Lm6
;
set
c =
Unique_No
y;
Unique_No
y
==
y
by
SURREALO:def 10
;
then
No_omega^
(
Unique_No
y
)
==
No_omega^
y
by
Lm5
;
then
No_omega^
(
Unique_No
y
)
,
No_omega^
y
are_commensurate
by
Th2
,
Th5
;
hence
ex b
1
being
uSurreal
st
|.
x
.|
,
No_omega^
b
1
are_commensurate
by
A2
,
Th4
;
:: thesis:
verum
end;
uniqueness
for b
1
, b
2
being
uSurreal
st
|.
x
.|
,
No_omega^
b
1
are_commensurate
&
|.
x
.|
,
No_omega^
b
2
are_commensurate
holds
b
1
=
b
2
proof
let
y1, y2 be
uSurreal
;
:: thesis:
(
|.
x
.|
,
No_omega^
y1
are_commensurate
&
|.
x
.|
,
No_omega^
y2
are_commensurate
implies y1
=
y2 )
assume
that
A3
:
|.
x
.|
,
No_omega^
y1
are_commensurate
and
A4
:
|.
x
.|
,
No_omega^
y2
are_commensurate
;
:: thesis:
y1
=
y2
y1
==
y2
by
A1
,
Th36
,
A3
,
A4
,
Lm7
;
hence
y1
=
y2
by
SURREALO:50
;
:: thesis:
verum
end;
end;
::
deftheorem
Def7
defines
omega-exp
SURREALC:def 7 :
for x being
Surreal
st not x
==
0_No
holds
for b
2
being
uSurreal
holds
( b
2
=
omega-exp
x iff
|.
x
.|
,
No_omega^
b
2
are_commensurate
);
theorem
Th54
:
:: SURREALC:54
for x, y being
Surreal
st x,
No_omega^
y
are_commensurate
holds
ex s being
positive
Real
st
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
proof
let
x, y be
Surreal
;
:: thesis:
( x,
No_omega^
y
are_commensurate
implies ex s being
positive
Real
st
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x )
assume
A1
:
x,
No_omega^
y
are_commensurate
;
:: thesis:
ex s being
positive
Real
st
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
set
N =
No_omega^
y;
defpred
S
1
[
object
]
means
( $1 is
Real
& ( for r being
Real
st r
=
$1 holds
(
No_omega^
y
)
*
(
uReal
.
r
)
<=
x ) );
defpred
S
2
[
object
]
means
( $1 is
Real
& ( for r being
Real
st r
=
$1 holds
x
<
(
No_omega^
y
)
*
(
uReal
.
r
)
) );
A2
:
for r, s being
ExtReal
st S
1
[r] & S
2
[s] holds
r
<=
s
proof
let
l, r be
ExtReal
;
:: thesis:
( S
1
[l] & S
2
[r] implies l
<=
r )
assume
A3
:
( S
1
[l] & S
2
[r] )
;
:: thesis:
l
<=
r
reconsider
L = l, R = r as
Real
by
A3
;
A4
:
0_No
<=
No_omega^
y
by
SURREALI:def 8
;
(
(
No_omega^
y
)
*
(
uReal
.
L
)
<=
x & x
<
(
No_omega^
y
)
*
(
uReal
.
R
)
)
by
A3
;
then
(
No_omega^
y
)
*
(
uReal
.
L
)
<
(
No_omega^
y
)
*
(
uReal
.
R
)
by
SURREALO:4
;
hence
l
<=
r
by
SURREALN:51
,
A4
,
SURREALR:75
;
:: thesis:
verum
end;
consider
s being
ExtReal
such that
A5
:
for r being
ExtReal
st S
1
[r] holds
r
<=
s
and
A6
:
for r being
ExtReal
st S
2
[r] holds
s
<=
r
from
XXREAL_1:sch 1
(
A2
);
consider
n being
positive
Nat
such that
A7
:
( x
<
(
uInt
.
n
)
*
(
No_omega^
y
)
&
No_omega^
y
<
(
uInt
.
n
)
*
x )
by
A1
,
Th7
;
A8
:
(
uReal
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uInt
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
0_No
<
uReal
.
(
1
/
n
)
by
SURREALI:def 8
;
then
A9
:
(
No_omega^
y
)
*
(
uReal
.
(
1
/
n
)
)
<
(
x
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
by
A7
,
A8
,
SURREALR:70
;
(
x
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
n
)
)
==
x
by
Lm2
;
then
A10
:
S
1
[1
/
n]
by
A9
,
SURREALO:4
;
then
A11
:
1
/
n
<=
s
by
A5
;
S
2
[n]
by
A7
,
A8
;
then
A12
:
s
<=
n
by
A6
;
( n
in
REAL
& 1
/
n
in
REAL
)
by
XREAL_0:def 1
;
then
s
in
REAL
by
A11
,
A12
,
XXREAL_0:45
;
then
reconsider
s = s as
Real
;
reconsider
s = s as
positive
Real
by
A10
,
A5
;
per
cases
(
(
No_omega^
y
)
*
(
uReal
.
s
)
<=
x or x
<
(
No_omega^
y
)
*
(
uReal
.
s
)
)
;
suppose
A13
:
(
No_omega^
y
)
*
(
uReal
.
s
)
<=
x
;
:: thesis:
ex s being
positive
Real
st
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
set
x1 = x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
;
take
s ;
:: thesis:
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
A14
:
0_No
+
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
<=
x
by
A13
;
then
A15
:
0_No
<=
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
by
SURREALR:41
;
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
infinitely<
x
proof
given
r being
positive
Real
such that
A16
:
x
<=
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
r
)
;
:: according to
SURREALC:def 3
:: thesis:
contradiction
consider
n2 being
Nat
such that
A17
:
r
<
n2
by
SEQ_4:3
;
set
n = n2
+
2;
n2
<=
n2
+
2
by
NAT_1:11
;
then
uReal
.
r
<=
uReal
.
(
n2
+
2
)
by
SURREALN:51
,
A17
,
XXREAL_0:2
;
then
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
r
)
<=
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
by
A15
,
SURREALR:75
;
then
A18
:
x
<=
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
by
A16
,
SURREALO:4
;
A19
:
-
(
x
*
(
uReal
.
(
n2
+
2
)
)
)
=
x
*
(
-
(
uReal
.
(
n2
+
2
)
)
)
by
SURREALR:58
;
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
==
(
x
*
(
uReal
.
(
n2
+
2
)
)
)
+
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
by
SURREALR:67
;
then
x
<=
(
x
*
(
uReal
.
(
n2
+
2
)
)
)
+
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
by
A18
,
SURREALO:4
;
then
( x
*
(
(
uReal
.
1
)
-
(
uReal
.
(
n2
+
2
)
)
)
==
(
x
*
(
uReal
.
1
)
)
-
(
x
*
(
uReal
.
(
n2
+
2
)
)
)
&
(
x
*
(
uReal
.
1
)
)
-
(
x
*
(
uReal
.
(
n2
+
2
)
)
)
<=
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
by
A19
,
SURREALR:67
,
SURREALR:42
,
SURREALN:48
;
then
x
*
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
<=
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
by
SURREALO:4
;
then
A20
:
-
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
<=
-
(
x
*
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
)
by
SURREALR:10
;
-
(
uReal
.
(
n2
+
2
)
)
==
uReal
.
(
-
(
n2
+
2
)
)
by
SURREALN:56
;
then
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
==
(
uReal
.
1
)
+
(
uReal
.
(
-
(
n2
+
2
)
)
)
&
(
uReal
.
1
)
+
(
uReal
.
(
-
(
n2
+
2
)
)
)
==
uReal
.
(
1
+
(
-
(
n2
+
2
)
)
)
)
by
SURREALR:43
,
SURREALN:55
;
then
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
==
uReal
.
(
1
+
(
-
(
n2
+
2
)
)
)
by
SURREALO:4
;
then
(
-
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
==
-
(
uReal
.
(
1
+
(
-
(
n2
+
2
)
)
)
)
&
-
(
uReal
.
(
1
+
(
-
(
n2
+
2
)
)
)
)
==
uReal
.
(
-
(
1
+
(
-
(
n2
+
2
)
)
)
)
)
by
SURREALR:10
,
SURREALN:56
;
then
-
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
==
uReal
.
(
-
(
1
+
(
-
(
n2
+
2
)
)
)
)
by
SURREALO:4
;
then
A21
:
(
-
(
x
*
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
)
=
x
*
(
-
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
)
& x
*
(
-
(
(
uReal
.
1
)
+
(
-
(
uReal
.
(
n2
+
2
)
)
)
)
)
==
x
*
(
uReal
.
(
-
(
1
+
(
-
(
n2
+
2
)
)
)
)
)
)
by
SURREALR:58
,
SURREALR:51
;
A22
:
(
n2
+
2
)
-
1
=
n2
+
1
;
then
A23
:
0_No
<=
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
by
SURREALI:def 8
;
-
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
=
-
(
-
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
)
by
SURREALR:58
;
then
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
=
-
(
-
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
)
&
-
(
-
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
)
<=
x
*
(
uReal
.
(
-
(
1
+
(
-
(
n2
+
2
)
)
)
)
)
)
by
A21
,
A20
,
SURREALO:4
;
then
(
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
*
(
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
<=
(
x
*
(
uReal
.
(
(
n2
+
2
)
-
1
)
)
)
*
(
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
&
(
x
*
(
uReal
.
(
(
n2
+
2
)
-
1
)
)
)
*
(
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
==
x )
by
A23
,
SURREALR:75
,
A22
,
Lm2
;
then
A24
:
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
*
(
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
<=
x
by
SURREALO:4
;
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
(
n2
+
2
)
)
)
*
(
uReal
.
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
==
(
No_omega^
y
)
*
(
uReal
.
(
(
s
*
(
n2
+
2
)
)
*
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
)
by
Lm3
;
then
S
1
[
(
s
*
(
n2
+
2
)
)
*
(
1
/
(
(
n2
+
2
)
-
1
)
)
]
by
A24
,
SURREALO:4
;
then
(
s
*
(
n2
+
2
)
)
*
(
1
/
(
(
n2
+
2
)
-
1
)
)
<=
s
by
A5
;
then
(
(
s
*
(
n2
+
2
)
)
*
(
(
1
/
(
(
n2
+
2
)
-
1
)
)
*
(
(
n2
+
2
)
-
1
)
)
=
(
(
s
*
(
n2
+
2
)
)
*
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
*
(
(
n2
+
2
)
-
1
)
&
(
(
s
*
(
n2
+
2
)
)
*
(
1
/
(
(
n2
+
2
)
-
1
)
)
)
*
(
(
n2
+
2
)
-
1
)
<=
s
*
(
(
n2
+
2
)
-
1
)
&
(
1
/
(
(
n2
+
2
)
-
1
)
)
*
(
(
n2
+
2
)
-
1
)
=
1 )
by
A22
,
XCMPLX_1:106
,
XREAL_1:64
;
then
(
n2
+
1
)
+
1
<=
n2
+
1
by
XREAL_1:68
;
hence
contradiction
by
NAT_1:13
;
:: thesis:
verum
end;
hence
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
by
A14
,
Def6
,
SURREALR:41
;
:: thesis:
verum
end;
suppose
A25
:
x
<
(
No_omega^
y
)
*
(
uReal
.
s
)
;
:: thesis:
ex s being
positive
Real
st
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
set
x1 =
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x;
take
s ;
:: thesis:
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
A26
:
x
+
0_No
<
(
No_omega^
y
)
*
(
uReal
.
s
)
by
A25
;
then
A27
:
0_No
<
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
by
SURREALR:42
;
A28
:
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
infinitely<
x
proof
given
r being
positive
Real
such that
A29
:
x
<=
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
*
(
uReal
.
r
)
;
:: according to
SURREALC:def 3
:: thesis:
contradiction
consider
n being
Nat
such that
A30
:
r
<
n
by
SEQ_4:3
;
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
*
(
uReal
.
r
)
<
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
*
(
uReal
.
n
)
by
A30
,
SURREALN:51
,
A27
,
SURREALR:70
;
then
A31
:
x
<
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
*
(
uReal
.
n
)
by
A29
,
SURREALO:4
;
A32
:
-
(
(
-
x
)
*
(
uReal
.
n
)
)
=
-
(
-
(
x
*
(
uReal
.
n
)
)
)
by
SURREALR:58
;
(
(
x
*
(
uReal
.
1
)
)
+
(
x
*
(
uReal
.
n
)
)
==
x
*
(
(
uReal
.
1
)
+
(
uReal
.
n
)
)
& x
*
(
(
uReal
.
1
)
+
(
uReal
.
n
)
)
==
x
*
(
uReal
.
(
1
+
n
)
)
)
by
SURREALN:55
,
SURREALR:67
,
SURREALR:51
;
then
A33
:
(
x
*
(
uReal
.
1
)
)
+
(
x
*
(
uReal
.
n
)
)
==
x
*
(
uReal
.
(
1
+
n
)
)
by
SURREALO:4
;
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
*
(
uReal
.
n
)
==
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
)
+
(
(
-
x
)
*
(
uReal
.
n
)
)
by
SURREALR:67
;
then
x
<
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
)
+
(
(
-
x
)
*
(
uReal
.
n
)
)
by
A31
,
SURREALO:4
;
then
(
x
*
(
uReal
.
1
)
)
-
(
(
-
x
)
*
(
uReal
.
n
)
)
<
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
by
SURREALR:41
,
SURREALN:48
;
then
A34
:
x
*
(
uReal
.
(
1
+
n
)
)
<
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
by
A32
,
A33
,
SURREALO:4
;
0_No
<
uReal
.
(
1
/
(
n
+
1
)
)
by
SURREALI:def 8
;
then
A35
:
(
x
*
(
uReal
.
(
1
+
n
)
)
)
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
<
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
by
A34
,
SURREALR:70
;
(
x
*
(
uReal
.
(
1
+
n
)
)
)
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
==
x
by
Lm2
;
then
A36
:
x
<
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
by
A35
,
SURREALO:4
;
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
*
(
uReal
.
n
)
)
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
==
(
No_omega^
y
)
*
(
uReal
.
(
(
s
*
n
)
*
(
1
/
(
n
+
1
)
)
)
)
by
Lm3
;
then
S
2
[
(
s
*
n
)
*
(
1
/
(
n
+
1
)
)
]
by
A36
,
SURREALO:4
;
then
(
(
s
*
n
)
*
(
(
1
/
(
n
+
1
)
)
*
(
n
+
1
)
)
=
(
(
s
*
n
)
*
(
1
/
(
n
+
1
)
)
)
*
(
n
+
1
)
&
(
(
s
*
n
)
*
(
1
/
(
n
+
1
)
)
)
*
(
n
+
1
)
>=
s
*
(
n
+
1
)
&
(
1
/
(
n
+
1
)
)
*
(
n
+
1
)
=
1 )
by
A6
,
XCMPLX_1:106
,
XREAL_1:64
;
then
n
>=
n
+
1
by
XREAL_1:68
;
hence
contradiction
by
NAT_1:13
;
:: thesis:
verum
end;
A37
:
not
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
==
0_No
by
A26
,
SURREALR:42
;
-
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
=
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
+
(
-
(
-
x
)
)
by
SURREALR:40
.= x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
;
then
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
=
|.
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
.|
&
|.
(
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
-
x
)
.|
=
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
)
.|
)
by
A26
,
SURREALR:42
,
A37
,
Th39
,
Def6
;
hence
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
x
by
A28
;
:: thesis:
verum
end;
end;
end;
theorem
:: SURREALC:55
for x, y being
Surreal
for r being
Real
st x is
positive
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
.|
infinitely<
x holds
r is
positive
proof
let
x, y be
Surreal
;
:: thesis:
for r being
Real
st x is
positive
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
.|
infinitely<
x holds
r is
positive
let
r be
Real
;
:: thesis:
( x is
positive
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
.|
infinitely<
x implies r is
positive
)
assume
that
A1
:
( x is
positive
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
.|
infinitely<
x )
and
A2
:
not r is
positive
;
:: thesis:
contradiction
A3
:
0_No
<=
x
by
A1
;
A4
:
0_No
<=
No_omega^
y
by
SURREALI:def 8
;
uReal
.
r
<=
0_No
by
A2
,
SURREALN:51
,
SURREALN:47
;
then
(
(
No_omega^
y
)
*
(
uReal
.
r
)
<=
(
No_omega^
y
)
*
0_No
&
(
No_omega^
y
)
*
0_No
=
0_No
)
by
A4
,
SURREALR:75
;
then
-
0_No
<=
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
by
SURREALR:10
;
then
A5
:
( x
+
0_No
<=
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
&
0_No
+
0_No
<=
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
)
by
A3
,
SURREALR:43
;
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
)
)
.|
<
x
by
A1
,
Th9
;
hence
contradiction
by
A5
,
Def6
;
:: thesis:
verum
end;
Lm8
:
for x, y being
Surreal
for r1, r2 being
Real
st x,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
x &
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
x holds
r2
<=
r1
proof
let
x, y be
Surreal
;
:: thesis:
for r1, r2 being
Real
st x,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
x &
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
x holds
r2
<=
r1
let
r1, r2 be
Real
;
:: thesis:
( x,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
x &
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
x implies r2
<=
r1 )
set
N =
No_omega^
y;
assume
that
A1
:
x,
No_omega^
y
are_commensurate
and
A2
:
(
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
x &
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
x )
and
A3
:
r1
<
r2
;
:: thesis:
contradiction
A4
:
|.
(
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
-
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
.|
infinitely<
x
by
A2
,
Th43
;
A5
:
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
)
=
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
)
+
(
(
-
x
)
+
(
-
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
)
by
SURREALR:40
.= x
+
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
+
(
-
x
)
)
)
by
SURREALR:37
.= x
+
(
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
+
(
-
x
)
)
by
SURREALR:37
.=
(
x
+
(
-
x
)
)
+
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
by
SURREALR:37
;
A6
:
x
-
x
==
0_No
by
SURREALR:39
;
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
=
(
No_omega^
y
)
*
(
-
(
uReal
.
r1
)
)
&
(
No_omega^
y
)
*
(
-
(
uReal
.
r1
)
)
==
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
by
SURREALN:56
,
SURREALR:51
,
SURREALR:58
;
then
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
==
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
&
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
==
(
No_omega^
y
)
*
(
(
uReal
.
(
-
r1
)
)
+
(
uReal
.
r2
)
)
)
by
SURREALR:43
,
SURREALR:67
;
then
(
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
==
(
No_omega^
y
)
*
(
(
uReal
.
(
-
r1
)
)
+
(
uReal
.
r2
)
)
&
(
No_omega^
y
)
*
(
(
uReal
.
(
-
r1
)
)
+
(
uReal
.
r2
)
)
==
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
)
by
SURREALN:55
,
SURREALR:51
,
SURREALO:4
;
then
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
==
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
by
SURREALO:4
;
then
(
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
)
==
0_No
+
(
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
)
&
0_No
+
(
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
)
=
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
)
by
A5
,
A6
,
SURREALR:43
;
then
A7
:
|.
(
(
No_omega^
y
)
*
(
uReal
.
(
(
-
r1
)
+
r2
)
)
)
.|
infinitely<
x
by
Th48
,
A4
,
Th17
;
consider
n being
positive
Nat
such that
A8
:
x
<
(
No_omega^
y
)
*
(
uInt
.
n
)
by
A1
;
A9
:
(
uReal
.
n
=
uDyadic
.
n &
uDyadic
.
n
=
uInt
.
n )
by
SURREALN:46
,
SURREALN:def 5
;
A10
:
0
<
r2
-
r1
by
A3
,
XREAL_1:50
;
A11
:
0_No
<
uReal
.
(
r2
-
r1
)
by
A3
,
XREAL_1:50
,
SURREALN:47
,
SURREALN:51
;
0_No
<
No_omega^
y
by
SURREALI:def 8
;
then
0_No
<=
(
No_omega^
y
)
*
(
uReal
.
(
r2
-
r1
)
)
by
A11
,
SURREALR:72
;
then
A12
:
|.
(
(
No_omega^
y
)
*
(
uReal
.
(
r2
-
r1
)
)
)
.|
=
(
No_omega^
y
)
*
(
uReal
.
(
r2
-
r1
)
)
by
Def6
;
(
r2
-
r1
)
*
(
n
/
(
r2
-
r1
)
)
=
n
by
A10
,
XCMPLX_1:87
;
then
(
(
No_omega^
y
)
*
(
uReal
.
(
r2
-
r1
)
)
)
*
(
uReal
.
(
n
/
(
r2
-
r1
)
)
)
==
(
No_omega^
y
)
*
(
uReal
.
n
)
by
Lm1
;
then
(
No_omega^
y
)
*
(
uReal
.
n
)
<=
x
by
A12
,
A7
,
A10
,
SURREALO:4
;
hence
contradiction
by
A8
,
A9
;
:: thesis:
verum
end;
theorem
Th56
:
:: SURREALC:56
for x being
Surreal
st not x
==
0_No
holds
omega-exp
x
=
omega-exp
(
-
x
)
proof
let
x be
Surreal
;
:: thesis:
( not x
==
0_No
implies
omega-exp
x
=
omega-exp
(
-
x
)
)
assume
A1
:
not x
==
0_No
;
:: thesis:
omega-exp
x
=
omega-exp
(
-
x
)
then
A2
:
|.
x
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
by
Def7
;
A3
:
|.
x
.|
=
|.
(
-
x
)
.|
by
A1
,
Th39
;
not
-
x
==
0_No
by
A1
,
SURREALR:24
;
hence
omega-exp
x
=
omega-exp
(
-
x
)
by
A2
,
A3
,
Def7
;
:: thesis:
verum
end;
Lm9
:
for x, y being
Surreal
for r1, r2 being
Real
st
|.
x
.|
,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
holds
r2
=
r1
proof
let
x, y be
Surreal
;
:: thesis:
for r1, r2 being
Real
st
|.
x
.|
,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
holds
r2
=
r1
let
r1, r2 be
Real
;
:: thesis:
(
|.
x
.|
,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
implies r2
=
r1 )
set
X =
|.
x
.|
;
set
N =
No_omega^
y;
assume
A1
:
(
|.
x
.|
,
No_omega^
y
are_commensurate
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
)
;
:: thesis:
r2
=
r1
reconsider
X =
|.
x
.|
as
positive
Surreal
by
A1
,
Th3
;
per
cases
( X
=
x or X
=
-
x )
by
Def6
;
suppose
X
=
x
;
:: thesis:
r2
=
r1
then
( r1
<=
r2 & r2
<=
r1 )
by
A1
,
Lm8
;
hence
r2
=
r1
by
XXREAL_0:1
;
:: thesis:
verum
end;
suppose
A2
:
X
=
-
x
;
:: thesis:
r2
=
r1
then
A3
: x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
=
(
-
X
)
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
.=
-
(
X
+
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
by
SURREALR:40
;
-
(
uReal
.
(
-
r1
)
)
==
uReal
.
(
-
(
-
r1
)
)
by
SURREALN:56
;
then
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
=
(
No_omega^
y
)
*
(
-
(
uReal
.
(
-
r1
)
)
)
&
(
No_omega^
y
)
*
(
-
(
uReal
.
(
-
r1
)
)
)
==
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
by
SURREALR:51
,
SURREALR:58
;
then
X
+
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
==
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
by
SURREALR:43
;
then
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
==
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
)
by
A3
,
SURREALR:10
;
then
(
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
)
.|
==
|.
(
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
)
)
.|
&
|.
(
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
)
)
.|
==
|.
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
)
.|
)
by
Th48
,
Th39
,
Th38
;
then
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r1
)
)
)
)
.|
==
|.
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
)
.|
by
SURREALO:4
;
then
A4
:
|.
(
X
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r1
)
)
)
)
.|
infinitely<
X
by
A1
,
Th17
;
A5
: x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
=
(
-
X
)
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
by
A2
.=
-
(
X
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
by
SURREALR:40
;
-
(
uReal
.
(
-
r2
)
)
==
uReal
.
(
-
(
-
r2
)
)
by
SURREALN:56
;
then
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
=
(
No_omega^
y
)
*
(
-
(
uReal
.
(
-
r2
)
)
)
&
(
No_omega^
y
)
*
(
-
(
uReal
.
(
-
r2
)
)
)
==
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
by
SURREALR:51
,
SURREALR:58
;
then
X
+
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
==
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
by
SURREALR:43
;
then
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
==
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
)
by
A5
,
SURREALR:10
;
then
(
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
.|
==
|.
(
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
)
)
.|
&
|.
(
-
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
)
)
.|
==
|.
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
)
.|
)
by
Th48
,
Th39
,
Th38
;
then
|.
(
x
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
r2
)
)
)
)
.|
==
|.
(
X
+
(
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
)
.|
by
SURREALO:4
;
then
|.
(
X
-
(
(
No_omega^
y
)
*
(
uReal
.
(
-
r2
)
)
)
)
.|
infinitely<
X
by
A1
,
Th17
;
then
(
-
r1
<=
-
r2 &
-
r2
<=
-
r1 )
by
A4
,
A1
,
Lm8
;
then
-
r1
=
-
r2
by
XXREAL_0:1
;
hence
r2
=
r1
;
:: thesis:
verum
end;
end;
end;
definition
let
x be
Surreal
;
assume
A1
:
not x
==
0_No
;
func
omega-r
x
->
non
zero
Real
means
:
Def8
:
:: SURREALC:def 8
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
it
)
)
)
.|
infinitely<
|.
x
.|
;
existence
ex b
1
being non
zero
Real
st
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
1
)
)
)
.|
infinitely<
|.
x
.|
proof
reconsider
X =
|.
x
.|
as
positive
Surreal
by
A1
,
Th36
;
set
y =
omega-exp
X;
A2
:
X
=
|.
X
.|
by
Th31
,
Def6
;
not
-
x
==
0_No
by
A1
,
SURREALR:24
;
then
not X
==
0_No
by
A1
,
Def6
;
then
X,
No_omega^
(
omega-exp
X
)
are_commensurate
by
A2
,
Def7
;
then
consider
s being
positive
Real
such that
A3
:
|.
(
X
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
X
by
Th54
;
per
cases
( X
=
x or X
=
-
x )
by
Def6
;
suppose
A4
:
X
=
x
;
:: thesis:
ex b
1
being non
zero
Real
st
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
1
)
)
)
.|
infinitely<
|.
x
.|
take
s ;
:: thesis:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
|.
x
.|
thus
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
s
)
)
)
.|
infinitely<
|.
x
.|
by
A3
,
A4
;
:: thesis:
verum
end;
suppose
A5
:
X
=
-
x
;
:: thesis:
ex b
1
being non
zero
Real
st
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
1
)
)
)
.|
infinitely<
|.
x
.|
then
A6
:
X
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
=
-
(
x
+
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
by
SURREALR:40
;
take
-
s ;
:: thesis:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
-
s
)
)
)
)
.|
infinitely<
|.
x
.|
-
(
uReal
.
(
-
s
)
)
==
uReal
.
(
-
(
-
s
)
)
by
SURREALN:56
;
then
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
=
(
No_omega^
(
omega-exp
X
)
)
*
(
-
(
uReal
.
(
-
s
)
)
)
&
(
No_omega^
(
omega-exp
X
)
)
*
(
-
(
uReal
.
(
-
s
)
)
)
==
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
by
SURREALR:51
,
SURREALR:58
;
then
x
+
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
==
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
by
SURREALR:43
;
then
X
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
==
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
by
SURREALR:10
,
A6
;
then
(
|.
(
X
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
)
.|
==
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
)
.|
&
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
)
.|
==
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
.|
)
by
Th48
,
Th39
,
Th38
;
then
|.
(
X
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
s
)
)
)
)
.|
==
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
.|
by
SURREALO:4
;
then
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
X
)
)
*
(
uReal
.
(
-
s
)
)
)
)
)
.|
infinitely<
X
by
A3
,
Th17
;
hence
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
-
s
)
)
)
)
.|
infinitely<
|.
x
.|
by
A5
,
A1
,
Th56
;
:: thesis:
verum
end;
end;
end;
uniqueness
for b
1
, b
2
being non
zero
Real
st
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
2
)
)
)
.|
infinitely<
|.
x
.|
holds
b
1
=
b
2
proof
let
r1, r2 be non
zero
Real
;
:: thesis:
(
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
&
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
implies r1
=
r2 )
assume
that
A7
:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
r1
)
)
)
.|
infinitely<
|.
x
.|
and
A8
:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
r2
)
)
)
.|
infinitely<
|.
x
.|
;
:: thesis:
r1
=
r2
|.
x
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
by
A1
,
Def7
;
hence
r1
=
r2
by
A7
,
A8
,
Lm9
;
:: thesis:
verum
end;
end;
::
deftheorem
Def8
defines
omega-r
SURREALC:def 8 :
for x being
Surreal
st not x
==
0_No
holds
for b
2
being non
zero
Real
holds
( b
2
=
omega-r
x iff
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
b
2
)
)
)
.|
infinitely<
|.
x
.|
);
theorem
Th57
:
:: SURREALC:57
for x, y being
Surreal
for n being
positive
Nat
st
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
<
|.
x
.|
holds
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
proof
let
x, y be
Surreal
;
:: thesis:
for n being
positive
Nat
st
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
<
|.
x
.|
holds
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
let
n be
positive
Nat
;
:: thesis:
(
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
<
|.
x
.|
implies
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
)
assume
A1
:
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
<
|.
x
.|
;
:: thesis:
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
(
0_No
<=
|.
y
.|
&
0_No
<=
uReal
.
(
(
n
+
1
)
/
n
)
)
by
SURREALI:def 8
,
Th31
;
then
(
0_No
=
0_No
*
|.
y
.|
&
0_No
*
|.
y
.|
<=
(
uReal
.
(
(
n
+
1
)
/
n
)
)
*
|.
y
.|
)
by
SURREALR:75
;
then
A2
:
0_No
<
|.
x
.|
by
A1
,
SURREALO:4
;
A3
:
0_No
<
uReal
.
(
n
/
(
n
+
1
)
)
by
SURREALI:def 8
;
A4
:
1
/
(
(
n
+
1
)
/
n
)
=
n
/
(
n
+
1
)
by
XCMPLX_1:57
;
(
|.
y
.|
==
(
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
)
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
&
(
|.
y
.|
*
(
uReal
.
(
(
n
+
1
)
/
n
)
)
)
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
<
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
by
A1
,
A4
,
Lm2
,
A3
,
SURREALR:70
;
then
A5
:
(
|.
(
-
y
)
.|
==
|.
y
.|
&
|.
y
.|
<
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
by
SURREALO:4
,
Th39
,
Th38
;
then
|.
(
-
y
)
.|
<
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
by
SURREALO:4
;
then
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
<
-
|.
(
-
y
)
.|
by
SURREALR:10
;
then
A6
:
|.
x
.|
+
(
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
)
<
|.
x
.|
+
(
-
|.
(
-
y
)
.|
)
by
SURREALR:44
;
A7
:
(
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
=
|.
x
.|
*
(
-
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
&
|.
x
.|
*
(
-
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
==
|.
x
.|
*
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
by
SURREALN:56
,
SURREALR:51
,
SURREALR:58
;
1
-
(
n
/
(
n
+
1
)
)
=
(
(
n
+
1
)
/
(
n
+
1
)
)
-
(
n
/
(
n
+
1
)
)
by
XCMPLX_1:60
.=
(
(
n
+
1
)
-
n
)
/
(
n
+
1
)
by
XCMPLX_1:120
;
then
A8
:
1
+
(
-
(
n
/
(
n
+
1
)
)
)
=
1
/
(
n
+
1
)
;
A9
:
|.
x
.|
=
|.
x
.|
*
(
uReal
.
1
)
by
SURREALN:48
;
(
|.
x
.|
+
(
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
)
==
(
|.
x
.|
*
(
uReal
.
1
)
)
+
(
|.
x
.|
*
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
&
(
|.
x
.|
*
(
uReal
.
1
)
)
+
(
|.
x
.|
*
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
==
|.
x
.|
*
(
(
uReal
.
1
)
+
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
)
by
A7
,
SURREALR:43
,
SURREALR:67
,
SURREALN:48
;
then
(
|.
x
.|
+
(
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
)
==
|.
x
.|
*
(
(
uReal
.
1
)
+
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
&
|.
x
.|
*
(
(
uReal
.
1
)
+
(
uReal
.
(
-
(
n
/
(
n
+
1
)
)
)
)
)
==
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
)
by
A8
,
SURREALN:55
,
SURREALR:51
,
SURREALO:4
;
then
A10
:
|.
x
.|
+
(
-
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
)
)
==
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
by
SURREALO:4
;
n
<
n
+
1
by
NAT_1:13
;
then
n
/
(
n
+
1
)
<
1
by
XREAL_1:189
;
then
(
|.
x
.|
*
(
uReal
.
(
n
/
(
n
+
1
)
)
)
<=
|.
x
.|
*
1_No
&
|.
x
.|
*
1_No
=
|.
x
.|
)
by
SURREALN:48
,
SURREALN:51
,
A2
,
SURREALR:70
;
then
A11
:
(
|.
(
-
y
)
.|
==
|.
y
.|
&
|.
y
.|
<
|.
x
.|
)
by
A5
,
SURREALO:4
;
then
(
|.
(
-
y
)
.|
+
0_No
=
|.
(
-
y
)
.|
&
|.
(
-
y
)
.|
<
|.
x
.|
)
by
SURREALO:4
;
then
0_No
<=
|.
x
.|
-
|.
(
-
y
)
.|
by
SURREALR:42
;
then
A12
:
|.
(
|.
x
.|
+
(
-
|.
(
-
y
)
.|
)
)
.|
=
|.
x
.|
+
(
-
|.
(
-
y
)
.|
)
by
Def6
;
A13
:
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
<
|.
(
|.
x
.|
+
(
-
|.
(
-
y
)
.|
)
)
.|
by
A10
,
A12
,
A6
,
SURREALO:4
;
A14
:
(
uInt
.
(
n
+
1
)
=
uDyadic
.
(
n
+
1
)
&
uDyadic
.
(
n
+
1
)
=
uReal
.
(
n
+
1
)
)
by
SURREALN:46
,
SURREALN:def 5
;
A15
:
(
uInt
.
2
=
uDyadic
.
2 &
uDyadic
.
2
=
uReal
.
2 )
by
SURREALN:46
,
SURREALN:def 5
;
A16
:
0_No
<
uReal
.
(
n
+
1
)
by
SURREALI:def 8
;
A17
:
1
/
(
1
/
(
n
+
1
)
)
=
n
+
1
by
XCMPLX_1:56
;
|.
(
|.
x
.|
-
|.
(
-
y
)
.|
)
.|
<=
|.
(
x
-
(
-
y
)
)
.|
by
Th49
;
then
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
<
|.
(
x
+
y
)
.|
by
A13
,
SURREALO:4
;
then
(
|.
x
.|
==
(
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
)
*
(
uReal
.
(
n
+
1
)
)
&
(
|.
x
.|
*
(
uReal
.
(
1
/
(
n
+
1
)
)
)
)
*
(
uReal
.
(
n
+
1
)
)
<
|.
(
x
+
y
)
.|
*
(
uReal
.
(
n
+
1
)
)
)
by
A16
,
SURREALR:70
,
A17
,
Lm2
;
then
A18
:
|.
x
.|
<
|.
(
x
+
y
)
.|
*
(
uInt
.
(
n
+
1
)
)
by
SURREALO:4
,
A14
;
A19
:
|.
y
.|
+
|.
x
.|
<
|.
x
.|
+
|.
x
.|
by
A11
,
SURREALR:44
;
(
uReal
.
1
)
+
(
uReal
.
1
)
==
uReal
.
(
1
+
1
)
by
SURREALN:55
;
then
(
|.
x
.|
+
|.
x
.|
==
|.
x
.|
*
(
(
uReal
.
1
)
+
(
uReal
.
1
)
)
&
|.
x
.|
*
(
(
uReal
.
1
)
+
(
uReal
.
1
)
)
==
|.
x
.|
*
(
uReal
.
2
)
)
by
A9
,
SURREALR:67
,
SURREALR:51
;
then
|.
x
.|
+
|.
x
.|
==
|.
x
.|
*
(
uReal
.
2
)
by
SURREALO:4
;
then
A20
:
|.
y
.|
+
|.
x
.|
<
|.
x
.|
*
(
uReal
.
2
)
by
A19
,
SURREALO:4
;
|.
(
x
+
y
)
.|
<=
|.
x
.|
+
|.
y
.|
by
Th37
;
then
|.
(
x
+
y
)
.|
<
|.
x
.|
*
(
uInt
.
2
)
by
A15
,
A20
,
SURREALO:4
;
hence
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
by
A18
;
:: thesis:
verum
end;
theorem
:: SURREALC:58
for x being
Surreal
st
|.
x
.|
is
positive
holds
not x
==
0_No
by
Def6
;
theorem
Th59
:
:: SURREALC:59
for x, y being
Surreal
for r, r1, r2 being
Real
st x
*
(
uReal
.
r1
)
<
y
*
(
uReal
.
r2
)
&
0
<
r holds
x
*
(
uReal
.
(
r1
*
r
)
)
<
y
*
(
uReal
.
(
r2
*
r
)
)
proof
let
x, y be
Surreal
;
:: thesis:
for r, r1, r2 being
Real
st x
*
(
uReal
.
r1
)
<
y
*
(
uReal
.
r2
)
&
0
<
r holds
x
*
(
uReal
.
(
r1
*
r
)
)
<
y
*
(
uReal
.
(
r2
*
r
)
)
let
r, r1, r2 be
Real
;
:: thesis:
( x
*
(
uReal
.
r1
)
<
y
*
(
uReal
.
r2
)
&
0
<
r implies x
*
(
uReal
.
(
r1
*
r
)
)
<
y
*
(
uReal
.
(
r2
*
r
)
)
)
assume
A1
:
( x
*
(
uReal
.
r1
)
<
y
*
(
uReal
.
r2
)
&
0
<
r )
;
:: thesis:
x
*
(
uReal
.
(
r1
*
r
)
)
<
y
*
(
uReal
.
(
r2
*
r
)
)
then
0_No
<
uReal
.
r
by
SURREALI:def 8
;
then
A2
:
(
x
*
(
uReal
.
r1
)
)
*
(
uReal
.
r
)
<
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
by
A1
,
SURREALR:70
;
(
x
*
(
uReal
.
r1
)
)
*
(
uReal
.
r
)
==
x
*
(
uReal
.
(
r1
*
r
)
)
by
Lm1
;
then
( x
*
(
uReal
.
(
r1
*
r
)
)
<
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
&
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
==
y
*
(
uReal
.
(
r2
*
r
)
)
)
by
A2
,
SURREALO:4
,
Lm1
;
hence
x
*
(
uReal
.
(
r1
*
r
)
)
<
y
*
(
uReal
.
(
r2
*
r
)
)
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
:: SURREALC:60
for x, y being
Surreal
for r, r1, r2 being
Real
st x
*
(
uReal
.
r1
)
<=
y
*
(
uReal
.
r2
)
&
0
<=
r holds
x
*
(
uReal
.
(
r1
*
r
)
)
<=
y
*
(
uReal
.
(
r2
*
r
)
)
proof
let
x, y be
Surreal
;
:: thesis:
for r, r1, r2 being
Real
st x
*
(
uReal
.
r1
)
<=
y
*
(
uReal
.
r2
)
&
0
<=
r holds
x
*
(
uReal
.
(
r1
*
r
)
)
<=
y
*
(
uReal
.
(
r2
*
r
)
)
let
r, r1, r2 be
Real
;
:: thesis:
( x
*
(
uReal
.
r1
)
<=
y
*
(
uReal
.
r2
)
&
0
<=
r implies x
*
(
uReal
.
(
r1
*
r
)
)
<=
y
*
(
uReal
.
(
r2
*
r
)
)
)
assume
A1
:
( x
*
(
uReal
.
r1
)
<=
y
*
(
uReal
.
r2
)
&
0
<=
r )
;
:: thesis:
x
*
(
uReal
.
(
r1
*
r
)
)
<=
y
*
(
uReal
.
(
r2
*
r
)
)
then
0_No
<=
uReal
.
r
by
SURREALN:51
,
SURREALN:47
;
then
A2
:
(
x
*
(
uReal
.
r1
)
)
*
(
uReal
.
r
)
<=
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
by
A1
,
SURREALR:75
;
(
x
*
(
uReal
.
r1
)
)
*
(
uReal
.
r
)
==
x
*
(
uReal
.
(
r1
*
r
)
)
by
Lm1
;
then
( x
*
(
uReal
.
(
r1
*
r
)
)
<=
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
&
(
y
*
(
uReal
.
r2
)
)
*
(
uReal
.
r
)
==
y
*
(
uReal
.
(
r2
*
r
)
)
)
by
A2
,
SURREALO:4
,
Lm1
;
hence
x
*
(
uReal
.
(
r1
*
r
)
)
<=
y
*
(
uReal
.
(
r2
*
r
)
)
by
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th61
:
:: SURREALC:61
for x, y being
Surreal
st not x
==
0_No
& not y
==
0_No
holds
(
omega-exp
x
=
omega-exp
y iff
|.
x
.|
,
|.
y
.|
are_commensurate
)
proof
let
x, y be
Surreal
;
:: thesis:
( not x
==
0_No
& not y
==
0_No
implies (
omega-exp
x
=
omega-exp
y iff
|.
x
.|
,
|.
y
.|
are_commensurate
) )
assume
A1
:
( not x
==
0_No
& not y
==
0_No
)
;
:: thesis:
(
omega-exp
x
=
omega-exp
y iff
|.
x
.|
,
|.
y
.|
are_commensurate
)
then
A2
:
(
|.
x
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
&
|.
y
.|
,
No_omega^
(
omega-exp
y
)
are_commensurate
)
by
Def7
;
thus
(
omega-exp
x
=
omega-exp
y implies
|.
x
.|
,
|.
y
.|
are_commensurate
)
by
A2
,
Th4
;
:: thesis:
(
|.
x
.|
,
|.
y
.|
are_commensurate
implies
omega-exp
x
=
omega-exp
y )
assume
|.
x
.|
,
|.
y
.|
are_commensurate
;
:: thesis:
omega-exp
x
=
omega-exp
y
then
|.
y
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
by
A2
,
Th4
;
hence
omega-exp
x
=
omega-exp
y
by
A1
,
Def7
;
:: thesis:
verum
end;
theorem
Th62
:
:: SURREALC:62
for x, y being
Surreal
st not x
==
0_No
& not x
+
y
==
0_No
&
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
holds
|.
y
.|
infinitely<
|.
x
.|
proof
let
x, y be
Surreal
;
:: thesis:
( not x
==
0_No
& not x
+
y
==
0_No
&
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
implies
|.
y
.|
infinitely<
|.
x
.|
)
set
r =
omega-r
x;
set
w =
omega-exp
x;
set
N =
No_omega^
(
omega-exp
x
)
;
set
R =
uReal
.
(
omega-r
x
)
;
assume
that
A1
:
( not x
==
0_No
& not x
+
y
==
0_No
)
and
A2
:
(
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
)
;
:: thesis:
|.
y
.|
infinitely<
|.
x
.|
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
|.
y
.|
*
(
uReal
.
s
)
<
|.
x
.|
A3
:
(
|.
x
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
&
|.
(
x
+
y
)
.|
,
No_omega^
(
omega-exp
x
)
are_commensurate
)
by
A1
,
A2
,
Def7
;
A4
:
0_No
<=
uReal
.
s
by
SURREALI:def 8
;
A5
:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
x
.|
by
A1
,
Def8
;
|.
(
(
x
+
y
)
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
(
x
+
y
)
.|
by
A1
,
A2
,
Def8
;
then
A6
:
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
infinitely<
|.
x
.|
by
Th16
,
A3
,
Th4
;
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
==
0_No
by
SURREALR:39
;
then
A7
:
(
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
+
(
-
x
)
)
=
(
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
-
x
)
&
(
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
-
x
)
==
0_No
+
(
-
x
)
&
0_No
+
(
-
x
)
=
-
x )
by
SURREALR:43
,
SURREALR:37
;
A8
:
x
-
x
==
0_No
by
SURREALR:39
;
(
x
+
y
)
+
(
-
x
)
=
y
+
(
x
+
(
-
x
)
)
by
SURREALR:37
;
then
A9
:
(
(
x
+
y
)
+
(
-
x
)
==
y
+
0_No
& y
+
0_No
=
y )
by
A8
,
SURREALR:43
;
-
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
=
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
;
then
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
=
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
+
(
-
x
)
by
SURREALR:40
;
then
(
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
=
(
x
+
y
)
+
(
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
+
(
-
x
)
)
)
&
(
x
+
y
)
+
(
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
+
(
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
+
(
-
x
)
)
)
==
(
x
+
y
)
+
(
-
x
)
)
by
A7
,
SURREALR:43
,
SURREALR:37
;
then
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
==
y
by
A9
,
SURREALO:4
;
then
(
|.
y
.|
==
|.
(
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
)
.|
&
|.
(
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
+
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
)
.|
<=
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
)
by
Th48
,
Th37
;
then
|.
y
.|
<=
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
by
SURREALO:4
;
then
(
|.
y
.|
*
(
uReal
.
s
)
<=
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
)
*
(
uReal
.
s
)
&
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
)
*
(
uReal
.
s
)
==
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
)
by
A4
,
SURREALR:67
,
SURREALR:75
;
then
A10
:
|.
y
.|
*
(
uReal
.
s
)
<=
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
by
SURREALO:4
;
A11
:
|.
x
.|
=
|.
x
.|
*
(
uReal
.
1
)
by
SURREALN:48
;
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
s
*
2
)
)
<
|.
x
.|
by
A6
;
then
A12
:
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
(
s
*
2
)
*
(
1
/
2
)
)
)
<=
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
by
Th59
,
A11
;
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
s
*
2
)
)
<
|.
x
.|
by
A5
;
then
A13
:
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
(
s
*
2
)
*
(
1
/
2
)
)
)
<
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
by
Th59
,
A11
;
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
==
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
s
)
by
SURREALR:51
,
Th40
;
then
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
(
(
s
*
2
)
*
(
1
/
2
)
)
)
<
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
by
A13
,
SURREALO:4
;
then
A14
:
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
<
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
by
A12
,
SURREALR:44
;
(
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
==
|.
x
.|
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
&
|.
x
.|
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
|.
x
.|
*
(
uReal
.
(
(
1
/
2
)
+
(
1
/
2
)
)
)
)
by
SURREALR:67
,
SURREALR:51
,
SURREALN:55
;
then
(
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
==
|.
x
.|
*
(
uReal
.
1
)
&
|.
x
.|
*
(
uReal
.
1
)
=
|.
x
.|
)
by
SURREALN:48
,
SURREALO:4
;
then
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
(
-
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
<
|.
x
.|
by
A14
,
SURREALO:4
;
hence
|.
y
.|
*
(
uReal
.
s
)
<
|.
x
.|
by
A10
,
SURREALO:4
;
:: thesis:
verum
end;
theorem
Th63
:
:: SURREALC:63
for x, y being
Surreal
st
|.
y
.|
infinitely<
|.
x
.|
holds
( not x
==
0_No
& not x
+
y
==
0_No
&
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
)
proof
let
x, y be
Surreal
;
:: thesis:
(
|.
y
.|
infinitely<
|.
x
.|
implies ( not x
==
0_No
& not x
+
y
==
0_No
&
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
) )
assume
A1
:
|.
y
.|
infinitely<
|.
x
.|
;
:: thesis:
( not x
==
0_No
& not x
+
y
==
0_No
&
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
)
hence
A2
:
( not x
==
0_No
& not x
+
y
==
0_No
)
by
Th45
,
Th47
;
:: thesis:
(
omega-exp
x
=
omega-exp
(
x
+
y
)
&
omega-r
x
=
omega-r
(
x
+
y
)
)
A3
:
|.
y
.|
*
(
uReal
.
(
(
2
+
1
)
/
2
)
)
<
|.
x
.|
by
A1
;
then
|.
x
.|
,
|.
(
x
+
y
)
.|
are_commensurate
by
Th57
;
hence
A4
:
omega-exp
x
=
omega-exp
(
x
+
y
)
by
A2
,
Th61
;
:: thesis:
omega-r
x
=
omega-r
(
x
+
y
)
set
N =
No_omega^
(
omega-exp
x
)
;
A5
:
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
x
.|
by
A2
,
Def8
;
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
infinitely<
|.
x
.|
proof
let
s be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
<
|.
x
.|
A6
:
0_No
<=
uReal
.
s
by
SURREALI:def 8
;
set
r =
uReal
.
(
omega-r
x
)
;
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
=
y
+
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
by
SURREALR:37
;
then
(
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
<=
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
y
.|
)
*
(
uReal
.
s
)
&
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
+
|.
y
.|
)
*
(
uReal
.
s
)
==
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
y
.|
*
(
uReal
.
s
)
)
)
by
Th37
,
A6
,
SURREALR:67
,
SURREALR:75
;
then
A7
:
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
<=
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
y
.|
*
(
uReal
.
s
)
)
by
SURREALO:4
;
A8
:
|.
x
.|
=
|.
x
.|
*
(
uReal
.
1
)
by
SURREALN:48
;
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
s
*
2
)
)
<
|.
x
.|
by
A5
;
then
A9
:
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
(
(
s
*
2
)
*
(
1
/
2
)
)
)
<=
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
by
Th59
,
A8
;
|.
y
.|
*
(
uReal
.
(
s
*
2
)
)
<
|.
x
.|
by
A1
;
then
|.
y
.|
*
(
uReal
.
(
(
s
*
2
)
*
(
1
/
2
)
)
)
<
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
by
Th59
,
A8
;
then
A10
:
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
y
.|
*
(
uReal
.
s
)
)
<
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
by
A9
,
SURREALR:44
;
(
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
==
|.
x
.|
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
&
|.
x
.|
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
|.
x
.|
*
(
uReal
.
(
(
1
/
2
)
+
(
1
/
2
)
)
)
)
by
SURREALR:67
,
SURREALR:51
,
SURREALN:55
;
then
(
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
+
(
|.
x
.|
*
(
uReal
.
(
1
*
(
1
/
2
)
)
)
)
==
|.
x
.|
*
(
uReal
.
1
)
&
|.
x
.|
*
(
uReal
.
1
)
=
|.
x
.|
)
by
SURREALN:48
,
SURREALO:4
;
then
(
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
)
+
(
|.
y
.|
*
(
uReal
.
s
)
)
<
|.
x
.|
by
A10
,
SURREALO:4
;
hence
|.
(
(
x
+
y
)
+
(
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
*
(
uReal
.
s
)
<
|.
x
.|
by
A7
,
SURREALO:4
;
:: thesis:
verum
end;
then
|.
(
(
x
+
y
)
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
(
x
+
y
)
.|
by
A3
,
Th57
,
Th16
;
hence
omega-r
x
=
omega-r
(
x
+
y
)
by
A2
,
A4
,
Def8
;
:: thesis:
verum
end;
theorem
Th64
:
:: SURREALC:64
for x, y being
Surreal
st not x
==
0_No
& y
==
0_No
holds
y
infinitely<
|.
x
.|
proof
let
x, y be
Surreal
;
:: thesis:
( not x
==
0_No
& y
==
0_No
implies y
infinitely<
|.
x
.|
)
assume
A1
:
( not x
==
0_No
& y
==
0_No
)
;
:: thesis:
y
infinitely<
|.
x
.|
then
A2
:
|.
x
.|
is
positive
by
Th36
;
let
r be
positive
Real
;
:: according to
SURREALC:def 3
:: thesis:
y
*
(
uReal
.
r
)
<
|.
x
.|
(
(
uReal
.
r
)
*
y
==
(
uReal
.
r
)
*
0_No
&
(
uReal
.
r
)
*
0_No
=
0_No
)
by
A1
,
SURREALR:51
;
hence
y
*
(
uReal
.
r
)
<
|.
x
.|
by
SURREALO:4
,
A2
;
:: thesis:
verum
end;
theorem
:: SURREALC:65
for r being
Real
st
uReal
.
r
==
0_No
holds
r
=
0
proof
let
r be
Real
;
:: thesis:
(
uReal
.
r
==
0_No
implies r
=
0
)
assume
uReal
.
r
==
0_No
;
:: thesis:
r
=
0
then
(
0
<=
r & r
<=
0
)
by
SURREALN:51
,
SURREALN:47
;
hence
r
=
0
;
:: thesis:
verum
end;
Lm10
:
for x being
Surreal
for r being
Real
st x is
positive
& r
>
0
holds
(
uReal
.
r
)
*
x,x
are_commensurate
proof
let
x be
Surreal
;
:: thesis:
for r being
Real
st x is
positive
& r
>
0
holds
(
uReal
.
r
)
*
x,x
are_commensurate
let
r be
Real
;
:: thesis:
( x is
positive
& r
>
0
implies
(
uReal
.
r
)
*
x,x
are_commensurate
)
assume
A1
:
( x is
positive
& r
>
0
)
;
:: thesis:
(
uReal
.
r
)
*
x,x
are_commensurate
consider
n being
Nat
such that
A2
:
r
<
n
by
SEQ_4:3
;
n
<
n
+
1
by
NAT_1:13
;
then
A3
:
r
<
n
+
1
by
A2
,
XXREAL_0:2
;
(
uReal
.
(
n
+
1
)
=
uDyadic
.
(
n
+
1
)
&
uDyadic
.
(
n
+
1
)
=
uInt
.
(
n
+
1
)
)
by
SURREALN:46
,
SURREALN:def 5
;
then
A4
:
(
uReal
.
r
)
*
x
<
x
*
(
uInt
.
(
n
+
1
)
)
by
A3
,
SURREALN:51
,
SURREALR:70
,
A1
;
consider
k being
Nat
such that
A5
:
1
/
r
<
k
by
SEQ_4:3
;
k
<
k
+
1
by
NAT_1:13
;
then
A6
:
1
/
r
<
k
+
1
by
A5
,
XXREAL_0:2
;
0_No
<
(
uReal
.
r
)
*
x
by
A1
,
SURREALI:def 8
;
then
A7
:
(
uReal
.
(
1
/
r
)
)
*
(
(
uReal
.
r
)
*
x
)
<
(
uReal
.
(
k
+
1
)
)
*
(
(
uReal
.
r
)
*
x
)
by
A6
,
SURREALN:51
,
SURREALR:70
;
A8
:
(
uReal
.
(
k
+
1
)
=
uDyadic
.
(
k
+
1
)
&
uDyadic
.
(
k
+
1
)
=
uInt
.
(
k
+
1
)
)
by
SURREALN:46
,
SURREALN:def 5
;
(
uReal
.
(
1
/
r
)
)
*
(
(
uReal
.
r
)
*
x
)
==
x
by
Lm2
,
A1
;
then
x
<
(
(
uReal
.
r
)
*
x
)
*
(
uInt
.
(
k
+
1
)
)
by
A8
,
A7
,
SURREALO:4
;
hence
(
uReal
.
r
)
*
x,x
are_commensurate
by
A4
;
:: thesis:
verum
end;
theorem
Th66
:
:: SURREALC:66
for x being
Surreal
for r being
Real
st x is
positive
& r
<>
0
holds
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
proof
let
x be
Surreal
;
:: thesis:
for r being
Real
st x is
positive
& r
<>
0
holds
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
let
r be
Real
;
:: thesis:
( x is
positive
& r
<>
0
implies
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
)
assume
A1
:
( x is
positive
& r
<>
0
)
;
:: thesis:
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
per
cases
then
(
0
<
r or r
<
0
)
;
suppose
A2
:
0
<
r
;
:: thesis:
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
then
0_No
<=
(
uReal
.
r
)
*
x
by
A1
,
SURREALI:def 8
;
then
(
uReal
.
r
)
*
x
=
|.
(
(
uReal
.
r
)
*
x
)
.|
by
Def6
;
hence
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
by
Lm10
,
A1
,
A2
;
:: thesis:
verum
end;
suppose
A3
:
r
<
0
;
:: thesis:
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
0_No
<=
(
uReal
.
(
-
r
)
)
*
x
by
A3
,
A1
,
SURREALI:def 8
;
then
A4
:
(
uReal
.
(
-
r
)
)
*
x
=
|.
(
(
uReal
.
(
-
r
)
)
*
x
)
.|
by
Def6
;
(
(
uReal
.
(
-
r
)
)
*
x
==
(
-
(
uReal
.
r
)
)
*
x &
(
-
(
uReal
.
r
)
)
*
x
==
-
(
(
uReal
.
r
)
*
x
)
)
by
SURREALN:56
,
SURREALR:51
,
SURREALR:58
;
then
(
uReal
.
(
-
r
)
)
*
x
==
-
(
(
uReal
.
r
)
*
x
)
by
SURREALR:58
;
then
(
|.
(
(
uReal
.
(
-
r
)
)
*
x
)
.|
==
|.
(
-
(
(
uReal
.
r
)
*
x
)
)
.|
&
|.
(
-
(
(
uReal
.
r
)
*
x
)
)
.|
==
|.
(
(
uReal
.
r
)
*
x
)
.|
)
by
Th48
,
Th39
,
Th38
;
then
(
uReal
.
(
-
r
)
)
*
x
==
|.
(
(
uReal
.
r
)
*
x
)
.|
by
A4
,
SURREALO:4
;
hence
|.
(
(
uReal
.
r
)
*
x
)
.|
,x
are_commensurate
by
A3
,
Lm10
,
A1
,
Th5
;
:: thesis:
verum
end;
end;
end;
scheme
:: SURREALC:sch 1
Simplest
{ P
1
[
Surreal
] } :
ex s being
uSurreal
st
( P
1
[s] & ( for x being
uSurreal
st P
1
[x] & x
<>
s holds
born
s
in
born
x ) )
provided
A1
:
ex x being
Surreal
st P
1
[x]
and
A2
:
for x, y, z being
Surreal
st x
<=
y & y
<=
z & P
1
[x] & P
1
[z] holds
P
1
[y]
proof
consider
x being
Surreal
such that
A3
:
P
1
[x]
by
A1
;
set
c =
Unique_No
x;
A4
:
Unique_No
x
==
x
by
SURREALO:def 10
;
defpred
S
1
[
Ordinal
]
means
ex y being
uSurreal
st
(
born
y
=
$1 & P
1
[y] );
S
1
[
born
(
Unique_No
x
)
]
by
A4
,
A3
,
A2
;
then
A5
:
ex A being
Ordinal
st S
1
[A]
;
consider
A being
Ordinal
such that
A6
:
( S
1
[A] & ( for B being
Ordinal
st S
1
[B] holds
A
c=
B ) )
from
ORDINAL1:sch 1
(
A5
);
consider
s being
uSurreal
such that
A7
:
(
born
s
=
A & P
1
[s] )
by
A6
;
take
s ;
:: thesis:
( P
1
[s] & ( for x being
uSurreal
st P
1
[x] & x
<>
s holds
born
s
in
born
x ) )
thus
P
1
[s]
by
A7
;
:: thesis:
for x being
uSurreal
st P
1
[x] & x
<>
s holds
born
s
in
born
x
let
y be
uSurreal
;
:: thesis:
( P
1
[y] & y
<>
s implies
born
s
in
born
y )
assume
A8
:
( P
1
[y] & y
<>
s & not
born
s
in
born
y )
;
:: thesis:
contradiction
(
born
s
c=
born
y &
born
y
c=
born
s )
by
A8
,
ORDINAL1:16
,
A7
,
A6
;
then
A9
:
born
s
=
born
y
by
XBOOLE_0:def 10
;
not y
==
s
by
A8
,
SURREALO:50
;
per
cases
then
( y
<
s or s
<
y )
;
suppose
y
<
s
;
:: thesis:
contradiction
per
cases
then
( ex xR being
Surreal
st
( xR
in
R_
y & y
<
xR & xR
<=
s ) or ex yL being
Surreal
st
( yL
in
L_
s & y
<=
yL & yL
<
s ) )
by
SURREALO:13
;
suppose
ex xR being
Surreal
st
( xR
in
R_
y & y
<
xR & xR
<=
s )
;
:: thesis:
contradiction
then
consider
xR being
Surreal
such that
A10
:
( xR
in
R_
y & y
<
xR & xR
<=
s )
;
xR
in
(
L_
y
)
\/
(
R_
y
)
by
A10
,
XBOOLE_0:def 3
;
then
A11
:
born
xR
in
born
y
by
SURREALO:1
;
A12
:
Unique_No
xR
==
xR
by
SURREALO:def 10
;
then
( y
<=
Unique_No
xR &
Unique_No
xR
<=
s )
by
A10
,
SURREALO:4
;
then
A13
:
A
c=
born
(
Unique_No
xR
)
by
A6
,
A8
,
A2
,
A7
;
born
(
Unique_No
xR
)
=
born_eq
(
Unique_No
xR
)
by
SURREALO:48
;
hence
contradiction
by
A11
,
A7
,
A9
,
ORDINAL1:5
,
A13
,
A12
,
SURREALO:def 5
;
:: thesis:
verum
end;
suppose
ex yL being
Surreal
st
( yL
in
L_
s & y
<=
yL & yL
<
s )
;
:: thesis:
contradiction
then
consider
yL being
Surreal
such that
A14
:
( yL
in
L_
s & y
<=
yL & yL
<
s )
;
yL
in
(
L_
s
)
\/
(
R_
s
)
by
A14
,
XBOOLE_0:def 3
;
then
A15
:
born
yL
in
born
s
by
SURREALO:1
;
A16
:
Unique_No
yL
==
yL
by
SURREALO:def 10
;
then
( y
<=
Unique_No
yL &
Unique_No
yL
<=
s )
by
A14
,
SURREALO:4
;
then
A17
:
A
c=
born
(
Unique_No
yL
)
by
A6
,
A8
,
A2
,
A7
;
born
(
Unique_No
yL
)
=
born_eq
(
Unique_No
yL
)
by
SURREALO:48
;
hence
contradiction
by
A15
,
A7
,
ORDINAL1:5
,
A17
,
A16
,
SURREALO:def 5
;
:: thesis:
verum
end;
end;
end;
suppose
s
<
y
;
:: thesis:
contradiction
per
cases
then
( ex xR being
Surreal
st
( xR
in
R_
s & s
<
xR & xR
<=
y ) or ex yL being
Surreal
st
( yL
in
L_
y & s
<=
yL & yL
<
y ) )
by
SURREALO:13
;
suppose
ex xR being
Surreal
st
( xR
in
R_
s & s
<
xR & xR
<=
y )
;
:: thesis:
contradiction
then
consider
xR being
Surreal
such that
A18
:
( xR
in
R_
s & s
<
xR & xR
<=
y )
;
xR
in
(
L_
s
)
\/
(
R_
s
)
by
A18
,
XBOOLE_0:def 3
;
then
A19
:
born
xR
in
born
s
by
SURREALO:1
;
A20
:
Unique_No
xR
==
xR
by
SURREALO:def 10
;
then
( s
<=
Unique_No
xR &
Unique_No
xR
<=
y )
by
A18
,
SURREALO:4
;
then
A21
:
A
c=
born
(
Unique_No
xR
)
by
A6
,
A8
,
A2
,
A7
;
born
(
Unique_No
xR
)
=
born_eq
(
Unique_No
xR
)
by
SURREALO:48
;
hence
contradiction
by
A19
,
A7
,
ORDINAL1:5
,
A21
,
A20
,
SURREALO:def 5
;
:: thesis:
verum
end;
suppose
ex yL being
Surreal
st
( yL
in
L_
y & s
<=
yL & yL
<
y )
;
:: thesis:
contradiction
then
consider
yL being
Surreal
such that
A22
:
( yL
in
L_
y & s
<=
yL & yL
<
y )
;
yL
in
(
L_
y
)
\/
(
R_
y
)
by
A22
,
XBOOLE_0:def 3
;
then
A23
:
born
yL
in
born
y
by
SURREALO:1
;
A24
:
Unique_No
yL
==
yL
by
SURREALO:def 10
;
then
( s
<=
Unique_No
yL &
Unique_No
yL
<=
y )
by
A22
,
SURREALO:4
;
then
A25
:
A
c=
born
(
Unique_No
yL
)
by
A6
,
A8
,
A2
,
A7
;
born
(
Unique_No
yL
)
=
born_eq
(
Unique_No
yL
)
by
SURREALO:48
;
hence
contradiction
by
A23
,
A7
,
A9
,
ORDINAL1:5
,
A25
,
A24
,
SURREALO:def 5
;
:: thesis:
verum
end;
end;
end;
end;
end;
definition
let
f be
Function
;
attr
f is
surreal-valued
means
:
Def9
:
:: SURREALC:def 9
rng
f is
surreal-membered
;
end;
::
deftheorem
Def9
defines
surreal-valued
SURREALC:def 9 :
for f being
Function
holds
( f is
surreal-valued
iff
rng
f is
surreal-membered
);
registration
let
s be
Surreal
;
cluster
<%
s
%>
->
surreal-valued
;
coherence
<%
s
%>
is
surreal-valued
proof
rng
<%
s
%>
=
{
s
}
by
AFINSQ_1:33
;
hence
<%
s
%>
is
surreal-valued
;
:: thesis:
verum
end;
end;
registration
cluster
Relation-like
Function-like
Sequence-like
surreal-valued
for
set
;
existence
ex b
1
being
Sequence
st b
1
is
surreal-valued
proof
take
<%
0_No
%>
;
:: thesis:
<%
0_No
%>
is
surreal-valued
thus
<%
0_No
%>
is
surreal-valued
;
:: thesis:
verum
end;
end;
registration
let
f be
surreal-valued
Function
;
cluster
proj2
f
->
surreal-membered
;
coherence
rng
f is
surreal-membered
by
Def9
;
end;
definition
mode
Surreal-Sequence
is
surreal-valued
Sequence
;
end;
registration
let
X be
surreal-membered
set
;
cluster
->
surreal-membered
for
Element
of
bool
X;
coherence
for b
1
being
Subset
of X holds b
1
is
surreal-membered
by
SURREAL0:def 16
;
end;
registration
let
f be
surreal-valued
Function
;
let
X be
set
;
cluster
f
|
X
->
surreal-valued
;
coherence
f
|
X is
surreal-valued
proof
rng
(
f
|
X
)
c=
rng
f
by
RELAT_1:70
;
hence
f
|
X is
surreal-valued
;
:: thesis:
verum
end;
end;
registration
let
f, g be
Surreal-Sequence
;
cluster
f
^
g
->
surreal-valued
;
coherence
f
^
g is
surreal-valued
proof
rng
(
f
^
g
)
=
(
rng
f
)
\/
(
rng
g
)
by
ORDINAL4:2
;
hence
f
^
g is
surreal-valued
;
:: thesis:
verum
end;
end;
definition
let
f be
Function
;
attr
f is
uniq-surreal-valued
means
:
Def10
:
:: SURREALC:def 10
rng
f is
uniq-surreal-membered
;
end;
::
deftheorem
Def10
defines
uniq-surreal-valued
SURREALC:def 10 :
for f being
Function
holds
( f is
uniq-surreal-valued
iff
rng
f is
uniq-surreal-membered
);
registration
let
s be
uSurreal
;
cluster
<%
s
%>
->
uniq-surreal-valued
;
coherence
<%
s
%>
is
uniq-surreal-valued
proof
rng
<%
s
%>
=
{
s
}
by
AFINSQ_1:33
;
hence
<%
s
%>
is
uniq-surreal-valued
;
:: thesis:
verum
end;
end;
registration
cluster
Relation-like
Function-like
Sequence-like
uniq-surreal-valued
for
set
;
existence
ex b
1
being
Sequence
st b
1
is
uniq-surreal-valued
proof
take
<%
0_No
%>
;
:: thesis:
<%
0_No
%>
is
uniq-surreal-valued
thus
<%
0_No
%>
is
uniq-surreal-valued
;
:: thesis:
verum
end;
end;
registration
let
f be
uniq-surreal-valued
Function
;
cluster
proj2
f
->
uniq-surreal-membered
;
coherence
rng
f is
uniq-surreal-membered
by
Def10
;
end;
definition
mode
uSurreal-Sequence
is
uniq-surreal-valued
Sequence
;
end;
registration
let
X be
uniq-surreal-membered
set
;
cluster
->
uniq-surreal-membered
for
Element
of
bool
X;
coherence
for b
1
being
Subset
of X holds b
1
is
uniq-surreal-membered
by
SURREALO:def 12
;
end;
registration
let
f be
uniq-surreal-valued
Function
;
let
X be
set
;
cluster
f
|
X
->
uniq-surreal-valued
;
coherence
f
|
X is
uniq-surreal-valued
proof
rng
(
f
|
X
)
c=
rng
f
by
RELAT_1:70
;
hence
f
|
X is
uniq-surreal-valued
;
:: thesis:
verum
end;
end;
registration
let
f, g be
uSurreal-Sequence
;
cluster
f
^
g
->
uniq-surreal-valued
;
coherence
f
^
g is
uniq-surreal-valued
proof
rng
(
f
^
g
)
=
(
rng
f
)
\/
(
rng
g
)
by
ORDINAL4:2
;
hence
f
^
g is
uniq-surreal-valued
;
:: thesis:
verum
end;
end;
registration
cluster
uniq-surreal-membered
->
surreal-membered
for
set
;
coherence
for b
1
being
set
st b
1
is
uniq-surreal-membered
holds
b
1
is
surreal-membered
;
end;
registration
cluster
Relation-like
Function-like
uniq-surreal-valued
->
surreal-valued
for
set
;
coherence
for b
1
being
Function
st b
1
is
uniq-surreal-valued
holds
b
1
is
surreal-valued
;
end;
definition
let
S be
Surreal-Sequence
;
attr
S is
strictly_decreasing
means
:
Def11
:
:: SURREALC:def 11
for a, b being
Ordinal
st a
in
b & b
in
dom
S holds
for sa, sb being
Surreal
st sa
=
S
.
a & sb
=
S
.
b holds
sb
<
sa;
end;
::
deftheorem
Def11
defines
strictly_decreasing
SURREALC:def 11 :
for S being
Surreal-Sequence
holds
( S is
strictly_decreasing
iff for a, b being
Ordinal
st a
in
b & b
in
dom
S holds
for sa, sb being
Surreal
st sa
=
S
.
a & sb
=
S
.
b holds
sb
<
sa );
registration
let
s be
uSurreal
;
cluster
<%
s
%>
->
strictly_decreasing
;
coherence
<%
s
%>
is
strictly_decreasing
proof
set
S =
<%
s
%>
;
let
a, b be
Ordinal
;
:: according to
SURREALC:def 11
:: thesis:
( a
in
b & b
in
dom
<%
s
%>
implies for sa, sb being
Surreal
st sa
=
<%
s
%>
.
a & sb
=
<%
s
%>
.
b holds
sb
<
sa )
assume
A1
:
( a
in
b & b
in
dom
<%
s
%>
)
;
:: thesis:
for sa, sb being
Surreal
st sa
=
<%
s
%>
.
a & sb
=
<%
s
%>
.
b holds
sb
<
sa
dom
<%
s
%>
=
{
0
}
by
CARD_1:49
,
AFINSQ_1:33
;
hence
for sa, sb being
Surreal
st sa
=
<%
s
%>
.
a & sb
=
<%
s
%>
.
b holds
sb
<
sa
by
A1
,
TARSKI:def 1
;
:: thesis:
verum
end;
end;
registration
cluster
Relation-like
Function-like
Sequence-like
surreal-valued
uniq-surreal-valued
strictly_decreasing
for
set
;
existence
ex b
1
being
uSurreal-Sequence
st b
1
is
strictly_decreasing
proof
take
<%
0_No
%>
;
:: thesis:
<%
0_No
%>
is
strictly_decreasing
thus
<%
0_No
%>
is
strictly_decreasing
;
:: thesis:
verum
end;
end;
registration
let
s1, s2 be
non-zero
Sequence
;
cluster
s1
^
s2
->
non-zero
;
coherence
s1
^
s2 is
non-zero
proof
assume
0
in
rng
(
s1
^
s2
)
;
:: according to
ORDINAL1:def 15
:: thesis:
contradiction
then
0
in
(
rng
s1
)
\/
(
rng
s2
)
by
ORDINAL4:2
;
then
(
0
in
rng
s1 or
0
in
rng
s2 )
by
XBOOLE_0:def 3
;
hence
contradiction
;
:: thesis:
verum
end;
end;
registration
cluster
Relation-like
REAL
-valued
Function-like
Sequence-like
non-zero
V62
()
V63
()
V64
() for
set
;
existence
ex b
1
being
Sequence
of
REAL
st b
1
is
non-zero
proof
take
<%>
REAL
;
:: thesis:
<%>
REAL
is
non-zero
thus
<%>
REAL
is
non-zero
;
:: thesis:
verum
end;
end;
definition
let
s be
object
;
let
y be
Surreal
;
let
r be
Real
;
let
x be
object
;
attr
x is s,y,r
-terms
means
:: SURREALC:def 12
( not x
+'
(
-'
s
)
==
0_No
&
omega-exp
(
x
+'
(
-'
s
)
)
==
y &
omega-r
(
x
+'
(
-'
s
)
)
=
r );
end;
::
deftheorem
defines
-terms
SURREALC:def 12 :
for s being
object
for y being
Surreal
for r being
Real
for x being
object
holds
( x is s,y,r
-terms
iff ( not x
+'
(
-'
s
)
==
0_No
&
omega-exp
(
x
+'
(
-'
s
)
)
==
y &
omega-r
(
x
+'
(
-'
s
)
)
=
r ) );
definition
let
s, y be
Surreal
;
let
r be
Real
;
let
x be
Surreal
;
redefine
attr
x is s,y,r
-terms
means
:: SURREALC:def 13
( not x
-
s
==
0_No
&
omega-exp
(
x
-
s
)
==
y &
omega-r
(
x
-
s
)
=
r );
compatibility
( x is s,y,r
-terms
iff ( not x
-
s
==
0_No
&
omega-exp
(
x
-
s
)
==
y &
omega-r
(
x
-
s
)
=
r ) )
;
end;
::
deftheorem
defines
-terms
SURREALC:def 13 :
for s, y being
Surreal
for r being
Real
for x being
Surreal
holds
( x is s,y,r
-terms
iff ( not x
-
s
==
0_No
&
omega-exp
(
x
-
s
)
==
y &
omega-r
(
x
-
s
)
=
r ) );
theorem
Th67
:
:: SURREALC:67
for y being
Surreal
for r being
Real
st r
<>
0
holds
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
proof
let
y be
Surreal
;
:: thesis:
for r being
Real
st r
<>
0
holds
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
let
r be
Real
;
:: thesis:
( r
<>
0
implies not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
)
assume
r
<>
0
;
:: thesis:
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
then
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
,
No_omega^
y
are_commensurate
by
Th66
;
then
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
is
positive
by
Th3
;
hence
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
by
Def6
;
:: thesis:
verum
end;
theorem
Th68
:
:: SURREALC:68
for y being
Surreal
for r being
Real
st r
<>
0
holds
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y
proof
let
y be
Surreal
;
:: thesis:
for r being
Real
st r
<>
0
holds
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y
let
r be
Real
;
:: thesis:
( r
<>
0
implies
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y )
assume
r
<>
0
;
:: thesis:
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y
then
A1
:
(
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
,
No_omega^
y
are_commensurate
& not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
)
by
Th66
,
Th67
;
y
==
Unique_No
y
by
SURREALO:def 10
;
then
No_omega^
y
==
No_omega^
(
Unique_No
y
)
by
Lm5
;
then
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
,
No_omega^
(
Unique_No
y
)
are_commensurate
by
A1
,
Th5
;
hence
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y
by
A1
,
Def7
;
:: thesis:
verum
end;
theorem
Th69
:
:: SURREALC:69
for y being
Surreal
for r being
Real
for s being
Surreal
st r
<>
0
holds
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
proof
let
y be
Surreal
;
:: thesis:
for r being
Real
for s being
Surreal
st r
<>
0
holds
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
let
r be
Real
;
:: thesis:
for s being
Surreal
st r
<>
0
holds
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
let
s be
Surreal
;
:: thesis:
( r
<>
0
implies s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
)
assume
A1
:
r
<>
0
;
:: thesis:
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
set
R =
uReal
.
r;
set
N =
No_omega^
y;
set
sRNs =
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
;
s
-
s
==
0_No
by
SURREALR:39
;
then
A2
:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
=
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
(
s
+
(
-
s
)
)
&
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
(
s
+
(
-
s
)
)
==
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
0_No
&
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
0_No
=
(
uReal
.
r
)
*
(
No_omega^
y
)
)
by
SURREALR:43
,
SURREALR:37
;
A3
:
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
by
A1
,
Th67
;
then
A4
:
not
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
==
0_No
by
A2
,
SURREALO:4
;
A5
:
omega-exp
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
=
Unique_No
y
by
A1
,
Th68
;
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
is
positive
by
A1
,
Th67
,
Th36
;
then
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
,
|.
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
.|
are_commensurate
by
A2
,
Th48
,
Th8
;
then
A6
:
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
=
Unique_No
y &
Unique_No
y
==
y )
by
SURREALO:def 10
,
A4
,
A5
,
Th61
,
A3
;
then
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
==
No_omega^
y
by
Lm5
;
then
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
==
(
No_omega^
y
)
*
(
uReal
.
r
)
by
SURREALR:51
;
then
-
(
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
)
==
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
by
SURREALR:10
;
then
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
-
(
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
)
==
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
&
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
-
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
==
0_No
)
by
A2
,
SURREALR:43
,
SURREALR:39
;
then
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
(
-
(
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
)
)
==
0_No
by
SURREALO:4
;
then
|.
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
(
-
(
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
)
)
)
.|
==
0_No
by
Def6
;
then
|.
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
-
(
(
No_omega^
(
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
)
)
*
(
uReal
.
r
)
)
)
.|
infinitely<
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
by
A4
,
Th64
;
hence
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
by
A1
,
A4
,
Def8
,
A6
;
:: thesis:
verum
end;
theorem
Th70
:
:: SURREALC:70
for x, y being
Surreal
st x
==
y & not x
==
0_No
holds
(
omega-exp
x
=
omega-exp
y &
omega-r
x
=
omega-r
y )
proof
let
x, y be
Surreal
;
:: thesis:
( x
==
y & not x
==
0_No
implies (
omega-exp
x
=
omega-exp
y &
omega-r
x
=
omega-r
y ) )
assume
A1
:
( x
==
y & not x
==
0_No
)
;
:: thesis:
(
omega-exp
x
=
omega-exp
y &
omega-r
x
=
omega-r
y )
A2
:
not y
==
0_No
by
A1
,
SURREALO:4
;
|.
x
.|
is
positive
by
A1
,
Th36
;
then
A3
:
|.
x
.|
,
|.
y
.|
are_commensurate
by
A1
,
Th48
,
Th8
;
then
A4
:
omega-exp
x
=
omega-exp
y
by
A2
,
A1
,
Th61
;
set
rx =
omega-r
x;
|.
(
x
-
(
(
No_omega^
(
omega-exp
x
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
x
.|
by
A1
,
Def8
;
then
A5
:
|.
(
x
+
(
-
(
(
No_omega^
(
omega-exp
y
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
)
.|
infinitely<
|.
y
.|
by
A4
,
A3
,
Th16
;
x
+
(
-
(
(
No_omega^
(
omega-exp
y
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
==
y
+
(
-
(
(
No_omega^
(
omega-exp
y
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
by
SURREALR:43
,
A1
;
then
|.
(
y
-
(
(
No_omega^
(
omega-exp
y
)
)
*
(
uReal
.
(
omega-r
x
)
)
)
)
.|
infinitely<
|.
y
.|
by
A5
,
Th17
,
Th48
;
hence
(
omega-exp
x
=
omega-exp
y &
omega-r
x
=
omega-r
y )
by
A2
,
Def8
,
A3
,
A1
,
Th61
;
:: thesis:
verum
end;
theorem
Th71
:
:: SURREALC:71
for x, y being
Surreal
for r being
Real
for s being
Surreal
st r
<>
0
holds
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
iff
|.
x
.|
infinitely<
No_omega^
y )
proof
let
x, y be
Surreal
;
:: thesis:
for r being
Real
for s being
Surreal
st r
<>
0
holds
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
iff
|.
x
.|
infinitely<
No_omega^
y )
let
r be
Real
;
:: thesis:
for s being
Surreal
st r
<>
0
holds
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
iff
|.
x
.|
infinitely<
No_omega^
y )
let
s be
Surreal
;
:: thesis:
( r
<>
0
implies (
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
iff
|.
x
.|
infinitely<
No_omega^
y ) )
assume
A1
:
r
<>
0
;
:: thesis:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
iff
|.
x
.|
infinitely<
No_omega^
y )
set
N =
No_omega^
y;
set
R =
uReal
.
r;
set
sRNx =
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x;
set
sRNs =
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
;
s
-
s
==
0_No
by
SURREALR:39
;
then
A2
:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
=
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
(
s
+
(
-
s
)
)
&
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
(
s
+
(
-
s
)
)
==
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
0_No
&
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
0_No
=
(
uReal
.
r
)
*
(
No_omega^
y
)
)
by
SURREALR:43
,
SURREALR:37
;
not
(
uReal
.
r
)
*
(
No_omega^
y
)
==
0_No
by
A1
,
Th67
;
then
A3
:
not
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
==
0_No
by
A2
,
SURREALO:4
;
A4
:
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
is
positive
by
A3
,
Th36
;
A5
:
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
,
|.
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
.|
are_commensurate
by
A2
,
Th48
,
A4
,
Th8
;
A6
:
|.
(
(
No_omega^
y
)
*
(
uReal
.
r
)
)
.|
,
No_omega^
y
are_commensurate
by
A1
,
Th66
;
then
A7
:
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
,
No_omega^
y
are_commensurate
by
Th4
,
A5
;
A8
:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
=
(
s
+
(
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
)
)
+
(
-
s
)
by
SURREALR:37
.=
(
s
+
(
-
s
)
)
+
(
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
)
by
SURREALR:37
;
s
-
s
==
0_No
by
SURREALR:39
;
then
A9
:
(
(
s
+
(
-
s
)
)
+
(
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
)
==
0_No
+
(
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
)
&
0_No
+
(
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
)
=
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x )
by
SURREALR:43
;
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
==
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
+
x
by
A2
,
SURREALR:43
;
then
A10
:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
==
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
by
A9
,
SURREALO:4
,
A8
;
A11
:
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
is s,y,r
-terms
by
A1
,
Th69
;
then
A12
:
( not
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
==
0_No
&
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
==
y &
omega-r
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
=
r )
;
thus
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
implies
|.
x
.|
infinitely<
No_omega^
y )
:: thesis:
(
|.
x
.|
infinitely<
No_omega^
y implies
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
)
proof
assume
A13
:
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
;
:: thesis:
|.
x
.|
infinitely<
No_omega^
y
then
A14
:
( not
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
==
0_No
&
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
)
==
y &
omega-r
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
)
=
r )
;
A15
:
not
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
==
0_No
by
A10
,
A14
,
SURREALO:4
;
A16
:
(
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
)
=
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
&
omega-r
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
)
=
omega-r
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
)
by
A13
,
A10
,
Th70
;
A17
:
omega-r
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
=
omega-r
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
by
A13
,
A11
,
A10
,
Th70
;
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
==
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
by
A14
,
A12
,
A16
,
SURREALO:4
;
then
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
=
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
by
SURREALO:50
;
hence
|.
x
.|
infinitely<
No_omega^
y
by
A7
,
Th16
,
A17
,
A15
,
A11
,
Th62
;
:: thesis:
verum
end;
assume
|.
x
.|
infinitely<
No_omega^
y
;
:: thesis:
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
then
|.
x
.|
infinitely<
|.
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
.|
by
A6
,
Th4
,
A5
,
Th16
;
then
A18
:
( not
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
==
0_No
&
omega-exp
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
=
omega-exp
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
&
omega-r
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
=
omega-r
(
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
s
)
)
+
x
)
)
by
Th63
;
then
not
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x
)
+
(
-
s
)
==
0_No
by
A10
,
SURREALO:4
;
hence
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
x is s,y,r
-terms
by
A18
,
A10
,
Th70
,
A11
;
:: thesis:
verum
end;
theorem
Th72
:
:: SURREALC:72
for x, y, z being
Surreal
for r being
Real
for s being
Surreal
st r
<>
0
& x is s,y,r
-terms
& x
==
z holds
z is s,y,r
-terms
proof
let
x, y, z be
Surreal
;
:: thesis:
for r being
Real
for s being
Surreal
st r
<>
0
& x is s,y,r
-terms
& x
==
z holds
z is s,y,r
-terms
let
r be
Real
;
:: thesis:
for s being
Surreal
st r
<>
0
& x is s,y,r
-terms
& x
==
z holds
z is s,y,r
-terms
let
s be
Surreal
;
:: thesis:
( r
<>
0
& x is s,y,r
-terms
& x
==
z implies z is s,y,r
-terms
)
assume
A1
:
( r
<>
0
& x is s,y,r
-terms
& x
==
z )
;
:: thesis:
z is s,y,r
-terms
then
A2
:
( not x
+
(
-
s
)
==
0_No
&
omega-exp
(
x
+
(
-
s
)
)
==
y &
omega-r
(
x
+
(
-
s
)
)
=
r )
;
A3
:
x
+
(
-
s
)
==
z
+
(
-
s
)
by
A1
,
SURREALR:43
;
not z
+
(
-
s
)
==
0_No
by
A2
,
A3
,
SURREALO:4
;
hence
z is s,y,r
-terms
by
A1
,
A3
,
Th70
;
:: thesis:
verum
end;
theorem
Th73
:
:: SURREALC:73
for x, y being
Surreal
for r being
Real
for s being
Surreal
st r
<>
0
holds
( x is s,y,r
-terms
iff
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y )
proof
let
x, y be
Surreal
;
:: thesis:
for r being
Real
for s being
Surreal
st r
<>
0
holds
( x is s,y,r
-terms
iff
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y )
let
r be
Real
;
:: thesis:
for s being
Surreal
st r
<>
0
holds
( x is s,y,r
-terms
iff
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y )
let
s be
Surreal
;
:: thesis:
( r
<>
0
implies ( x is s,y,r
-terms
iff
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y ) )
assume
A1
:
r
<>
0
;
:: thesis:
( x is s,y,r
-terms
iff
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y )
set
N =
No_omega^
y;
set
R =
uReal
.
r;
set
sNR = s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
;
set
X = x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
;
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
==
0_No
by
SURREALR:39
;
then
A2
:
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
=
x
+
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
)
& x
+
(
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
)
==
x
+
0_No
& x
+
0_No
=
x )
by
SURREALR:37
,
SURREALR:43
;
thus
( x is s,y,r
-terms
implies
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y )
:: thesis:
(
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y implies x is s,y,r
-terms
)
proof
assume
x is s,y,r
-terms
;
:: thesis:
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y
then
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
is s,y,r
-terms
by
A2
,
Th72
;
hence
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y
by
Th71
;
:: thesis:
verum
end;
assume
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
.|
infinitely<
No_omega^
y
;
:: thesis:
x is s,y,r
-terms
then
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
+
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
y
)
)
)
)
is s,y,r
-terms
by
A1
,
Th71
;
hence
x is s,y,r
-terms
by
A2
,
Th72
;
:: thesis:
verum
end;
theorem
Th74
:
:: SURREALC:74
for r being
Real
for s, p being
Surreal
st r
<>
0
holds
for x, y, z being
Surreal
st x is s,p,r
-terms
& z is s,p,r
-terms
& x
<=
y & y
<=
z holds
y is s,p,r
-terms
proof
let
r be
Real
;
:: thesis:
for s, p being
Surreal
st r
<>
0
holds
for x, y, z being
Surreal
st x is s,p,r
-terms
& z is s,p,r
-terms
& x
<=
y & y
<=
z holds
y is s,p,r
-terms
let
s, p be
Surreal
;
:: thesis:
( r
<>
0
implies for x, y, z being
Surreal
st x is s,p,r
-terms
& z is s,p,r
-terms
& x
<=
y & y
<=
z holds
y is s,p,r
-terms
)
assume
A1
:
r
<>
0
;
:: thesis:
for x, y, z being
Surreal
st x is s,p,r
-terms
& z is s,p,r
-terms
& x
<=
y & y
<=
z holds
y is s,p,r
-terms
let
x, y, z be
Surreal
;
:: thesis:
( x is s,p,r
-terms
& z is s,p,r
-terms
& x
<=
y & y
<=
z implies y is s,p,r
-terms
)
assume
that
A2
:
( x is s,p,r
-terms
& z is s,p,r
-terms
)
and
A3
:
( x
<=
y & y
<=
z )
;
:: thesis:
y is s,p,r
-terms
set
N =
No_omega^
p;
set
R =
uReal
.
r;
set
sNR = s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
;
set
X = x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
;
set
Y = y
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
;
set
Z = z
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
;
(
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
.|
infinitely<
No_omega^
p &
|.
(
z
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
.|
infinitely<
No_omega^
p )
by
A2
,
Th73
;
then
A4
:
|.
(
x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
.|
+
|.
(
z
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
.|
infinitely<
No_omega^
p
by
Th18
;
( x
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
<=
y
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
& y
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
<=
z
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
by
A3
,
SURREALR:43
;
then
|.
(
y
-
(
s
+
(
(
uReal
.
r
)
*
(
No_omega^
p
)
)
)
)
.|
infinitely<
No_omega^
p
by
A4
,
Th11
,
Th51
;
hence
y is s,p,r
-terms
by
A1
,
Th73
;
:: thesis:
verum
end;
definition
let
r be
Sequence
of
REAL
;
let
y, s be
Sequence
;
let
alpha be
Ordinal
;
let
x be
Surreal
;
pred
x
in_meets_terms
s,y,r,alpha
means
:: SURREALC:def 14
for beta being
Ordinal
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
;
end;
::
deftheorem
defines
in_meets_terms
SURREALC:def 14 :
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
for x being
Surreal
holds
( x
in_meets_terms
s,y,r,alpha iff for beta being
Ordinal
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
);
definition
let
r be
Sequence
of
REAL
;
let
y, s be
Sequence
;
let
alpha be
Ordinal
;
pred
s,y,r
simplest_on_position
alpha
means
:: SURREALC:def 15
for sa being
Surreal
st sa
=
s
.
alpha holds
( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) );
end;
::
deftheorem
defines
simplest_on_position
SURREALC:def 15 :
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
holds
( s,y,r
simplest_on_position
alpha iff for sa being
Surreal
st sa
=
s
.
alpha holds
( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) ) );
theorem
Th75
:
:: SURREALC:75
for x being
Surreal
for r being
Sequence
of
REAL
for y, s1, s2 being
Sequence
for alpha being
Ordinal
st s1
|
alpha
=
s2
|
alpha & x
in_meets_terms
s1,y,r,alpha holds
x
in_meets_terms
s2,y,r,alpha
proof
let
x be
Surreal
;
:: thesis:
for r being
Sequence
of
REAL
for y, s1, s2 being
Sequence
for alpha being
Ordinal
st s1
|
alpha
=
s2
|
alpha & x
in_meets_terms
s1,y,r,alpha holds
x
in_meets_terms
s2,y,r,alpha
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s1, s2 being
Sequence
for alpha being
Ordinal
st s1
|
alpha
=
s2
|
alpha & x
in_meets_terms
s1,y,r,alpha holds
x
in_meets_terms
s2,y,r,alpha
let
y, s1, s2 be
Sequence
;
:: thesis:
for alpha being
Ordinal
st s1
|
alpha
=
s2
|
alpha & x
in_meets_terms
s1,y,r,alpha holds
x
in_meets_terms
s2,y,r,alpha
let
alpha be
Ordinal
;
:: thesis:
( s1
|
alpha
=
s2
|
alpha & x
in_meets_terms
s1,y,r,alpha implies x
in_meets_terms
s2,y,r,alpha )
assume
that
A1
:
s1
|
alpha
=
s2
|
alpha
and
A2
:
x
in_meets_terms
s1,y,r,alpha
;
:: thesis:
x
in_meets_terms
s2,y,r,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s2
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
s2
.
beta & yb
=
y
.
beta implies x is sb,yb,r
.
beta
-terms
)
assume
A3
:
( beta
in
alpha & sb
=
s2
.
beta & yb
=
y
.
beta )
;
:: thesis:
x is sb,yb,r
.
beta
-terms
( s2
.
beta
=
(
s2
|
alpha
)
.
beta & s1
.
beta
=
(
s1
|
alpha
)
.
beta )
by
A3
,
FUNCT_1:49
;
hence
x is sb,yb,r
.
beta
-terms
by
A3
,
A2
,
A1
;
:: thesis:
verum
end;
theorem
Th76
:
:: SURREALC:76
for r being
Sequence
of
REAL
for y, s1, s2 being
Sequence
for alpha being
Ordinal
st s1
.
alpha is
uSurreal
& s2
.
alpha is
uSurreal
& s1
|
alpha
=
s2
|
alpha & s1,y,r
simplest_on_position
alpha & s2,y,r
simplest_on_position
alpha holds
s1
.
alpha
=
s2
.
alpha
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s1, s2 being
Sequence
for alpha being
Ordinal
st s1
.
alpha is
uSurreal
& s2
.
alpha is
uSurreal
& s1
|
alpha
=
s2
|
alpha & s1,y,r
simplest_on_position
alpha & s2,y,r
simplest_on_position
alpha holds
s1
.
alpha
=
s2
.
alpha
let
y, s1, s2 be
Sequence
;
:: thesis:
for alpha being
Ordinal
st s1
.
alpha is
uSurreal
& s2
.
alpha is
uSurreal
& s1
|
alpha
=
s2
|
alpha & s1,y,r
simplest_on_position
alpha & s2,y,r
simplest_on_position
alpha holds
s1
.
alpha
=
s2
.
alpha
let
alpha be
Ordinal
;
:: thesis:
( s1
.
alpha is
uSurreal
& s2
.
alpha is
uSurreal
& s1
|
alpha
=
s2
|
alpha & s1,y,r
simplest_on_position
alpha & s2,y,r
simplest_on_position
alpha implies s1
.
alpha
=
s2
.
alpha )
assume
that
A1
:
( s1
.
alpha is
uSurreal
& s2
.
alpha is
uSurreal
)
and
A2
:
s1
|
alpha
=
s2
|
alpha
and
A3
:
( s1,y,r
simplest_on_position
alpha & s2,y,r
simplest_on_position
alpha )
and
A4
:
s1
.
alpha
<>
s2
.
alpha
;
:: thesis:
contradiction
reconsider
s1a = s1
.
alpha, s2a = s2
.
alpha as
uSurreal
by
A1
;
per
cases
( alpha
=
0
or alpha
<>
0
)
;
suppose
alpha
=
0
;
:: thesis:
contradiction
then
( s1
.
alpha
=
0_No
&
0_No
=
s2
.
alpha )
by
A1
,
A3
;
hence
contradiction
by
A4
;
:: thesis:
verum
end;
suppose
A5
:
alpha
<>
0
;
:: thesis:
contradiction
s1a
in_meets_terms
s1,y,r,alpha
by
A3
;
then
s1a
in_meets_terms
s2,y,r,alpha
by
A2
,
Th75
;
then
A6
:
born
s2a
in
born
s1a
by
A4
,
A3
,
A5
;
s2a
in_meets_terms
s2,y,r,alpha
by
A3
;
then
s2a
in_meets_terms
s1,y,r,alpha
by
A2
,
Th75
;
hence
contradiction
by
A6
,
A4
,
A3
,
A5
;
:: thesis:
verum
end;
end;
end;
definition
let
r be
Sequence
of
REAL
;
let
y, s be
Sequence
;
let
alpha be
Ordinal
;
pred
s,y,r
simplest_up_to
alpha
means
:: SURREALC:def 16
for beta being
Ordinal
st beta
in
alpha holds
s,y,r
simplest_on_position
beta;
end;
::
deftheorem
defines
simplest_up_to
SURREALC:def 16 :
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
holds
( s,y,r
simplest_up_to
alpha iff for beta being
Ordinal
st beta
in
alpha holds
s,y,r
simplest_on_position
beta );
theorem
Th77
:
:: SURREALC:77
for r being
Sequence
of
REAL
for y being
Sequence
for s1, s2 being
uSurreal-Sequence
for alpha being
Ordinal
st alpha
c=
dom
s1 & alpha
c=
dom
s2 & s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha holds
s1
|
alpha
=
s2
|
alpha
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y being
Sequence
for s1, s2 being
uSurreal-Sequence
for alpha being
Ordinal
st alpha
c=
dom
s1 & alpha
c=
dom
s2 & s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha holds
s1
|
alpha
=
s2
|
alpha
let
y be
Sequence
;
:: thesis:
for s1, s2 being
uSurreal-Sequence
for alpha being
Ordinal
st alpha
c=
dom
s1 & alpha
c=
dom
s2 & s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha holds
s1
|
alpha
=
s2
|
alpha
let
s1, s2 be
uSurreal-Sequence
;
:: thesis:
for alpha being
Ordinal
st alpha
c=
dom
s1 & alpha
c=
dom
s2 & s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha holds
s1
|
alpha
=
s2
|
alpha
let
alpha be
Ordinal
;
:: thesis:
( alpha
c=
dom
s1 & alpha
c=
dom
s2 & s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha implies s1
|
alpha
=
s2
|
alpha )
assume
that
A1
:
( alpha
c=
dom
s1 & alpha
c=
dom
s2 )
and
A2
:
( s1,y,r
simplest_up_to
alpha & s2,y,r
simplest_up_to
alpha )
;
:: thesis:
s1
|
alpha
=
s2
|
alpha
defpred
S
1
[
Ordinal
]
means
( $1
in
alpha implies s1
.
$1
=
s2
.
$1 );
A3
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A4
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
assume
A5
:
D
in
alpha
;
:: thesis:
s1
.
D
=
s2
.
D
then
A6
:
( s1,y,r
simplest_on_position
D & s2,y,r
simplest_on_position
D )
by
A2
;
A7
:
D
c=
alpha
by
A5
,
ORDINAL1:def 2
;
A8
:
(
dom
(
s1
|
D
)
=
D & D
=
dom
(
s2
|
D
)
)
by
RELAT_1:62
,
A5
,
ORDINAL1:def 2
,
A1
;
A9
:
for x being
object
st x
in
D holds
(
s1
|
D
)
.
x
=
(
s2
|
D
)
.
x
proof
let
x be
object
;
:: thesis:
( x
in
D implies
(
s1
|
D
)
.
x
=
(
s2
|
D
)
.
x )
assume
A10
:
x
in
D
;
:: thesis:
(
s1
|
D
)
.
x
=
(
s2
|
D
)
.
x
reconsider
o = x as
Ordinal
by
A10
;
thus
(
s1
|
D
)
.
x = s1
.
o
by
A10
,
FUNCT_1:49
.= s2
.
o
by
A7
,
A4
,
A10
.=
(
s2
|
D
)
.
x
by
A10
,
FUNCT_1:49
;
:: thesis:
verum
end;
( s1
.
D
in
rng
s1 & s2
.
D
in
rng
s2 )
by
A1
,
A5
,
FUNCT_1:def 3
;
then
( s1
.
D is
uSurreal
& s2
.
D is
uSurreal
)
by
SURREALO:def 12
;
hence
s1
.
D
=
s2
.
D
by
A9
,
A6
,
A8
,
FUNCT_1:2
,
Th76
;
:: thesis:
verum
end;
A11
:
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A3
);
A12
:
(
dom
(
s1
|
alpha
)
=
alpha & alpha
=
dom
(
s2
|
alpha
)
)
by
A1
,
RELAT_1:62
;
for x being
object
st x
in
alpha holds
(
s1
|
alpha
)
.
x
=
(
s2
|
alpha
)
.
x
proof
let
x be
object
;
:: thesis:
( x
in
alpha implies
(
s1
|
alpha
)
.
x
=
(
s2
|
alpha
)
.
x )
assume
A13
:
x
in
alpha
;
:: thesis:
(
s1
|
alpha
)
.
x
=
(
s2
|
alpha
)
.
x
reconsider
o = x as
Ordinal
by
A13
;
thus
(
s1
|
alpha
)
.
x = s1
.
o
by
A13
,
FUNCT_1:49
.= s2
.
o
by
A11
,
A13
.=
(
s2
|
alpha
)
.
x
by
A13
,
FUNCT_1:49
;
:: thesis:
verum
end;
hence
s1
|
alpha
=
s2
|
alpha
by
A12
,
FUNCT_1:2
;
:: thesis:
verum
end;
theorem
:: SURREALC:78
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha, beta being
Ordinal
st beta
c=
alpha & s,y,r
simplest_up_to
alpha holds
s,y,r
simplest_up_to
beta ;
theorem
Th79
:
:: SURREALC:79
for x being
Surreal
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
holds
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
proof
let
x be
Surreal
;
:: thesis:
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
holds
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s being
Sequence
for alpha being
Ordinal
holds
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
let
y, s be
Sequence
;
:: thesis:
for alpha being
Ordinal
holds
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
let
alpha be
Ordinal
;
:: thesis:
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
thus
( x
in_meets_terms
s,y,r,alpha implies x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha )
:: thesis:
( x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha implies x
in_meets_terms
s,y,r,alpha )
proof
assume
A1
:
x
in_meets_terms
s,y,r,alpha
;
:: thesis:
x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
(
s
|
(
succ
alpha
)
)
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
(
s
|
(
succ
alpha
)
)
.
beta & yb
=
y
.
beta implies x is sb,yb,r
.
beta
-terms
)
assume
A2
:
( beta
in
alpha & sb
=
(
s
|
(
succ
alpha
)
)
.
beta & yb
=
y
.
beta )
;
:: thesis:
x is sb,yb,r
.
beta
-terms
beta
in
succ
alpha
by
A2
,
ORDINAL1:8
;
then
(
s
|
(
succ
alpha
)
)
.
beta
=
s
.
beta
by
FUNCT_1:49
;
hence
x is sb,yb,r
.
beta
-terms
by
A1
,
A2
;
:: thesis:
verum
end;
assume
A3
:
x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha
;
:: thesis:
x
in_meets_terms
s,y,r,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta implies x is sb,yb,r
.
beta
-terms
)
assume
A4
:
( beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta )
;
:: thesis:
x is sb,yb,r
.
beta
-terms
beta
in
succ
alpha
by
A4
,
ORDINAL1:8
;
then
(
s
|
(
succ
alpha
)
)
.
beta
=
s
.
beta
by
FUNCT_1:49
;
hence
x is sb,yb,r
.
beta
-terms
by
A3
,
A4
;
:: thesis:
verum
end;
theorem
Th80
:
:: SURREALC:80
for r being
Sequence
of
REAL
for y, s being
Sequence
for alpha being
Ordinal
holds
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s being
Sequence
for alpha being
Ordinal
holds
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
let
y, s be
Sequence
;
:: thesis:
for alpha being
Ordinal
holds
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
let
alpha be
Ordinal
;
:: thesis:
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
per
cases
(
dom
s
c=
succ
alpha or not
dom
s
c=
succ
alpha )
;
suppose
dom
s
c=
succ
alpha
;
:: thesis:
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
hence
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
by
RELAT_1:68
;
:: thesis:
verum
end;
suppose
not
dom
s
c=
succ
alpha
;
:: thesis:
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha iff s,y,r
simplest_on_position
alpha )
thus
( s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha implies s,y,r
simplest_on_position
alpha )
:: thesis:
( s,y,r
simplest_on_position
alpha implies s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha )
proof
assume
A1
:
s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha
;
:: thesis:
s,y,r
simplest_on_position
alpha
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
s
.
alpha implies ( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A2
:
sa
=
s
.
alpha
;
:: thesis:
( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) )
A3
:
(
s
|
(
succ
alpha
)
)
.
alpha
=
sa
by
ORDINAL1:6
,
A2
,
FUNCT_1:49
;
hence
(
0
=
alpha implies sa
=
0_No
)
by
A1
;
:: thesis:
(
0
<>
alpha implies ( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
A4
:
0
<>
alpha
;
:: thesis:
( sa
in_meets_terms
s,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) )
sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha
by
A1
,
A3
;
hence
sa
in_meets_terms
s,y,r,alpha
by
Th79
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
s,y,r,alpha & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
s,y,r,alpha & x
<>
sa implies
born
sa
in
born
x )
assume
A5
:
( x
in_meets_terms
s,y,r,alpha & x
<>
sa )
;
:: thesis:
born
sa
in
born
x
x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha
by
A5
,
Th79
;
hence
born
sa
in
born
x
by
A4
,
A1
,
A3
,
A5
;
:: thesis:
verum
end;
assume
A6
:
s,y,r
simplest_on_position
alpha
;
:: thesis:
s
|
(
succ
alpha
)
,y,r
simplest_on_position
alpha
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
(
s
|
(
succ
alpha
)
)
.
alpha implies ( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A7
:
sa
=
(
s
|
(
succ
alpha
)
)
.
alpha
;
:: thesis:
( (
0
=
alpha implies sa
=
0_No
) & (
0
<>
alpha implies ( sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) ) )
A8
:
s
.
alpha
=
sa
by
ORDINAL1:6
,
A7
,
FUNCT_1:49
;
hence
(
0
=
alpha implies sa
=
0_No
)
by
A6
;
:: thesis:
(
0
<>
alpha implies ( sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
A9
:
0
<>
alpha
;
:: thesis:
( sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & ( for x being
uSurreal
st x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa holds
born
sa
in
born
x ) )
sa
in_meets_terms
s,y,r,alpha
by
A6
,
A8
;
hence
sa
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha
by
Th79
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa implies
born
sa
in
born
x )
assume
A10
:
( x
in_meets_terms
s
|
(
succ
alpha
)
,y,r,alpha & x
<>
sa )
;
:: thesis:
born
sa
in
born
x
x
in_meets_terms
s,y,r,alpha
by
A10
,
Th79
;
hence
born
sa
in
born
x
by
A9
,
A6
,
A8
,
A10
;
:: thesis:
verum
end;
end;
end;
theorem
Th81
:
:: SURREALC:81
for r being
non-zero
Sequence
of
REAL
for p, s being
Sequence
for alpha being
Ordinal
st alpha
c=
dom
r holds
for x, y, z being
Surreal
st x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha holds
y
in_meets_terms
s,p,r,alpha
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for p, s being
Sequence
for alpha being
Ordinal
st alpha
c=
dom
r holds
for x, y, z being
Surreal
st x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha holds
y
in_meets_terms
s,p,r,alpha
let
p, s be
Sequence
;
:: thesis:
for alpha being
Ordinal
st alpha
c=
dom
r holds
for x, y, z being
Surreal
st x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha holds
y
in_meets_terms
s,p,r,alpha
let
alpha be
Ordinal
;
:: thesis:
( alpha
c=
dom
r implies for x, y, z being
Surreal
st x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha holds
y
in_meets_terms
s,p,r,alpha )
assume
alpha
c=
dom
r
;
:: thesis:
for x, y, z being
Surreal
st x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha holds
y
in_meets_terms
s,p,r,alpha
let
x, y, z be
Surreal
;
:: thesis:
( x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha implies y
in_meets_terms
s,p,r,alpha )
assume
A1
:
( x
<=
y & y
<=
z & x
in_meets_terms
s,p,r,alpha & z
in_meets_terms
s,p,r,alpha )
;
:: thesis:
y
in_meets_terms
s,p,r,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
p
.
beta holds
y is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
s
.
beta & yb
=
p
.
beta implies y is sb,yb,r
.
beta
-terms
)
assume
A2
:
( beta
in
alpha & sb
=
s
.
beta & yb
=
p
.
beta )
;
:: thesis:
y is sb,yb,r
.
beta
-terms
( x is sb,yb,r
.
beta
-terms
& z is sb,yb,r
.
beta
-terms
)
by
A1
,
A2
;
hence
y is sb,yb,r
.
beta
-terms
by
A1
,
Th74
;
:: thesis:
verum
end;
theorem
Th82
:
:: SURREALC:82
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& s,y,r
simplest_up_to
dom
s )
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& s,y,r
simplest_up_to
dom
s )
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& s,y,r
simplest_up_to
dom
s )
defpred
S
1
[
Ordinal
]
means
( $1
c=
(
dom
r
)
/\
(
dom
y
)
implies ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
$1 & s,y,r
simplest_up_to
dom
s ) );
A1
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A2
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
assume
A3
:
D
c=
(
dom
r
)
/\
(
dom
y
)
;
:: thesis:
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
D & s,y,r
simplest_up_to
dom
s )
then
A4
:
( D
c=
dom
y & D
c=
dom
r )
by
XBOOLE_1:18
;
A5
:
( D
c=
dom
y & D
c=
dom
r )
by
A3
,
XBOOLE_1:18
;
per
cases
( D
=
{}
or ( D is
limit_ordinal
& D
<>
{}
) or not D is
limit_ordinal
)
;
suppose
A6
:
D
=
{}
;
:: thesis:
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
D & s,y,r
simplest_up_to
dom
s )
take
s =
<%
0_No
%>
;
:: thesis:
(
dom
s
=
succ
D & s,y,r
simplest_up_to
dom
s )
thus
A7
:
dom
s
=
succ
D
by
A6
,
AFINSQ_1:def 4
;
:: thesis:
s,y,r
simplest_up_to
dom
s
let
A be
Ordinal
;
:: according to
SURREALC:def 16
:: thesis:
( A
in
dom
s implies s,y,r
simplest_on_position
A )
assume
A8
:
A
in
dom
s
;
:: thesis:
s,y,r
simplest_on_position
A
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
s
.
A implies ( (
0
=
A implies sa
=
0_No
) & (
0
<>
A implies ( sa
in_meets_terms
s,y,r,A & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,A & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
sa
=
s
.
A
;
:: thesis:
( (
0
=
A implies sa
=
0_No
) & (
0
<>
A implies ( sa
in_meets_terms
s,y,r,A & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,A & x
<>
sa holds
born
sa
in
born
x ) ) ) )
hence
( (
0
=
A implies sa
=
0_No
) & (
0
<>
A implies ( sa
in_meets_terms
s,y,r,A & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,A & x
<>
sa holds
born
sa
in
born
x ) ) ) )
by
A8
,
A6
,
A7
,
ORDINAL1:8
;
:: thesis:
verum
end;
suppose
A9
:
( D is
limit_ordinal
& D
<>
{}
)
;
:: thesis:
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
D & s,y,r
simplest_up_to
dom
s )
defpred
S
2
[
object
,
object
]
means
for A being
Ordinal
st A
=
$1 holds
( $2 is
uSurreal-Sequence
& ( for s being
uSurreal-Sequence
st s
=
$2 holds
(
dom
s
=
succ
A & s,y,r
simplest_up_to
dom
s ) ) );
A10
:
for e being
object
st e
in
D holds
ex o being
object
st S
2
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
2
[e,o] )
assume
A11
:
e
in
D
;
:: thesis:
ex o being
object
st S
2
[e,o]
reconsider
E = e as
Ordinal
by
A11
;
consider
s being
uSurreal-Sequence
such that
A12
:
(
dom
s
=
succ
E & s,y,r
simplest_up_to
dom
s )
by
A11
,
ORDINAL1:def 2
,
A3
,
A2
;
take
s ;
:: thesis:
S
2
[e,s]
thus
S
2
[e,s]
by
A12
;
:: thesis:
verum
end;
consider
S being
Function
such that
A13
:
(
dom
S
=
D & ( for o being
object
st o
in
D holds
S
2
[o,S
.
o] ) )
from
CLASSES1:sch 1
(
A10
);
for o being
object
st o
in
rng
S holds
o is
Function
proof
let
o be
object
;
:: thesis:
( o
in
rng
S implies o is
Function
)
assume
o
in
rng
S
;
:: thesis:
o is
Function
then
ex a being
object
st
( a
in
dom
S & S
.
a
=
o )
by
FUNCT_1:def 3
;
hence
o is
Function
by
A13
;
:: thesis:
verum
end;
then
S is
Function-yielding
by
FUNCT_1:def 13
;
then
reconsider
S = S as
Function-yielding
Function
;
deffunc
H
1
(
Ordinal
)
->
set
=
(
S
.
$1
)
.
$1;
consider
s being
Sequence
such that
A14
:
(
dom
s
=
D & ( for A being
Ordinal
st A
in
D holds
s
.
A
=
H
1
(A) ) )
from
ORDINAL2:sch 2
();
rng
s is
uniq-surreal-membered
proof
let
a be
object
;
:: according to
SURREALO:def 12
:: thesis:
( not a
in
rng
s or a is
set
)
assume
A15
:
a
in
rng
s
;
:: thesis:
a is
set
consider
x being
object
such that
A16
:
( x
in
dom
s & s
.
x
=
a )
by
A15
,
FUNCT_1:def 3
;
reconsider
x = x as
Ordinal
by
A16
;
reconsider
Sx = S
.
x as
uSurreal-Sequence
by
A16
,
A13
,
A14
;
( x
in
succ
x &
succ
x
=
dom
Sx )
by
A16
,
A14
,
A13
,
ORDINAL1:6
;
then
Sx
.
x
in
rng
Sx
by
FUNCT_1:def 3
;
then
Sx
.
x is
uSurreal
by
SURREALO:def 12
;
hence
a is
set
by
A14
,
A16
;
:: thesis:
verum
end;
then
reconsider
s = s as
uSurreal-Sequence
by
Def10
;
defpred
S
3
[
Ordinal
]
means
( $1
in
D implies ( S
.
$1
=
s
|
(
succ
$1
)
& s,y,r
simplest_on_position
$1 ) );
A17
:
for E being
Ordinal
holds S
3
[E]
proof
let
E be
Ordinal
;
:: thesis:
S
3
[E]
assume
A18
:
E
in
D
;
:: thesis:
( S
.
E
=
s
|
(
succ
E
)
& s,y,r
simplest_on_position
E )
reconsider
SE = S
.
E as
uSurreal-Sequence
by
A18
,
A13
;
A19
:
succ
E
c=
D
by
ORDINAL1:def 2
,
A18
,
A9
,
ORDINAL1:28
;
A20
:
(
dom
SE
=
succ
E & SE,y,r
simplest_up_to
dom
SE )
by
A18
,
A13
;
A21
:
dom
(
s
|
(
succ
E
)
)
=
succ
E
by
A19
,
RELAT_1:62
,
A14
;
for o being
object
st o
in
succ
E holds
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
proof
let
o be
object
;
:: thesis:
( o
in
succ
E implies
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o )
assume
A22
:
o
in
succ
E
;
:: thesis:
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
then
reconsider
o = o as
Ordinal
;
A23
:
(
s
|
(
succ
E
)
)
.
o
=
s
.
o
by
A22
,
FUNCT_1:49
;
per
cases
( o
in
E or o
=
E )
by
A22
,
ORDINAL1:8
;
suppose
A24
:
o
in
E
;
:: thesis:
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
A25
:
o
in
D
by
A18
,
A24
,
ORDINAL1:10
;
reconsider
So = S
.
o as
uSurreal-Sequence
by
A25
,
A13
;
A26
:
So
.
o
=
s
.
o
by
A14
,
A18
,
A24
,
ORDINAL1:10
;
A27
:
(
dom
So
=
succ
o & So,y,r
simplest_up_to
dom
So )
by
A25
,
A13
;
A28
:
dom
So
c=
dom
SE
by
A27
,
A20
,
A22
,
ORDINAL1:21
;
A29
:
SE,y,r
simplest_up_to
dom
So
by
A28
,
A20
;
(
(
So
|
(
succ
o
)
)
.
o
=
So
.
o &
(
SE
|
(
succ
o
)
)
.
o
=
SE
.
o )
by
ORDINAL1:6
,
FUNCT_1:49
;
hence
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
by
A26
,
A23
,
A27
,
A29
,
A28
,
Th77
;
:: thesis:
verum
end;
suppose
o
=
E
;
:: thesis:
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
hence
(
s
|
(
succ
E
)
)
.
o
=
SE
.
o
by
A23
,
A14
,
A18
;
:: thesis:
verum
end;
end;
end;
then
A30
:
s
|
(
succ
E
)
=
SE
by
A20
,
A21
,
FUNCT_1:2
;
E
in
succ
E
by
ORDINAL1:6
;
hence
( S
.
E
=
s
|
(
succ
E
)
& s,y,r
simplest_on_position
E )
by
A20
,
A30
,
Th80
;
:: thesis:
verum
end;
then
A31
:
s,y,r
simplest_up_to
D
;
defpred
S
4
[
object
,
object
]
means
( $2 is
Surreal
& ( for A being
Ordinal
st A
=
$1 holds
for sa, ya being
Surreal
st sa
=
s
.
(
succ
A
)
& ya
=
y
.
(
succ
A
)
holds
$2
=
(
sa
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
ya
)
)
)
+
(
No_omega^
ya
)
) );
A32
:
for e being
object
st e
in
D holds
ex o being
object
st S
4
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
4
[e,o] )
assume
A33
:
e
in
D
;
:: thesis:
ex o being
object
st S
4
[e,o]
reconsider
E = e as
Ordinal
by
A33
;
succ
E
in
D
by
A33
,
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
E
)
in
rng
y & s
.
(
succ
E
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
ya = y
.
(
succ
E
)
, sa = s
.
(
succ
E
)
as
Surreal
by
SURREAL0:def 16
;
take
o =
(
sa
+
(
(
uReal
.
(
r
.
(
succ
E
)
)
)
*
(
No_omega^
ya
)
)
)
+
(
No_omega^
ya
)
;
:: thesis:
S
4
[e,o]
thus
S
4
[e,o]
;
:: thesis:
verum
end;
consider
upp being
Function
such that
A34
:
dom
upp
=
D
and
A35
:
for o being
object
st o
in
D holds
S
4
[o,upp
.
o]
from
CLASSES1:sch 1
(
A32
);
A36
:
rng
upp is
surreal-membered
proof
let
o be
object
;
:: according to
SURREAL0:def 16
:: thesis:
( not o
in
rng
upp or o is
surreal
)
assume
A37
:
o
in
rng
upp
;
:: thesis:
o is
surreal
ex a being
object
st
( a
in
dom
upp & upp
.
a
=
o )
by
A37
,
FUNCT_1:def 3
;
hence
o is
surreal
by
A34
,
A35
;
:: thesis:
verum
end;
A38
:
for A, B being
Ordinal
st A
in
B & B
in
D holds
for uA, uB being
Surreal
st uA
=
upp
.
A & uB
=
upp
.
B holds
uB
<
uA
proof
let
A, B be
Ordinal
;
:: thesis:
( A
in
B & B
in
D implies for uA, uB being
Surreal
st uA
=
upp
.
A & uB
=
upp
.
B holds
uB
<
uA )
assume
A39
:
( A
in
B & B
in
D )
;
:: thesis:
for uA, uB being
Surreal
st uA
=
upp
.
A & uB
=
upp
.
B holds
uB
<
uA
let
uA, uB be
Surreal
;
:: thesis:
( uA
=
upp
.
A & uB
=
upp
.
B implies uB
<
uA )
assume
A40
:
( uA
=
upp
.
A & uB
=
upp
.
B )
;
:: thesis:
uB
<
uA
succ
B
in
D
by
A39
,
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
B
)
in
rng
y & s
.
(
succ
B
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yB = y
.
(
succ
B
)
, sB = s
.
(
succ
B
)
as
Surreal
by
SURREAL0:def 16
;
A41
:
A
in
D
by
A39
,
ORDINAL1:10
;
then
succ
A
in
D
by
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
A
)
in
rng
y & s
.
(
succ
A
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yA = y
.
(
succ
A
)
, sA = s
.
(
succ
A
)
as
Surreal
by
SURREAL0:def 16
;
set
NA =
No_omega^
yA;
set
NB =
No_omega^
yB;
A42
:
succ
B
in
D
by
A39
,
A9
,
ORDINAL1:28
;
s,y,r
simplest_on_position
succ
B
by
A31
,
A39
,
A9
,
ORDINAL1:28
;
then
A43
:
sB
in_meets_terms
s,y,r,
succ
B
;
set
n = 2;
A44
:
( uA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
& uB
=
(
sB
+
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
)
by
A40
,
A41
,
A39
,
A35
;
A45
:
succ
A
c=
B
by
A39
,
ORDINAL1:21
;
then
sB is sA,yA,r
.
(
succ
A
)
-terms
by
A43
,
ORDINAL1:22
;
then
|.
(
sB
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
.|
infinitely<
No_omega^
yA
by
Th73
;
then
|.
(
sB
+
(
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
)
.|
infinitely<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th13
;
then
|.
(
sB
+
(
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
)
.|
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th9
;
then
sB
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th52
;
then
A46
:
sB
<
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
by
SURREALR:41
;
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
No_omega^
yB
)
=
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
(
uReal
.
1
)
*
(
No_omega^
yB
)
)
by
SURREALN:48
;
then
A47
:
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
No_omega^
yB
)
==
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
+
(
uReal
.
1
)
)
*
(
No_omega^
yB
)
by
SURREALR:67
;
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
+
(
uReal
.
1
)
)
*
(
No_omega^
yB
)
==
(
uReal
.
(
1
+
(
r
.
(
succ
B
)
)
)
)
*
(
No_omega^
yB
)
by
SURREALR:51
,
SURREALN:55
;
then
A48
:
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
No_omega^
yB
)
==
(
uReal
.
(
1
+
(
r
.
(
succ
B
)
)
)
)
*
(
No_omega^
yB
)
by
A47
,
SURREALO:4
;
yB
<
yA
by
Def11
,
A5
,
A45
,
ORDINAL1:22
,
A42
;
then
No_omega^
yB
infinitely<
No_omega^
yA
by
Lm5
;
then
(
0_No
<=
No_omega^
yB &
No_omega^
yB
infinitely<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
Th13
,
SURREALI:def 8
;
then
(
uReal
.
(
1
+
(
r
.
(
succ
B
)
)
)
)
*
(
No_omega^
yB
)
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th20
;
then
A49
:
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
No_omega^
yB
)
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
A48
,
SURREALO:4
;
uB
=
sB
+
(
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
No_omega^
yB
)
)
by
A44
,
SURREALR:37
;
then
A50
:
uB
<=
sB
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
A49
,
SURREALR:44
;
sB
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
<
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
A46
,
SURREALR:44
;
then
A51
:
uB
<
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
A50
,
SURREALO:4
;
(
1
/
2
)
+
(
1
/
2
)
=
1
;
then
A52
:
(
(
No_omega^
yA
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
No_omega^
yA
)
*
1_No
&
(
No_omega^
yA
)
*
1_No
=
No_omega^
yA )
by
SURREALR:51
,
SURREALN:55
,
SURREALN:48
;
(
No_omega^
yA
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
SURREALR:67
;
then
A53
:
No_omega^
yA
==
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
A52
,
SURREALO:4
;
(
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
=
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
&
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
==
(
No_omega^
yA
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
by
SURREALR:37
,
A53
,
SURREALR:43
;
hence
uB
<
uA
by
A44
,
A51
,
SURREALO:4
;
:: thesis:
verum
end;
defpred
S
5
[
object
,
object
]
means
( $2 is
Surreal
& ( for A being
Ordinal
st A
=
$1 holds
for sa, ya being
Surreal
st sa
=
s
.
(
succ
A
)
& ya
=
y
.
(
succ
A
)
holds
$2
=
(
sa
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
ya
)
)
)
+
(
-
(
No_omega^
ya
)
)
) );
A54
:
for e being
object
st e
in
D holds
ex o being
object
st S
5
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
5
[e,o] )
assume
A55
:
e
in
D
;
:: thesis:
ex o being
object
st S
5
[e,o]
reconsider
E = e as
Ordinal
by
A55
;
succ
E
in
D
by
A55
,
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
E
)
in
rng
y & s
.
(
succ
E
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
ya = y
.
(
succ
E
)
, sa = s
.
(
succ
E
)
as
Surreal
by
SURREAL0:def 16
;
take
o =
(
sa
+
(
(
uReal
.
(
r
.
(
succ
E
)
)
)
*
(
No_omega^
ya
)
)
)
+
(
-
(
No_omega^
ya
)
)
;
:: thesis:
S
5
[e,o]
thus
S
5
[e,o]
;
:: thesis:
verum
end;
consider
low being
Function
such that
A56
:
dom
low
=
D
and
A57
:
for o being
object
st o
in
D holds
S
5
[o,low
.
o]
from
CLASSES1:sch 1
(
A54
);
A58
:
rng
low is
surreal-membered
proof
let
o be
object
;
:: according to
SURREAL0:def 16
:: thesis:
( not o
in
rng
low or o is
surreal
)
assume
A59
:
o
in
rng
low
;
:: thesis:
o is
surreal
consider
a being
object
such that
A60
:
( a
in
dom
low & low
.
a
=
o )
by
A59
,
FUNCT_1:def 3
;
thus
o is
surreal
by
A60
,
A56
,
A57
;
:: thesis:
verum
end;
A61
:
for A, B being
Ordinal
st A
in
B & B
in
D holds
for lA, lB being
Surreal
st lA
=
low
.
A & lB
=
low
.
B holds
lA
<
lB
proof
let
A, B be
Ordinal
;
:: thesis:
( A
in
B & B
in
D implies for lA, lB being
Surreal
st lA
=
low
.
A & lB
=
low
.
B holds
lA
<
lB )
assume
A62
:
( A
in
B & B
in
D )
;
:: thesis:
for lA, lB being
Surreal
st lA
=
low
.
A & lB
=
low
.
B holds
lA
<
lB
let
uA, uB be
Surreal
;
:: thesis:
( uA
=
low
.
A & uB
=
low
.
B implies uA
<
uB )
assume
A63
:
( uA
=
low
.
A & uB
=
low
.
B )
;
:: thesis:
uA
<
uB
A64
:
(
succ
B
in
D & D
c=
dom
y )
by
A3
,
XBOOLE_1:18
,
A62
,
A9
,
ORDINAL1:28
;
( y
.
(
succ
B
)
in
rng
y & s
.
(
succ
B
)
in
rng
s )
by
A64
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yB = y
.
(
succ
B
)
, sB = s
.
(
succ
B
)
as
Surreal
by
SURREAL0:def 16
;
A65
:
A
in
D
by
A62
,
ORDINAL1:10
;
then
succ
A
in
D
by
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
A
)
in
rng
y & s
.
(
succ
A
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yA = y
.
(
succ
A
)
, sA = s
.
(
succ
A
)
as
Surreal
by
SURREAL0:def 16
;
set
NA =
No_omega^
yA;
set
NB =
No_omega^
yB;
A66
:
succ
B
in
D
by
A62
,
A9
,
ORDINAL1:28
;
s,y,r
simplest_on_position
succ
B
by
A31
,
A62
,
A9
,
ORDINAL1:28
;
then
A67
:
sB
in_meets_terms
s,y,r,
succ
B
;
set
n = 2;
A68
:
( uA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
& uB
=
(
sB
+
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
-
(
No_omega^
yB
)
)
)
by
A63
,
A65
,
A62
,
A57
;
A69
:
succ
A
c=
B
by
A62
,
ORDINAL1:21
;
then
sB is sA,yA,r
.
(
succ
A
)
-terms
by
A67
,
ORDINAL1:22
;
then
|.
(
sB
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
.|
infinitely<
No_omega^
yA
by
Th73
;
then
|.
(
sB
+
(
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
)
.|
infinitely<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th13
;
then
|.
(
sB
+
(
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
)
.|
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th9
;
then
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
<
sB
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
by
Th52
;
then
A70
:
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
<
sB
by
SURREALR:42
;
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
=
(
(
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
)
*
(
No_omega^
yB
)
)
+
(
(
uReal
.
1
)
*
(
No_omega^
yB
)
)
by
SURREALR:58
,
SURREALN:48
;
then
A71
:
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
==
(
(
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
)
*
(
No_omega^
yB
)
by
SURREALR:67
;
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
==
uReal
.
(
-
(
r
.
(
succ
B
)
)
)
by
SURREALN:56
;
then
A72
:
(
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
==
(
uReal
.
(
-
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
by
SURREALR:43
;
(
uReal
.
(
-
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
==
uReal
.
(
1
+
(
-
(
r
.
(
succ
B
)
)
)
)
by
SURREALN:55
;
then
(
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
==
uReal
.
(
1
+
(
-
(
r
.
(
succ
B
)
)
)
)
by
A72
,
SURREALO:4
;
then
(
(
-
(
uReal
.
(
r
.
(
succ
B
)
)
)
)
+
(
uReal
.
1
)
)
*
(
No_omega^
yB
)
==
(
uReal
.
(
1
+
(
-
(
r
.
(
succ
B
)
)
)
)
)
*
(
No_omega^
yB
)
by
SURREALR:51
;
then
A73
:
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
==
(
uReal
.
(
1
+
(
-
(
r
.
(
succ
B
)
)
)
)
)
*
(
No_omega^
yB
)
by
A71
,
SURREALO:4
;
yB
<
yA
by
A4
,
Def11
,
A69
,
ORDINAL1:22
,
A66
;
then
No_omega^
yB
infinitely<
No_omega^
yA
by
Lm5
;
then
(
0_No
<=
No_omega^
yB &
No_omega^
yB
infinitely<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
Th13
,
SURREALI:def 8
;
then
(
uReal
.
(
1
+
(
-
(
r
.
(
succ
B
)
)
)
)
)
*
(
No_omega^
yB
)
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
Th20
;
then
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
<
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
by
A73
,
SURREALO:4
;
then
A74
:
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
<
-
(
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
)
&
-
(
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
+
(
No_omega^
yB
)
)
=
(
-
(
-
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
)
)
+
(
-
(
No_omega^
yB
)
)
)
by
SURREALR:10
,
SURREALR:40
;
sB
+
(
(
(
uReal
.
(
r
.
(
succ
B
)
)
)
*
(
No_omega^
yB
)
)
+
(
-
(
No_omega^
yB
)
)
)
=
uB
by
A68
,
SURREALR:37
;
then
A75
:
sB
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
<
uB
by
A74
,
SURREALR:44
;
(
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
<=
sB
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
by
A70
,
SURREALR:44
;
then
A76
:
(
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
<
uB
by
A75
,
SURREALO:4
;
(
1
/
2
)
+
(
1
/
2
)
=
1
;
then
A77
:
(
(
No_omega^
yA
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
No_omega^
yA
)
*
1_No
&
(
No_omega^
yA
)
*
1_No
=
No_omega^
yA )
by
SURREALN:55
,
SURREALN:48
,
SURREALR:51
;
(
No_omega^
yA
)
*
(
(
uReal
.
(
1
/
2
)
)
+
(
uReal
.
(
1
/
2
)
)
)
==
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
SURREALR:67
;
then
No_omega^
yA
==
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
by
A77
,
SURREALO:4
;
then
-
(
No_omega^
yA
)
==
-
(
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
+
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
by
SURREALR:10
;
then
A78
:
-
(
No_omega^
yA
)
==
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
by
SURREALR:40
;
(
(
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
=
(
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
&
(
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
+
(
-
(
(
No_omega^
yA
)
*
(
uReal
.
(
1
/
2
)
)
)
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
==
(
-
(
No_omega^
yA
)
)
+
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
by
SURREALR:37
,
A78
,
SURREALR:43
;
hence
uA
<
uB
by
A76
,
A68
,
SURREALO:4
;
:: thesis:
verum
end;
A79
:
for A being
Ordinal
st A
in
D holds
for lA, uA being
Surreal
st lA
=
low
.
A & uA
=
upp
.
A holds
lA
<
uA
proof
let
A be
Ordinal
;
:: thesis:
( A
in
D implies for lA, uA being
Surreal
st lA
=
low
.
A & uA
=
upp
.
A holds
lA
<
uA )
assume
A80
:
A
in
D
;
:: thesis:
for lA, uA being
Surreal
st lA
=
low
.
A & uA
=
upp
.
A holds
lA
<
uA
let
lA, uA be
Surreal
;
:: thesis:
( lA
=
low
.
A & uA
=
upp
.
A implies lA
<
uA )
assume
A81
:
( lA
=
low
.
A & uA
=
upp
.
A )
;
:: thesis:
lA
<
uA
succ
A
in
D
by
A80
,
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
A
)
in
rng
y & s
.
(
succ
A
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yA = y
.
(
succ
A
)
, sA = s
.
(
succ
A
)
as
Surreal
by
SURREAL0:def 16
;
set
NA =
No_omega^
yA;
A82
:
( lA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
& uA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
by
A80
,
A81
,
A57
,
A35
;
(
-
(
No_omega^
yA
)
<=
-
0_No
&
-
0_No
=
0_No
)
by
SURREALI:def 8
,
SURREALR:10
;
then
-
(
No_omega^
yA
)
<
No_omega^
yA
by
SURREALI:def 8
,
SURREALO:4
;
hence
lA
<
uA
by
A82
,
SURREALR:44
;
:: thesis:
verum
end;
A83
:
rng
low
<<
rng
upp
proof
let
l, u be
Surreal
;
:: according to
SURREAL0:def 20
:: thesis:
( not l
in
rng
low or not u
in
rng
upp or not u
<=
l )
assume
A84
:
( l
in
rng
low & u
in
rng
upp )
;
:: thesis:
not u
<=
l
consider
A being
object
such that
A85
:
( A
in
dom
low & low
.
A
=
l )
by
A84
,
FUNCT_1:def 3
;
consider
B being
object
such that
A86
:
( B
in
dom
upp & upp
.
B
=
u )
by
A84
,
FUNCT_1:def 3
;
reconsider
A = A, B = B as
Ordinal
by
A85
,
A86
,
A56
,
A34
;
reconsider
lowB = low
.
B, uppA = upp
.
A as
Surreal
by
A85
,
A86
,
A56
,
A57
,
A34
,
A35
;
per
cases
( A
=
B or A
in
B or B
in
A )
by
ORDINAL1:14
;
suppose
A
=
B
;
:: thesis:
not u
<=
l
hence
not u
<=
l
by
A85
,
A86
,
A79
,
A56
;
:: thesis:
verum
end;
suppose
A
in
B
;
:: thesis:
not u
<=
l
then
( l
<
lowB & lowB
<=
u )
by
A61
,
A85
,
A86
,
A34
,
A79
;
hence
not u
<=
l
by
SURREALO:4
;
:: thesis:
verum
end;
suppose
B
in
A
;
:: thesis:
not u
<=
l
then
( l
<=
uppA & uppA
<
u )
by
A38
,
A85
,
A86
,
A56
,
A79
;
hence
not u
<=
l
by
SURREALO:4
;
:: thesis:
verum
end;
end;
end;
consider
M being
Ordinal
such that
A87
:
for o being
object
st o
in
(
rng
low
)
\/
(
rng
upp
)
holds
ex A being
Ordinal
st
( A
in
M & o
in
Day
A )
by
A36
,
A58
,
SURREAL0:47
;
[
(
rng
low
)
,
(
rng
upp
)
]
in
Day
M
by
A83
,
A87
,
SURREAL0:46
;
then
reconsider
rLU =
[
(
rng
low
)
,
(
rng
upp
)
]
as
Surreal
;
defpred
S
6
[
Surreal
]
means
$1
in_meets_terms
s,y,r,D;
rLU
in_meets_terms
s,y,r,D
proof
let
A be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st A
in
D & sb
=
s
.
A & yb
=
y
.
A holds
rLU is sb,yb,r
.
A
-terms
let
sb, yb be
Surreal
;
:: thesis:
( A
in
D & sb
=
s
.
A & yb
=
y
.
A implies rLU is sb,yb,r
.
A
-terms
)
assume
A88
:
( A
in
D & sb
=
s
.
A & yb
=
y
.
A )
;
:: thesis:
rLU is sb,yb,r
.
A
-terms
reconsider
lowA = low
.
A, uppA = upp
.
A as
Surreal
by
A88
,
A57
,
A35
;
A89
:
succ
A
in
D
by
A88
,
A9
,
ORDINAL1:28
;
then
( y
.
(
succ
A
)
in
rng
y & s
.
(
succ
A
)
in
rng
s )
by
A4
,
A14
,
FUNCT_1:def 3
;
then
reconsider
yA = y
.
(
succ
A
)
, sA = s
.
(
succ
A
)
as
Surreal
by
SURREAL0:def 16
;
set
NA =
No_omega^
yA;
A90
:
( lowA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
& uppA
=
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
by
A88
,
A57
,
A35
;
A91
:
r
.
A
in
rng
r
by
A88
,
A4
,
FUNCT_1:def 3
;
s,y,r
simplest_on_position
succ
A
by
A31
,
A88
,
A9
,
ORDINAL1:28
;
then
A92
:
sA
in_meets_terms
s,y,r,
succ
A
;
sA is sb,yb,r
.
A
-terms
by
ORDINAL1:6
,
A88
,
A92
;
then
A93
:
|.
(
sA
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb
by
Th73
;
yA
<
yb
by
ORDINAL1:6
,
A89
,
A88
,
Def11
,
A5
;
then
A94
:
No_omega^
yA
infinitely<
No_omega^
yb
by
Lm5
;
A95
:
( lowA
in
rng
low & uppA
in
rng
upp )
by
A88
,
A56
,
A34
,
FUNCT_1:def 3
;
A96
:
(
L_
rLU
<<
{
rLU
}
&
{
rLU
}
<<
R_
rLU & rLU
in
{
rLU
}
)
by
SURREALO:11
,
TARSKI:def 1
;
then
-
rLU
<
-
(
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
)
by
A95
,
A90
,
SURREALR:10
;
then
A97
:
(
-
rLU
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
<=
(
-
(
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
)
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
by
SURREALR:44
;
A98
:
(
-
rLU
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
=
(
-
rLU
)
+
(
-
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
.=
-
(
rLU
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
by
SURREALR:40
;
A99
:
(
-
(
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
-
(
No_omega^
yA
)
)
)
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
=
(
(
-
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
-
(
-
(
No_omega^
yA
)
)
)
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
by
SURREALR:40
.=
(
(
(
-
sA
)
+
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
+
(
No_omega^
yA
)
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
by
SURREALR:40
.=
(
(
-
sA
)
+
(
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
)
+
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
by
SURREALR:37
.=
(
(
-
sA
)
+
(
-
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
by
SURREALR:37
.=
(
-
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
by
SURREALR:40
;
A100
:
0_No
<=
No_omega^
yA
by
SURREALI:def 8
;
then
A101
:
No_omega^
yA
=
|.
(
No_omega^
yA
)
.|
by
Def6
;
A102
:
|.
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
.|
infinitely<
No_omega^
yb
by
A94
,
A100
,
Th53
;
then
|.
(
(
No_omega^
yA
)
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
.|
infinitely<
No_omega^
yb
by
A94
,
Th41
,
A101
;
then
A103
:
|.
(
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
(
No_omega^
yA
)
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
.|
infinitely<
No_omega^
yb
by
A93
,
Th41
;
A104
:
|.
(
-
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
.|
infinitely<
No_omega^
yb
by
A93
,
Th42
;
|.
(
(
No_omega^
yA
)
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
.|
infinitely<
No_omega^
yb
by
A94
,
Th43
,
A101
,
A102
;
then
A105
:
|.
(
(
-
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
(
No_omega^
yA
)
+
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
)
.|
infinitely<
No_omega^
yb
by
A104
,
Th41
;
(
-
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
(
No_omega^
yA
)
+
(
-
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
)
infinitely<
No_omega^
yb
by
Th34
,
Th11
,
A105
;
then
A106
:
-
(
rLU
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
infinitely<
No_omega^
yb
by
A98
,
A97
,
A99
,
Th11
;
A107
:
rLU
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
<=
(
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
by
A95
,
A96
,
A90
,
SURREALR:44
;
A108
:
(
(
sA
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
+
(
No_omega^
yA
)
)
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
=
(
sA
+
(
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
+
(
No_omega^
yA
)
)
)
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
by
SURREALR:37
.=
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
(
No_omega^
yA
)
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
by
SURREALR:37
;
(
sA
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
(
No_omega^
yA
)
+
(
(
uReal
.
(
r
.
(
succ
A
)
)
)
*
(
No_omega^
yA
)
)
)
infinitely<
No_omega^
yb
by
Th34
,
A103
,
Th11
;
then
rLU
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
infinitely<
No_omega^
yb
by
A108
,
A107
,
Th11
;
then
|.
(
rLU
-
(
sb
+
(
(
uReal
.
(
r
.
A
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb
by
Def6
,
A106
;
hence
rLU is sb,yb,r
.
A
-terms
by
A91
,
Th73
;
:: thesis:
verum
end;
then
A109
:
ex x being
Surreal
st S
6
[x]
;
A110
:
for x, y, z being
Surreal
st x
<=
y & y
<=
z & S
6
[x] & S
6
[z] holds
S
6
[y]
by
Th81
,
A3
,
XBOOLE_1:18
;
consider
sD being
uSurreal
such that
A111
:
S
6
[sD]
and
A112
:
for x being
uSurreal
st S
6
[x] & x
<>
sD holds
born
sD
in
born
x
from
SURREALC:sch 1
(
A109
,
A110
);
take
ssD = s
^
<%
sD
%>
;
:: thesis:
(
dom
ssD
=
succ
D & ssD,y,r
simplest_up_to
dom
ssD )
A113
:
dom
<%
sD
%>
=
1
by
AFINSQ_1:def 4
;
then
dom
ssD
=
(
dom
s
)
+^
1
by
ORDINAL4:def 1
;
hence
A114
:
dom
ssD
=
succ
D
by
A14
,
ORDINAL2:31
;
:: thesis:
ssD,y,r
simplest_up_to
dom
ssD
let
B be
Ordinal
;
:: according to
SURREALC:def 16
:: thesis:
( B
in
dom
ssD implies ssD,y,r
simplest_on_position
B )
assume
A115
:
B
in
dom
ssD
;
:: thesis:
ssD,y,r
simplest_on_position
B
A116
:
dom
s
=
(
dom
ssD
)
/\
(
dom
s
)
by
ORDINAL7:1
,
A14
,
A114
;
for o being
object
st o
in
dom
s holds
s
.
o
=
ssD
.
o
by
ORDINAL4:def 1
;
then
A117
:
ssD
|
D
=
s
by
A116
,
FUNCT_1:46
,
A14
;
A118
:
s
|
D
=
s
by
A14
;
per
cases
( B
=
D or B
in
D )
by
A114
,
A115
,
ORDINAL1:8
;
suppose
A119
:
B
=
D
;
:: thesis:
ssD,y,r
simplest_on_position
B
ssD,y,r
simplest_on_position
D
proof
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
ssD
.
D implies ( (
0
=
D implies sa
=
0_No
) & (
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A120
:
sa
=
ssD
.
D
;
:: thesis:
( (
0
=
D implies sa
=
0_No
) & (
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) ) )
0
in
dom
<%
sD
%>
by
A113
,
TARSKI:def 1
,
CARD_1:49
;
then
( ssD
.
(
D
+^
0
)
=
<%
sD
%>
.
0
&
<%
sD
%>
.
0
=
sD )
by
A14
,
ORDINAL4:def 1
;
then
A121
:
sa
=
sD
by
A120
,
ORDINAL2:27
;
thus
(
0
=
D implies sa
=
0_No
)
by
A9
;
:: thesis:
(
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
0
<>
D
;
:: thesis:
( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) )
thus
sa
in_meets_terms
ssD,y,r,D
by
A111
,
A117
,
A118
,
Th75
,
A121
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
ssD,y,r,D & x
<>
sa implies
born
sa
in
born
x )
thus
( x
in_meets_terms
ssD,y,r,D & x
<>
sa implies
born
sa
in
born
x )
by
A117
,
A118
,
Th75
,
A112
,
A121
;
:: thesis:
verum
end;
hence
ssD,y,r
simplest_on_position
B
by
A119
;
:: thesis:
verum
end;
suppose
A122
:
B
in
D
;
:: thesis:
ssD,y,r
simplest_on_position
B
then
A123
:
s
|
(
succ
B
)
,y,r
simplest_on_position
B
by
A17
,
Th80
;
ssD
|
(
succ
B
)
=
s
|
(
succ
B
)
by
A122
,
ORDINAL1:21
,
A117
,
RELAT_1:74
;
hence
ssD,y,r
simplest_on_position
B
by
A123
,
Th80
;
:: thesis:
verum
end;
end;
end;
suppose
not D is
limit_ordinal
;
:: thesis:
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
D & s,y,r
simplest_up_to
dom
s )
then
consider
d being
Ordinal
such that
A124
:
D
=
succ
d
by
ORDINAL1:29
;
A125
:
d
in
D
by
A124
,
ORDINAL1:6
;
consider
s being
uSurreal-Sequence
such that
A126
:
dom
s
=
succ
d
and
A127
:
s,y,r
simplest_up_to
dom
s
by
ORDINAL1:def 2
,
A125
,
A2
,
A3
;
( d
in
dom
r & d
in
dom
y )
by
A125
,
XBOOLE_0:def 4
,
A3
;
then
A128
:
( r
.
d
in
rng
r & y
.
d
in
rng
y )
by
FUNCT_1:def 3
;
then
reconsider
yd = y
.
d as
Surreal
by
SURREAL0:def 16
;
s
.
d
in
rng
s
by
A126
,
A124
,
A125
,
FUNCT_1:def 3
;
then
reconsider
sd = s
.
d as
uSurreal
by
SURREALO:def 12
;
set
c = sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
;
s,y,r
simplest_on_position
d
by
A127
,
ORDINAL1:6
,
A126
;
then
A129
:
( (
0
=
d implies sd
=
0_No
) & (
0
<>
d implies ( sd
in_meets_terms
s,y,r,d & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,d & x
<>
sd holds
born
sd
in
born
x ) ) ) )
;
defpred
S
2
[
Surreal
]
means
$1
in_meets_terms
s,y,r,D;
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
in_meets_terms
s,y,r,D
proof
let
b be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st b
in
D & sb
=
s
.
b & yb
=
y
.
b holds
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
let
sb, yb be
Surreal
;
:: thesis:
( b
in
D & sb
=
s
.
b & yb
=
y
.
b implies sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
)
assume
A130
:
( b
in
D & sb
=
s
.
b & yb
=
y
.
b )
;
:: thesis:
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
A131
:
b
c=
d
by
A130
,
A124
,
ORDINAL1:22
;
per
cases
( b
=
d or b
<>
d )
;
suppose
b
=
d
;
:: thesis:
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
hence
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
by
A128
,
Th69
,
A130
;
:: thesis:
verum
end;
suppose
b
<>
d
;
:: thesis:
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
then
A132
:
b
in
d
by
ORDINAL1:11
,
A131
,
XBOOLE_0:def 8
;
A133
:
sd is sb,yb,r
.
b
-terms
by
A132
,
A130
,
A129
;
A134
:
r
.
b
in
rng
r
by
A130
,
A4
,
FUNCT_1:def 3
;
A135
:
|.
(
sd
-
(
sb
+
(
(
uReal
.
(
r
.
b
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb
by
A133
,
Th73
;
A136
:
No_omega^
yd
infinitely<
No_omega^
yb
by
Th25
,
A130
,
Def11
,
A5
,
A132
,
A125
;
|.
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
.|
infinitely<
No_omega^
yb
by
A128
,
Th66
,
A136
,
Th15
;
then
A137
:
|.
(
sd
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
b
)
)
*
(
No_omega^
yb
)
)
)
)
)
.|
+
|.
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
.|
infinitely<
No_omega^
yb
by
A135
,
Th18
;
(
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
)
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
b
)
)
*
(
No_omega^
yb
)
)
)
)
=
(
sd
+
(
-
(
sb
+
(
(
uReal
.
(
r
.
b
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
by
SURREALR:37
;
then
|.
(
(
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
)
-
(
sb
+
(
(
uReal
.
(
r
.
b
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb
by
Th11
,
A137
,
Th37
;
hence
sd
+
(
(
uReal
.
(
r
.
d
)
)
*
(
No_omega^
yd
)
)
is sb,yb,r
.
b
-terms
by
A134
,
Th73
;
:: thesis:
verum
end;
end;
end;
then
A138
:
ex x being
Surreal
st S
2
[x]
;
A139
:
for x, y, z being
Surreal
st x
<=
y & y
<=
z & S
2
[x] & S
2
[z] holds
S
2
[y]
by
Th81
,
A3
,
XBOOLE_1:18
;
consider
sD being
uSurreal
such that
A140
:
S
2
[sD]
and
A141
:
for x being
uSurreal
st S
2
[x] & x
<>
sD holds
born
sD
in
born
x
from
SURREALC:sch 1
(
A138
,
A139
);
take
ssD = s
^
<%
sD
%>
;
:: thesis:
(
dom
ssD
=
succ
D & ssD,y,r
simplest_up_to
dom
ssD )
A142
:
dom
<%
sD
%>
=
1
by
AFINSQ_1:def 4
;
then
dom
ssD
=
(
dom
s
)
+^
1
by
ORDINAL4:def 1
;
hence
A143
:
dom
ssD
=
succ
D
by
A126
,
A124
,
ORDINAL2:31
;
:: thesis:
ssD,y,r
simplest_up_to
dom
ssD
let
B be
Ordinal
;
:: according to
SURREALC:def 16
:: thesis:
( B
in
dom
ssD implies ssD,y,r
simplest_on_position
B )
assume
A144
:
B
in
dom
ssD
;
:: thesis:
ssD,y,r
simplest_on_position
B
A145
:
dom
s
=
(
dom
ssD
)
/\
(
dom
s
)
by
ORDINAL7:1
,
A126
,
A124
,
A143
;
for o being
object
st o
in
dom
s holds
s
.
o
=
ssD
.
o
by
ORDINAL4:def 1
;
then
A146
:
ssD
|
D
=
s
by
A145
,
FUNCT_1:46
,
A126
,
A124
;
A147
:
s
|
D
=
s
by
A126
,
A124
;
per
cases
( B
=
D or B
in
D )
by
A143
,
A144
,
ORDINAL1:8
;
suppose
A148
:
B
=
D
;
:: thesis:
ssD,y,r
simplest_on_position
B
ssD,y,r
simplest_on_position
D
proof
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
ssD
.
D implies ( (
0
=
D implies sa
=
0_No
) & (
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A149
:
sa
=
ssD
.
D
;
:: thesis:
( (
0
=
D implies sa
=
0_No
) & (
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) ) )
0
in
dom
<%
sD
%>
by
A142
,
TARSKI:def 1
,
CARD_1:49
;
then
( ssD
.
(
D
+^
0
)
=
<%
sD
%>
.
0
&
<%
sD
%>
.
0
=
sD )
by
A126
,
A124
,
ORDINAL4:def 1
;
then
A150
:
sa
=
sD
by
A149
,
ORDINAL2:27
;
thus
(
0
=
D implies sa
=
0_No
)
by
A124
;
:: thesis:
(
0
<>
D implies ( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
0
<>
D
;
:: thesis:
( sa
in_meets_terms
ssD,y,r,D & ( for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x ) )
thus
sa
in_meets_terms
ssD,y,r,D
by
A150
,
A140
,
A146
,
A147
,
Th75
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
ssD,y,r,D & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
ssD,y,r,D & x
<>
sa implies
born
sa
in
born
x )
assume
A151
:
( x
in_meets_terms
ssD,y,r,D & x
<>
sa )
;
:: thesis:
born
sa
in
born
x
thus
born
sa
in
born
x
by
A141
,
A150
,
A151
,
A146
,
A147
,
Th75
;
:: thesis:
verum
end;
hence
ssD,y,r
simplest_on_position
B
by
A148
;
:: thesis:
verum
end;
suppose
A152
:
B
in
D
;
:: thesis:
ssD,y,r
simplest_on_position
B
then
A153
:
s
|
(
succ
B
)
,y,r
simplest_on_position
B
by
A126
,
A127
,
A124
,
Th80
;
ssD
|
(
succ
B
)
=
s
|
(
succ
B
)
by
A152
,
ORDINAL1:21
,
A146
,
RELAT_1:74
;
hence
ssD,y,r
simplest_on_position
B
by
A153
,
Th80
;
:: thesis:
verum
end;
end;
end;
end;
end;
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A1
);
hence
ex s being
uSurreal-Sequence
st
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& s,y,r
simplest_up_to
dom
s )
;
:: thesis:
verum
end;
definition
let
r be
non-zero
Sequence
of
REAL
;
let
y be
strictly_decreasing
Surreal-Sequence
;
func
Partial_Sums
(r,y)
->
uSurreal-Sequence
means
:
Def17
:
:: SURREALC:def 17
(
dom
it
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
it
holds
it
,y,r
simplest_on_position
A ) );
existence
ex b
1
being
uSurreal-Sequence
st
(
dom
b
1
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
b
1
holds
b
1
,y,r
simplest_on_position
A ) )
proof
consider
s being
uSurreal-Sequence
such that
A1
:
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& s,y,r
simplest_up_to
dom
s )
by
Th82
;
take
s ;
:: thesis:
(
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
s holds
s,y,r
simplest_on_position
A ) )
thus
dom
s
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
A1
;
:: thesis:
for A being
Ordinal
st A
in
dom
s holds
s,y,r
simplest_on_position
A
thus
for A being
Ordinal
st A
in
dom
s holds
s,y,r
simplest_on_position
A
by
A1
;
:: thesis:
verum
end;
uniqueness
for b
1
, b
2
being
uSurreal-Sequence
st
dom
b
1
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
b
1
holds
b
1
,y,r
simplest_on_position
A ) &
dom
b
2
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
b
2
holds
b
2
,y,r
simplest_on_position
A ) holds
b
1
=
b
2
proof
let
P1, P2 be
uSurreal-Sequence
;
:: thesis:
(
dom
P1
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
P1 holds
P1,y,r
simplest_on_position
A ) &
dom
P2
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
P2 holds
P2,y,r
simplest_on_position
A ) implies P1
=
P2 )
assume
that
A2
:
(
dom
P1
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
P1 holds
P1,y,r
simplest_on_position
A ) )
and
A3
:
(
dom
P2
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
P2 holds
P2,y,r
simplest_on_position
A ) )
;
:: thesis:
P1
=
P2
( P1,y,r
simplest_up_to
dom
P1 & P2,y,r
simplest_up_to
dom
P2 )
by
A2
,
A3
;
then
P1
|
(
dom
P1
)
=
P2
|
(
dom
P2
)
by
A2
,
A3
,
Th77
;
hence
P1
=
P2
;
:: thesis:
verum
end;
end;
::
deftheorem
Def17
defines
Partial_Sums
SURREALC:def 17 :
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for b
3
being
uSurreal-Sequence
holds
( b
3
=
Partial_Sums
(r,y) iff (
dom
b
3
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
& ( for A being
Ordinal
st A
in
dom
b
3
holds
b
3
,y,r
simplest_on_position
A ) ) );
definition
let
r be
non-zero
Sequence
of
REAL
;
let
y be
strictly_decreasing
Surreal-Sequence
;
func
Sum
(r,y)
->
uSurreal
equals
:: SURREALC:def 18
(
Partial_Sums
(r,y)
)
.
(
(
dom
r
)
/\
(
dom
y
)
)
;
coherence
(
Partial_Sums
(r,y)
)
.
(
(
dom
r
)
/\
(
dom
y
)
)
is
uSurreal
proof
set
D =
(
dom
r
)
/\
(
dom
y
)
;
(
dom
r
)
/\
(
dom
y
)
in
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
ORDINAL1:6
;
then
(
dom
r
)
/\
(
dom
y
)
in
dom
(
Partial_Sums
(r,y)
)
by
Def17
;
then
A1
:
(
Partial_Sums
(r,y)
)
.
(
(
dom
r
)
/\
(
dom
y
)
)
in
rng
(
Partial_Sums
(r,y)
)
by
FUNCT_1:def 3
;
rng
(
Partial_Sums
(r,y)
)
is
uniq-surreal-membered
;
hence
(
Partial_Sums
(r,y)
)
.
(
(
dom
r
)
/\
(
dom
y
)
)
is
uSurreal
by
A1
;
:: thesis:
verum
end;
end;
::
deftheorem
defines
Sum
SURREALC:def 18 :
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
holds
Sum
(r,y)
=
(
Partial_Sums
(r,y)
)
.
(
(
dom
r
)
/\
(
dom
y
)
)
;
registration
let
s be
strictly_decreasing
Surreal-Sequence
;
let
A be
Ordinal
;
cluster
s
|
A
->
strictly_decreasing
;
coherence
s
|
A is
strictly_decreasing
proof
let
a, b be
Ordinal
;
:: according to
SURREALC:def 11
:: thesis:
( a
in
b & b
in
dom
(
s
|
A
)
implies for sa, sb being
Surreal
st sa
=
(
s
|
A
)
.
a & sb
=
(
s
|
A
)
.
b holds
sb
<
sa )
assume
A1
:
( a
in
b & b
in
dom
(
s
|
A
)
)
;
:: thesis:
for sa, sb being
Surreal
st sa
=
(
s
|
A
)
.
a & sb
=
(
s
|
A
)
.
b holds
sb
<
sa
let
sa, sb be
Surreal
;
:: thesis:
( sa
=
(
s
|
A
)
.
a & sb
=
(
s
|
A
)
.
b implies sb
<
sa )
assume
A2
:
( sa
=
(
s
|
A
)
.
a & sb
=
(
s
|
A
)
.
b )
;
:: thesis:
sb
<
sa
A3
:
( sa
=
s
.
a & sb
=
s
.
b )
by
A1
,
ORDINAL1:10
,
A2
,
FUNCT_1:47
;
( a
in
b & b
in
dom
s )
by
A1
,
RELAT_1:57
;
hence
sb
<
sa
by
A3
,
Def11
;
:: thesis:
verum
end;
end;
registration
let
R be
non-zero
Relation
;
let
X be
set
;
cluster
R
|
X
->
non-zero
;
coherence
R
|
X is
non-zero
proof
rng
(
R
|
X
)
c=
rng
R
by
RELAT_1:70
;
hence
R
|
X is
non-zero
;
:: thesis:
verum
end;
end;
theorem
Th83
:
:: SURREALC:83
for x being
Surreal
for r being
Sequence
of
REAL
for y, s being
Sequence
for A, B being
Ordinal
st A
c=
B holds
( x
in_meets_terms
s,y,r,A iff x
in_meets_terms
s,y
|
B,r
|
B,A )
proof
let
x be
Surreal
;
:: thesis:
for r being
Sequence
of
REAL
for y, s being
Sequence
for A, B being
Ordinal
st A
c=
B holds
( x
in_meets_terms
s,y,r,A iff x
in_meets_terms
s,y
|
B,r
|
B,A )
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s being
Sequence
for A, B being
Ordinal
st A
c=
B holds
( x
in_meets_terms
s,y,r,A iff x
in_meets_terms
s,y
|
B,r
|
B,A )
let
y, s be
Sequence
;
:: thesis:
for A, B being
Ordinal
st A
c=
B holds
( x
in_meets_terms
s,y,r,A iff x
in_meets_terms
s,y
|
B,r
|
B,A )
let
alpha, B be
Ordinal
;
:: thesis:
( alpha
c=
B implies ( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s,y
|
B,r
|
B,alpha ) )
assume
A1
:
alpha
c=
B
;
:: thesis:
( x
in_meets_terms
s,y,r,alpha iff x
in_meets_terms
s,y
|
B,r
|
B,alpha )
thus
( x
in_meets_terms
s,y,r,alpha implies x
in_meets_terms
s,y
|
B,r
|
B,alpha )
:: thesis:
( x
in_meets_terms
s,y
|
B,r
|
B,alpha implies x
in_meets_terms
s,y,r,alpha )
proof
assume
A2
:
x
in_meets_terms
s,y,r,alpha
;
:: thesis:
x
in_meets_terms
s,y
|
B,r
|
B,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
(
y
|
B
)
.
beta holds
x is sb,yb,
(
r
|
B
)
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
s
.
beta & yb
=
(
y
|
B
)
.
beta implies x is sb,yb,
(
r
|
B
)
.
beta
-terms
)
assume
A3
:
( beta
in
alpha & sb
=
s
.
beta & yb
=
(
y
|
B
)
.
beta )
;
:: thesis:
x is sb,yb,
(
r
|
B
)
.
beta
-terms
(
(
r
|
B
)
.
beta
=
r
.
beta & yb
=
y
.
beta )
by
A1
,
A3
,
FUNCT_1:49
;
hence
x is sb,yb,
(
r
|
B
)
.
beta
-terms
by
A2
,
A3
;
:: thesis:
verum
end;
assume
A4
:
x
in_meets_terms
s,y
|
B,r
|
B,alpha
;
:: thesis:
x
in_meets_terms
s,y,r,alpha
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta implies x is sb,yb,r
.
beta
-terms
)
assume
A5
:
( beta
in
alpha & sb
=
s
.
beta & yb
=
y
.
beta )
;
:: thesis:
x is sb,yb,r
.
beta
-terms
(
(
r
|
B
)
.
beta
=
r
.
beta & yb
=
(
y
|
B
)
.
beta )
by
A5
,
A1
,
FUNCT_1:49
;
hence
x is sb,yb,r
.
beta
-terms
by
A4
,
A5
;
:: thesis:
verum
end;
theorem
Th84
:
:: SURREALC:84
for r being
Sequence
of
REAL
for y, s being
Sequence
for A, B being
Ordinal
st B
c=
A holds
( s,y
|
A,r
|
A
simplest_on_position
B iff s,y,r
simplest_on_position
B )
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y, s being
Sequence
for A, B being
Ordinal
st B
c=
A holds
( s,y
|
A,r
|
A
simplest_on_position
B iff s,y,r
simplest_on_position
B )
let
y, s be
Sequence
;
:: thesis:
for A, B being
Ordinal
st B
c=
A holds
( s,y
|
A,r
|
A
simplest_on_position
B iff s,y,r
simplest_on_position
B )
let
A, B be
Ordinal
;
:: thesis:
( B
c=
A implies ( s,y
|
A,r
|
A
simplest_on_position
B iff s,y,r
simplest_on_position
B ) )
assume
A1
:
B
c=
A
;
:: thesis:
( s,y
|
A,r
|
A
simplest_on_position
B iff s,y,r
simplest_on_position
B )
thus
( s,y
|
A,r
|
A
simplest_on_position
B implies s,y,r
simplest_on_position
B )
:: thesis:
( s,y,r
simplest_on_position
B implies s,y
|
A,r
|
A
simplest_on_position
B )
proof
assume
A2
:
s,y
|
A,r
|
A
simplest_on_position
B
;
:: thesis:
s,y,r
simplest_on_position
B
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
s
.
B implies ( (
0
=
B implies sa
=
0_No
) & (
0
<>
B implies ( sa
in_meets_terms
s,y,r,B & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,B & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A3
:
sa
=
s
.
B
;
:: thesis:
( (
0
=
B implies sa
=
0_No
) & (
0
<>
B implies ( sa
in_meets_terms
s,y,r,B & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,B & x
<>
sa holds
born
sa
in
born
x ) ) ) )
thus
(
0
=
B implies sa
=
0_No
)
by
A3
,
A2
;
:: thesis:
(
0
<>
B implies ( sa
in_meets_terms
s,y,r,B & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,B & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
A4
:
B
<>
0
;
:: thesis:
( sa
in_meets_terms
s,y,r,B & ( for x being
uSurreal
st x
in_meets_terms
s,y,r,B & x
<>
sa holds
born
sa
in
born
x ) )
sa
in_meets_terms
s,y
|
A,r
|
A,B
by
A3
,
A2
;
hence
sa
in_meets_terms
s,y,r,B
by
A1
,
Th83
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
s,y,r,B & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
s,y,r,B & x
<>
sa implies
born
sa
in
born
x )
assume
A5
:
( x
in_meets_terms
s,y,r,B & x
<>
sa )
;
:: thesis:
born
sa
in
born
x
then
x
in_meets_terms
s,y
|
A,r
|
A,B
by
A1
,
Th83
;
hence
born
sa
in
born
x
by
A2
,
A3
,
A4
,
A5
;
:: thesis:
verum
end;
assume
A6
:
s,y,r
simplest_on_position
B
;
:: thesis:
s,y
|
A,r
|
A
simplest_on_position
B
let
sa be
Surreal
;
:: according to
SURREALC:def 15
:: thesis:
( sa
=
s
.
B implies ( (
0
=
B implies sa
=
0_No
) & (
0
<>
B implies ( sa
in_meets_terms
s,y
|
A,r
|
A,B & ( for x being
uSurreal
st x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa holds
born
sa
in
born
x ) ) ) ) )
assume
A7
:
sa
=
s
.
B
;
:: thesis:
( (
0
=
B implies sa
=
0_No
) & (
0
<>
B implies ( sa
in_meets_terms
s,y
|
A,r
|
A,B & ( for x being
uSurreal
st x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa holds
born
sa
in
born
x ) ) ) )
thus
(
0
=
B implies sa
=
0_No
)
by
A7
,
A6
;
:: thesis:
(
0
<>
B implies ( sa
in_meets_terms
s,y
|
A,r
|
A,B & ( for x being
uSurreal
st x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa holds
born
sa
in
born
x ) ) )
assume
A8
:
B
<>
0
;
:: thesis:
( sa
in_meets_terms
s,y
|
A,r
|
A,B & ( for x being
uSurreal
st x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa holds
born
sa
in
born
x ) )
sa
in_meets_terms
s,y,r,B
by
A7
,
A6
;
hence
sa
in_meets_terms
s,y
|
A,r
|
A,B
by
A1
,
Th83
;
:: thesis:
for x being
uSurreal
st x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa holds
born
sa
in
born
x
let
x be
uSurreal
;
:: thesis:
( x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa implies
born
sa
in
born
x )
assume
A9
:
( x
in_meets_terms
s,y
|
A,r
|
A,B & x
<>
sa )
;
:: thesis:
born
sa
in
born
x
then
x
in_meets_terms
s,y,r,B
by
A1
,
Th83
;
hence
born
sa
in
born
x
by
A6
,
A7
,
A8
,
A9
;
:: thesis:
verum
end;
theorem
Th85
:
:: SURREALC:85
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
holds
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
=
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
holds
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
=
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for A being
Ordinal
holds
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
=
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
let
A be
Ordinal
;
:: thesis:
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
=
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
A1
:
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
Def17
;
then
A2
:
dom
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
=
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
by
RELAT_1:61
;
(
dom
(
r
|
A
)
=
(
dom
r
)
/\
A &
dom
(
y
|
A
)
=
(
dom
y
)
/\
A )
by
RELAT_1:61
;
then
A3
:
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
=
(
(
A
/\
(
dom
r
)
)
/\
(
dom
y
)
)
/\
A
by
XBOOLE_1:16
.=
(
A
/\
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
A
by
XBOOLE_1:16
.=
(
(
dom
r
)
/\
(
dom
y
)
)
/\
(
A
/\
A
)
by
XBOOLE_1:16
.=
(
(
dom
r
)
/\
(
dom
y
)
)
/\
A ;
A4
:
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
=
succ
(
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
)
proof
per
cases
(
(
dom
r
)
/\
(
dom
y
)
c=
A or A
in
(
dom
r
)
/\
(
dom
y
)
)
by
ORDINAL1:16
;
suppose
A5
:
(
dom
r
)
/\
(
dom
y
)
c=
A
;
:: thesis:
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
=
succ
(
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
)
then
A6
:
(
(
dom
r
)
/\
(
dom
y
)
)
/\
A
=
(
dom
r
)
/\
(
dom
y
)
by
XBOOLE_1:28
;
(
dom
r
)
/\
(
dom
y
)
in
succ
A
by
A5
,
ORDINAL1:22
;
hence
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
=
succ
(
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
)
by
A6
,
A3
,
XBOOLE_1:28
,
ORDINAL1:21
;
:: thesis:
verum
end;
suppose
A7
:
A
in
(
dom
r
)
/\
(
dom
y
)
;
:: thesis:
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
=
succ
(
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
)
then
A8
:
A
c=
(
dom
r
)
/\
(
dom
y
)
by
ORDINAL1:def 2
;
A9
:
(
(
dom
r
)
/\
(
dom
y
)
)
/\
A
=
A
by
A7
,
ORDINAL1:def 2
,
XBOOLE_1:28
;
A
in
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
A8
,
ORDINAL1:22
;
hence
(
succ
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
(
succ
A
)
=
succ
(
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
)
by
A9
,
A3
,
XBOOLE_1:28
,
ORDINAL1:21
;
:: thesis:
verum
end;
end;
end;
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
,y
|
A,r
|
A
simplest_up_to
dom
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
proof
let
B be
Ordinal
;
:: according to
SURREALC:def 16
:: thesis:
( B
in
dom
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
implies
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
,y
|
A,r
|
A
simplest_on_position
B )
assume
A10
:
B
in
dom
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
;
:: thesis:
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
,y
|
A,r
|
A
simplest_on_position
B
A11
:
(
succ
B
c=
succ
A & B
c=
A )
by
A10
,
ORDINAL1:21
,
ORDINAL1:22
;
A12
:
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
|
(
succ
B
)
=
(
Partial_Sums
(r,y)
)
|
(
succ
B
)
by
RELAT_1:74
,
A10
,
ORDINAL1:21
;
A13
:
B
in
dom
(
Partial_Sums
(r,y)
)
by
A1
,
A10
,
A2
,
XBOOLE_0:def 4
;
Partial_Sums
(r,y),y,r
simplest_on_position
B
by
A13
,
Def17
;
then
Partial_Sums
(r,y),y
|
A,r
|
A
simplest_on_position
B
by
A11
,
Th84
;
then
(
Partial_Sums
(r,y)
)
|
(
succ
B
)
,y
|
A,r
|
A
simplest_on_position
B
by
Th80
;
hence
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
,y
|
A,r
|
A
simplest_on_position
B
by
A12
,
Th80
;
:: thesis:
verum
end;
hence
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
=
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
by
A4
,
A1
,
RELAT_1:61
,
Def17
;
:: thesis:
verum
end;
definition
let
r be
non-zero
Sequence
of
REAL
;
let
y be
strictly_decreasing
Surreal-Sequence
;
let
alpha be
Ordinal
;
let
x be
Surreal
;
pred
r,y,alpha
name_like
x
means
:: SURREALC:def 19
( alpha
c=
dom
r &
dom
r
=
dom
y & ( for beta being
Ordinal
st beta
in
alpha holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(r,y)
)
.
beta holds
( not x
==
Pb & r
.
beta
=
omega-r
(
x
-
Pb
)
& y
.
beta
=
omega-exp
(
x
-
Pb
)
) ) );
end;
::
deftheorem
defines
name_like
SURREALC:def 19 :
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for alpha being
Ordinal
for x being
Surreal
holds
( r,y,alpha
name_like
x iff ( alpha
c=
dom
r &
dom
r
=
dom
y & ( for beta being
Ordinal
st beta
in
alpha holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(r,y)
)
.
beta holds
( not x
==
Pb & r
.
beta
=
omega-r
(
x
-
Pb
)
& y
.
beta
=
omega-exp
(
x
-
Pb
)
) ) ) );
theorem
Th86
:
:: SURREALC:86
for x being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for alpha, beta being
Ordinal
st alpha
c=
beta & r,y,beta
name_like
x holds
r,y,alpha
name_like
x
by
XBOOLE_1:1
;
theorem
Th87
:
:: SURREALC:87
for x being
Surreal
for r1, r2 being
non-zero
Sequence
of
REAL
for y1, y2 being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r1,y1,A
name_like
x & r2,y2,A
name_like
x holds
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
proof
let
x be
Surreal
;
:: thesis:
for r1, r2 being
non-zero
Sequence
of
REAL
for y1, y2 being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r1,y1,A
name_like
x & r2,y2,A
name_like
x holds
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
let
r1, r2 be
non-zero
Sequence
of
REAL
;
:: thesis:
for y1, y2 being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r1,y1,A
name_like
x & r2,y2,A
name_like
x holds
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
let
y1, y2 be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for A being
Ordinal
st r1,y1,A
name_like
x & r2,y2,A
name_like
x holds
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
let
A be
Ordinal
;
:: thesis:
( r1,y1,A
name_like
x & r2,y2,A
name_like
x implies ( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A ) )
assume
that
A1
:
r1,y1,A
name_like
x
and
A2
:
r2,y2,A
name_like
x
;
:: thesis:
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
defpred
S
1
[
Ordinal
]
means
( r1,y1,$1
name_like
x & r2,y2,$1
name_like
x implies ( r1
|
$1
=
r2
|
$1 & y1
|
$1
=
y2
|
$1 ) );
A3
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A4
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
assume
A5
:
( r1,y1,D
name_like
x & r2,y2,D
name_like
x )
;
:: thesis:
( r1
|
D
=
r2
|
D & y1
|
D
=
y2
|
D )
A6
:
(
dom
(
r1
|
D
)
=
D & D
=
dom
(
r2
|
D
)
&
dom
(
y1
|
D
)
=
D & D
=
dom
(
y2
|
D
)
)
by
A5
,
RELAT_1:62
;
A7
:
for o being
object
st o
in
D holds
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
proof
let
o be
object
;
:: thesis:
( o
in
D implies (
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o ) )
assume
A8
:
o
in
D
;
:: thesis:
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
then
reconsider
o = o as
Ordinal
;
A9
:
( r1
.
o
=
(
r1
|
D
)
.
o & r2
.
o
=
(
r2
|
D
)
.
o & y1
.
o
=
(
y1
|
D
)
.
o & y2
.
o
=
(
y2
|
D
)
.
o )
by
A8
,
FUNCT_1:49
;
per
cases
(
succ
o
=
D or
succ
o
c<
D )
by
XBOOLE_0:def 8
,
A8
,
ORDINAL1:21
;
suppose
succ
o
=
D
;
:: thesis:
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
A10
:
S
1
[o]
by
A8
,
A4
;
o
c=
(
dom
r1
)
/\
(
dom
y1
)
by
A5
,
A8
,
ORDINAL1:def 2
;
then
o
in
succ
(
(
dom
r1
)
/\
(
dom
y1
)
)
by
ORDINAL1:22
;
then
o
in
dom
(
Partial_Sums
(r1,y1)
)
by
Def17
;
then
(
Partial_Sums
(r1,y1)
)
.
o
in
rng
(
Partial_Sums
(r1,y1)
)
by
FUNCT_1:def 3
;
then
reconsider
Po1 =
(
Partial_Sums
(r1,y1)
)
.
o as
uSurreal
by
SURREALO:def 12
;
o
c=
(
dom
r2
)
/\
(
dom
y2
)
by
A5
,
A8
,
ORDINAL1:def 2
;
then
o
in
succ
(
(
dom
r2
)
/\
(
dom
y2
)
)
by
ORDINAL1:22
;
then
o
in
dom
(
Partial_Sums
(r2,y2)
)
by
Def17
;
then
(
Partial_Sums
(r2,y2)
)
.
o
in
rng
(
Partial_Sums
(r2,y2)
)
by
FUNCT_1:def 3
;
then
reconsider
Po2 =
(
Partial_Sums
(r2,y2)
)
.
o as
uSurreal
by
SURREALO:def 12
;
A11
: Po1 =
(
(
Partial_Sums
(r1,y1)
)
|
(
succ
o
)
)
.
o
by
FUNCT_1:49
,
ORDINAL1:6
.=
(
Partial_Sums
(
(
r2
|
o
)
,
(
y2
|
o
)
)
)
.
o
by
Th85
,
A8
,
ORDINAL1:def 2
,
A10
,
A5
,
Th86
.=
(
(
Partial_Sums
(r2,y2)
)
|
(
succ
o
)
)
.
o
by
Th85
.= Po2
by
ORDINAL1:6
,
FUNCT_1:49
;
( r1
.
o
=
omega-r
(
x
-
Po1
)
& y1
.
o
=
omega-exp
(
x
-
Po1
)
& r2
.
o
=
omega-r
(
x
-
Po2
)
& y2
.
o
=
omega-exp
(
x
-
Po2
)
)
by
A8
,
A5
;
hence
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
by
A11
,
A9
;
:: thesis:
verum
end;
suppose
succ
o
c<
D
;
:: thesis:
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
then
succ
o
in
D
by
ORDINAL1:11
;
then
A12
:
S
1
[
succ
o]
by
A4
;
(
(
r1
|
(
succ
o
)
)
.
o
=
r1
.
o &
(
r2
|
(
succ
o
)
)
.
o
=
r2
.
o &
(
y1
|
(
succ
o
)
)
.
o
=
y1
.
o &
(
y2
|
(
succ
o
)
)
.
o
=
y2
.
o )
by
ORDINAL1:6
,
FUNCT_1:49
;
hence
(
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o &
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o )
by
A9
,
A12
,
A8
,
ORDINAL1:21
,
A5
,
Th86
;
:: thesis:
verum
end;
end;
end;
then
for o being
object
st o
in
D holds
(
r1
|
D
)
.
o
=
(
r2
|
D
)
.
o
;
hence
r1
|
D
=
r2
|
D
by
A6
,
FUNCT_1:2
;
:: thesis:
y1
|
D
=
y2
|
D
for o being
object
st o
in
D holds
(
y1
|
D
)
.
o
=
(
y2
|
D
)
.
o
by
A7
;
hence
y1
|
D
=
y2
|
D
by
A6
,
FUNCT_1:2
;
:: thesis:
verum
end;
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A3
);
hence
( r1
|
A
=
r2
|
A & y1
|
A
=
y2
|
A )
by
A1
,
A2
;
:: thesis:
verum
end;
theorem
Th88
:
:: SURREALC:88
for x being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r,y,A
name_like
x holds
x
in_meets_terms
Partial_Sums
(r,y),y,r,A
proof
let
x be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r,y,A
name_like
x holds
x
in_meets_terms
Partial_Sums
(r,y),y,r,A
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st r,y,A
name_like
x holds
x
in_meets_terms
Partial_Sums
(r,y),y,r,A
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for A being
Ordinal
st r,y,A
name_like
x holds
x
in_meets_terms
Partial_Sums
(r,y),y,r,A
let
A be
Ordinal
;
:: thesis:
( r,y,A
name_like
x implies x
in_meets_terms
Partial_Sums
(r,y),y,r,A )
assume
A1
:
r,y,A
name_like
x
;
:: thesis:
x
in_meets_terms
Partial_Sums
(r,y),y,r,A
set
s =
Partial_Sums
(r,y);
let
beta be
Ordinal
;
:: according to
SURREALC:def 14
:: thesis:
for sb, yb being
Surreal
st beta
in
A & sb
=
(
Partial_Sums
(r,y)
)
.
beta & yb
=
y
.
beta holds
x is sb,yb,r
.
beta
-terms
let
sb, yb be
Surreal
;
:: thesis:
( beta
in
A & sb
=
(
Partial_Sums
(r,y)
)
.
beta & yb
=
y
.
beta implies x is sb,yb,r
.
beta
-terms
)
assume
A2
:
( beta
in
A & sb
=
(
Partial_Sums
(r,y)
)
.
beta & yb
=
y
.
beta )
;
:: thesis:
x is sb,yb,r
.
beta
-terms
A3
:
( not x
==
sb & r
.
beta
=
omega-r
(
x
-
sb
)
& y
.
beta
=
omega-exp
(
x
-
sb
)
)
by
A2
,
A1
;
A4
:
not x
-
sb
==
0_No
by
A2
,
A1
,
SURREALR:47
;
then
A5
:
|.
(
(
x
-
sb
)
-
(
(
No_omega^
yb
)
*
(
uReal
.
(
r
.
beta
)
)
)
)
.|
infinitely<
|.
(
x
-
sb
)
.|
by
A2
,
A3
,
Def8
;
|.
(
x
+
(
-
sb
)
)
.|
,
No_omega^
yb
are_commensurate
by
A2
,
A3
,
A4
,
Def7
;
then
A6
:
|.
(
(
x
-
sb
)
-
(
(
No_omega^
yb
)
*
(
uReal
.
(
r
.
beta
)
)
)
)
.|
infinitely<
No_omega^
yb
by
A5
,
Th16
;
A7
:
(
x
-
sb
)
-
(
(
No_omega^
yb
)
*
(
uReal
.
(
r
.
beta
)
)
)
= x
+
(
(
-
sb
)
-
(
(
No_omega^
yb
)
*
(
uReal
.
(
r
.
beta
)
)
)
)
by
SURREALR:37
.= x
-
(
sb
+
(
(
No_omega^
yb
)
*
(
uReal
.
(
r
.
beta
)
)
)
)
by
SURREALR:40
;
r
.
beta
in
rng
r
by
A2
,
A1
,
FUNCT_1:def 3
;
hence
x is sb,yb,r
.
beta
-terms
by
A6
,
A7
,
Th73
;
:: thesis:
verum
end;
theorem
Th89
:
:: SURREALC:89
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
holds
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
holds
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
per
cases
(
(
dom
r
)
/\
(
dom
y
)
=
{}
or
(
dom
r
)
/\
(
dom
y
)
<>
{}
)
;
suppose
(
dom
r
)
/\
(
dom
y
)
=
{}
;
:: thesis:
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
hence
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
;
:: thesis:
verum
end;
suppose
(
dom
r
)
/\
(
dom
y
)
<>
{}
;
:: thesis:
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
(
dom
r
)
/\
(
dom
y
)
in
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
ORDINAL1:6
;
then
A1
:
(
dom
r
)
/\
(
dom
y
)
in
dom
(
Partial_Sums
(r,y)
)
by
Def17
;
Partial_Sums
(r,y),y,r
simplest_on_position
(
dom
r
)
/\
(
dom
y
)
by
A1
,
Def17
;
hence
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
;
:: thesis:
verum
end;
end;
end;
theorem
Th90
:
:: SURREALC:90
for x, z being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
Sequence
for s being
Surreal-Sequence
for A, B being
Ordinal
st B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s holds
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
proof
let
x, z be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
Sequence
for s being
Surreal-Sequence
for A, B being
Ordinal
st B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s holds
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
Sequence
for s being
Surreal-Sequence
for A, B being
Ordinal
st B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s holds
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
let
y be
Sequence
;
:: thesis:
for s being
Surreal-Sequence
for A, B being
Ordinal
st B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s holds
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
let
s be
Surreal-Sequence
;
:: thesis:
for A, B being
Ordinal
st B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s holds
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
let
A, B be
Ordinal
;
:: thesis:
( B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s implies for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb )
assume
A1
:
( B
in
A & A
c=
(
dom
r
)
/\
(
dom
y
)
& A
c=
dom
s )
;
:: thesis:
for yb being
Surreal
st yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A holds
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
let
yb be
Surreal
;
:: thesis:
( yb
=
y
.
B & x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A implies
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb )
assume
that
A2
:
yb
=
y
.
B
and
A3
:
( x
in_meets_terms
s,y,r,A & z
in_meets_terms
s,y,r,A )
;
:: thesis:
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
s
.
B
in
rng
s
by
A1
,
FUNCT_1:def 3
;
then
reconsider
sB = s
.
B as
Surreal
by
SURREAL0:def 16
;
set
S = sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
;
( x is sB,yb,r
.
B
-terms
& z is sB,yb,r
.
B
-terms
)
by
A1
,
A2
,
A3
;
then
(
|.
(
x
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb &
|.
(
z
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
.|
infinitely<
No_omega^
yb )
by
Th73
;
then
A4
:
|.
(
(
x
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
-
(
z
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
.|
infinitely<
No_omega^
yb
by
Th43
;
A5
:
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
-
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
==
0_No
by
SURREALR:39
;
(
x
+
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
-
(
z
+
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
=
(
x
+
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
(
-
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
-
z
)
)
by
SURREALR:40
.=
(
(
x
+
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
+
(
-
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
-
z
)
by
SURREALR:37
.=
(
x
+
(
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
+
(
-
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
)
+
(
-
z
)
by
SURREALR:37
.=
(
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
+
(
-
(
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
+
(
(
-
z
)
+
x
)
by
SURREALR:37
;
then
(
(
x
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
-
(
z
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
==
(
x
-
z
)
+
0_No
&
(
x
-
z
)
+
0_No
=
x
-
z )
by
A5
,
SURREALR:43
;
then
|.
(
(
x
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
+
(
-
(
z
-
(
sB
+
(
(
uReal
.
(
r
.
B
)
)
*
(
No_omega^
yb
)
)
)
)
)
)
.|
==
|.
(
x
-
z
)
.|
by
Th48
;
hence
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yb
by
Th11
,
A4
;
:: thesis:
verum
end;
theorem
:: SURREALC:91
for x being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for alpha being
Ordinal
st r,y,alpha
name_like
x holds
r
|
alpha,y
|
alpha,alpha
name_like
x
proof
let
x be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for alpha being
Ordinal
st r,y,alpha
name_like
x holds
r
|
alpha,y
|
alpha,alpha
name_like
x
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
for alpha being
Ordinal
st r,y,alpha
name_like
x holds
r
|
alpha,y
|
alpha,alpha
name_like
x
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for alpha being
Ordinal
st r,y,alpha
name_like
x holds
r
|
alpha,y
|
alpha,alpha
name_like
x
let
A be
Ordinal
;
:: thesis:
( r,y,A
name_like
x implies r
|
A,y
|
A,A
name_like
x )
assume
A1
:
r,y,A
name_like
x
;
:: thesis:
r
|
A,y
|
A,A
name_like
x
A2
:
(
dom
(
r
|
A
)
=
A &
dom
(
y
|
A
)
=
A )
by
A1
,
RELAT_1:62
;
thus
( A
c=
dom
(
r
|
A
)
&
dom
(
r
|
A
)
=
dom
(
y
|
A
)
)
by
A2
;
:: according to
SURREALC:def 19
:: thesis:
for beta being
Ordinal
st beta
in
A holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
)
.
beta holds
( not x
==
Pb &
(
r
|
A
)
.
beta
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
beta
=
omega-exp
(
x
-
Pb
)
)
let
B be
Ordinal
;
:: thesis:
( B
in
A implies for Pb being
Surreal
st Pb
=
(
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
)
.
B holds
( not x
==
Pb &
(
r
|
A
)
.
B
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
B
=
omega-exp
(
x
-
Pb
)
) )
assume
A3
:
B
in
A
;
:: thesis:
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
)
.
B holds
( not x
==
Pb &
(
r
|
A
)
.
B
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
B
=
omega-exp
(
x
-
Pb
)
)
let
Pb be
Surreal
;
:: thesis:
( Pb
=
(
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
)
.
B implies ( not x
==
Pb &
(
r
|
A
)
.
B
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
B
=
omega-exp
(
x
-
Pb
)
) )
assume
A4
:
Pb
=
(
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
)
.
B
;
:: thesis:
( not x
==
Pb &
(
r
|
A
)
.
B
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
B
=
omega-exp
(
x
-
Pb
)
)
A5
:
Partial_Sums
(
(
r
|
A
)
,
(
y
|
A
)
)
=
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
by
Th85
;
B
in
succ
A
by
A3
,
ORDINAL1:8
;
then
Pb
=
(
Partial_Sums
(r,y)
)
.
B
by
A4
,
A5
,
FUNCT_1:49
;
then
( not x
==
Pb & r
.
B
=
omega-r
(
x
-
Pb
)
& y
.
B
=
omega-exp
(
x
-
Pb
)
)
by
A1
,
A3
;
hence
( not x
==
Pb &
(
r
|
A
)
.
B
=
omega-r
(
x
-
Pb
)
&
(
y
|
A
)
.
B
=
omega-exp
(
x
-
Pb
)
)
by
A3
,
FUNCT_1:49
;
:: thesis:
verum
end;
theorem
Th92
:
:: SURREALC:92
for z being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
st z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not z
==
Sum
(r,y) holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
proof
let
z be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
st z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not z
==
Sum
(r,y) holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
st z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not z
==
Sum
(r,y) holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
( z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not z
==
Sum
(r,y) implies for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA )
set
s =
Partial_Sums
(r,y);
set
D =
(
dom
r
)
/\
(
dom
y
)
;
assume
that
A1
:
z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
and
A2
:
not z
==
Sum
(r,y)
;
:: thesis:
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
let
A be
Ordinal
;
:: thesis:
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
let
yA be
Surreal
;
:: thesis:
( A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A implies
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA )
assume
A3
:
( A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A )
;
:: thesis:
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
A4
:
not
(
Sum
(r,y)
)
-
z
==
0_No
by
SURREALR:47
,
A2
;
A5
:
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
by
Th89
;
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
Def17
;
then
A6
:
|.
(
(
Sum
(r,y)
)
-
z
)
.|
infinitely<
No_omega^
yA
by
XBOOLE_1:7
,
A5
,
A3
,
A1
,
Th90
;
|.
(
(
Sum
(r,y)
)
+
(
-
z
)
)
.|
,
No_omega^
(
omega-exp
(
(
Sum
(r,y)
)
+
(
-
z
)
)
)
are_commensurate
by
A4
,
Def7
;
then
No_omega^
(
omega-exp
(
(
Sum
(r,y)
)
+
(
-
z
)
)
)
<
No_omega^
yA
by
Th9
,
A6
,
Th15
;
hence
omega-exp
(
(
Sum
(r,y)
)
-
z
)
<
yA
by
Lm5
;
:: thesis:
verum
end;
theorem
:: SURREALC:93
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st A
c=
(
dom
r
)
/\
(
dom
y
)
holds
(
Partial_Sums
(r,y)
)
.
A
=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
)
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
for A being
Ordinal
st A
c=
(
dom
r
)
/\
(
dom
y
)
holds
(
Partial_Sums
(r,y)
)
.
A
=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
)
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for A being
Ordinal
st A
c=
(
dom
r
)
/\
(
dom
y
)
holds
(
Partial_Sums
(r,y)
)
.
A
=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
)
let
A be
Ordinal
;
:: thesis:
( A
c=
(
dom
r
)
/\
(
dom
y
)
implies
(
Partial_Sums
(r,y)
)
.
A
=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
) )
assume
A1
:
A
c=
(
dom
r
)
/\
(
dom
y
)
;
:: thesis:
(
Partial_Sums
(r,y)
)
.
A
=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
)
(
dom
(
r
|
A
)
=
(
dom
r
)
/\
A &
dom
(
y
|
A
)
=
(
dom
y
)
/\
A )
by
RELAT_1:61
;
then
A2
:
(
dom
(
r
|
A
)
)
/\
(
dom
(
y
|
A
)
)
=
(
(
A
/\
(
dom
r
)
)
/\
(
dom
y
)
)
/\
A
by
XBOOLE_1:16
.=
(
A
/\
(
(
dom
r
)
/\
(
dom
y
)
)
)
/\
A
by
XBOOLE_1:16
.=
(
(
dom
r
)
/\
(
dom
y
)
)
/\
(
A
/\
A
)
by
XBOOLE_1:16
.= A
by
A1
,
XBOOLE_1:28
;
thus
(
Partial_Sums
(r,y)
)
.
A =
(
(
Partial_Sums
(r,y)
)
|
(
succ
A
)
)
.
A
by
ORDINAL1:6
,
FUNCT_1:49
.=
Sum
(
(
r
|
A
)
,
(
y
|
A
)
)
by
A2
,
Th85
;
:: thesis:
verum
end;
theorem
:: SURREALC:94
for x, z being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
st x
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not x
==
z holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA
proof
let
x, z be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
st x
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not x
==
z holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
st x
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not x
==
z holds
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
( x
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& not x
==
z implies for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA )
set
s =
Partial_Sums
(r,y);
set
D =
(
dom
r
)
/\
(
dom
y
)
;
assume
that
A1
:
( x
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
& z
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
)
and
A2
:
not x
==
z
;
:: thesis:
for A being
Ordinal
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA
let
A be
Ordinal
;
:: thesis:
for yA being
Surreal
st A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A holds
omega-exp
(
x
-
z
)
<
yA
let
yA be
Surreal
;
:: thesis:
( A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A implies
omega-exp
(
x
-
z
)
<
yA )
assume
A3
:
( A
in
(
dom
r
)
/\
(
dom
y
)
& yA
=
y
.
A )
;
:: thesis:
omega-exp
(
x
-
z
)
<
yA
A4
:
not x
-
z
==
0_No
by
SURREALR:47
,
A2
;
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
Def17
;
then
A5
:
|.
(
x
-
z
)
.|
infinitely<
No_omega^
yA
by
XBOOLE_1:7
,
A3
,
A1
,
Th90
;
|.
(
x
-
z
)
.|
,
No_omega^
(
omega-exp
(
x
+
(
-
z
)
)
)
are_commensurate
by
A4
,
Def7
;
then
No_omega^
(
omega-exp
(
x
+
(
-
z
)
)
)
<
No_omega^
yA
by
Th9
,
A5
,
Th15
;
hence
omega-exp
(
x
-
z
)
<
yA
by
Lm5
;
:: thesis:
verum
end;
theorem
Th95
:
:: SURREALC:95
for x being
Surreal
st ( for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y & r,y,
dom
r
name_like
x holds
not
Sum
(r,y)
==
x ) holds
for alpha being
Ordinal
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
succ
alpha &
succ
alpha
=
dom
y & r,y,
succ
alpha
name_like
x )
proof
let
x be
Surreal
;
:: thesis:
( ( for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y & r,y,
dom
r
name_like
x holds
not
Sum
(r,y)
==
x ) implies for alpha being
Ordinal
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
succ
alpha &
succ
alpha
=
dom
y & r,y,
succ
alpha
name_like
x ) )
assume
A1
:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y & r,y,
dom
r
name_like
x holds
not
Sum
(r,y)
==
x
;
:: thesis:
for alpha being
Ordinal
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
succ
alpha &
succ
alpha
=
dom
y & r,y,
succ
alpha
name_like
x )
defpred
S
1
[
Ordinal
]
means
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
succ
$1 &
succ
$1
=
dom
y & r,y,
succ
$1
name_like
x );
A2
:
for D being
Ordinal
st ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) holds
S
1
[D]
proof
let
D be
Ordinal
;
:: thesis:
( ( for C being
Ordinal
st C
in
D holds
S
1
[C] ) implies S
1
[D] )
assume
A3
:
for C being
Ordinal
st C
in
D holds
S
1
[C]
;
:: thesis:
S
1
[D]
defpred
S
2
[
object
,
object
]
means
( $2 is
pair
& $2
`1
is
non-zero
Sequence
of
REAL
& $2
`2
is
strictly_decreasing
uSurreal-Sequence
& ( for A being
Ordinal
st A
=
$1 holds
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st r
=
$2
`1
& y
=
$2
`2
holds
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x ) ) );
A4
:
for e being
object
st e
in
D holds
ex o being
object
st S
2
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
2
[e,o] )
assume
A5
:
e
in
D
;
:: thesis:
ex o being
object
st S
2
[e,o]
reconsider
E = e as
Ordinal
by
A5
;
consider
r1 being
non-zero
Sequence
of
REAL
, y1 being
strictly_decreasing
uSurreal-Sequence
such that
A6
:
(
dom
r1
=
succ
E &
succ
E
=
dom
y1 & r1,y1,
succ
E
name_like
x )
by
A5
,
A3
;
take
ry =
[
r1,y1
]
;
:: thesis:
S
2
[e,ry]
thus
( ry is
pair
& ry
`1
is
non-zero
Sequence
of
REAL
& ry
`2
is
strictly_decreasing
uSurreal-Sequence
)
;
:: thesis:
for A being
Ordinal
st A
=
e holds
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st r
=
ry
`1
& y
=
ry
`2
holds
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x )
let
A be
Ordinal
;
:: thesis:
( A
=
e implies for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st r
=
ry
`1
& y
=
ry
`2
holds
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x ) )
assume
A7
:
A
=
e
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st r
=
ry
`1
& y
=
ry
`2
holds
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x )
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
uSurreal-Sequence
st r
=
ry
`1
& y
=
ry
`2
holds
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x )
let
y be
strictly_decreasing
uSurreal-Sequence
;
:: thesis:
( r
=
ry
`1
& y
=
ry
`2
implies (
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x ) )
assume
A8
:
( r
=
ry
`1
& y
=
ry
`2
)
;
:: thesis:
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x )
thus
(
dom
r
=
succ
A &
succ
A
=
dom
y & r,y,
succ
A
name_like
x )
by
A7
,
A6
,
A8
;
:: thesis:
verum
end;
consider
S being
Function
such that
A9
:
(
dom
S
=
D & ( for o being
object
st o
in
D holds
S
2
[o,S
.
o] ) )
from
CLASSES1:sch 1
(
A4
);
defpred
S
3
[
object
,
object
]
means
for f being
Function
st f
=
(
S
.
$1
)
`1
holds
$2
=
f
.
$1;
A10
:
for e being
object
st e
in
D holds
ex o being
object
st S
3
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
3
[e,o] )
assume
A11
:
e
in
D
;
:: thesis:
ex o being
object
st S
3
[e,o]
reconsider
e = e as
Ordinal
by
A11
;
reconsider
SE1 =
(
S
.
e
)
`1
as
non-zero
Sequence
of
REAL
by
A11
,
A9
;
take
o = SE1
.
e;
:: thesis:
S
3
[e,o]
thus
S
3
[e,o]
;
:: thesis:
verum
end;
consider
R being
Function
such that
A12
:
(
dom
R
=
D & ( for o being
object
st o
in
D holds
S
3
[o,R
.
o] ) )
from
CLASSES1:sch 1
(
A10
);
reconsider
R = R as
Sequence
by
A12
,
ORDINAL1:def 7
;
rng
R
c=
REAL
proof
let
y be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not y
in
rng
R or y
in
REAL
)
assume
y
in
rng
R
;
:: thesis:
y
in
REAL
then
consider
o being
object
such that
A13
:
( o
in
D & R
.
o
=
y )
by
A12
,
FUNCT_1:def 3
;
reconsider
o = o as
Ordinal
by
A13
;
reconsider
SO1 =
(
S
.
o
)
`1
as
non-zero
Sequence
of
REAL
by
A13
,
A9
;
reconsider
SO2 =
(
S
.
o
)
`2
as
strictly_decreasing
Surreal-Sequence
by
A13
,
A9
;
SO1
.
o
in
REAL
by
XREAL_0:def 1
;
hence
y
in
REAL
by
A13
,
A12
;
:: thesis:
verum
end;
then
reconsider
R = R as
Sequence
of
REAL
by
RELAT_1:def 19
;
not
0
in
rng
R
proof
assume
0
in
rng
R
;
:: thesis:
contradiction
then
consider
o being
object
such that
A14
:
( o
in
D & R
.
o
=
0
)
by
A12
,
FUNCT_1:def 3
;
reconsider
o = o as
Ordinal
by
A14
;
reconsider
SO1 =
(
S
.
o
)
`1
as
non-zero
Sequence
of
REAL
by
A14
,
A9
;
S
2
[o,S
.
o]
by
A14
,
A9
;
then
dom
SO1
=
succ
o
;
then
o
in
dom
SO1
by
ORDINAL1:6
;
then
SO1
.
o
in
rng
SO1
by
FUNCT_1:def 3
;
hence
contradiction
by
A14
,
A12
;
:: thesis:
verum
end;
then
reconsider
R = R as
non-zero
Sequence
of
REAL
by
ORDINAL1:def 15
;
defpred
S
4
[
object
,
object
]
means
for f being
Function
st f
=
(
S
.
$1
)
`2
holds
$2
=
f
.
$1;
A15
:
for e being
object
st e
in
D holds
ex o being
object
st S
4
[e,o]
proof
let
e be
object
;
:: thesis:
( e
in
D implies ex o being
object
st S
4
[e,o] )
assume
A16
:
e
in
D
;
:: thesis:
ex o being
object
st S
4
[e,o]
reconsider
e = e as
Ordinal
by
A16
;
reconsider
SE2 =
(
S
.
e
)
`2
as
strictly_decreasing
uSurreal-Sequence
by
A16
,
A9
;
take
o = SE2
.
e;
:: thesis:
S
4
[e,o]
thus
S
4
[e,o]
;
:: thesis:
verum
end;
consider
Y being
Function
such that
A17
:
(
dom
Y
=
D & ( for o being
object
st o
in
D holds
S
4
[o,Y
.
o] ) )
from
CLASSES1:sch 1
(
A15
);
reconsider
Y = Y as
Sequence
by
A17
,
ORDINAL1:def 7
;
rng
Y is
uniq-surreal-membered
proof
let
y be
object
;
:: according to
SURREALO:def 12
:: thesis:
( not y
in
rng
Y or y is
set
)
assume
y
in
rng
Y
;
:: thesis:
y is
set
then
consider
o being
object
such that
A18
:
( o
in
D & Y
.
o
=
y )
by
A17
,
FUNCT_1:def 3
;
reconsider
o = o as
Ordinal
by
A18
;
reconsider
SO2 =
(
S
.
o
)
`2
as
strictly_decreasing
uSurreal-Sequence
by
A18
,
A9
;
S
2
[o,S
.
o]
by
A18
,
A9
;
then
dom
SO2
=
succ
o
;
then
o
in
dom
SO2
by
ORDINAL1:6
;
then
SO2
.
o
in
rng
SO2
by
FUNCT_1:def 3
;
then
SO2
.
o is
uSurreal
by
SURREALO:def 12
;
hence
y is
set
by
A18
,
A17
;
:: thesis:
verum
end;
then
reconsider
Y = Y as
uSurreal-Sequence
by
Def10
;
defpred
S
5
[
Ordinal
]
means
( $1
in
D implies ( Y
|
(
succ
$1
)
is
strictly_decreasing
& R
|
(
succ
$1
)
=
(
S
.
$1
)
`1
& Y
|
(
succ
$1
)
=
(
S
.
$1
)
`2
) );
A19
:
for E being
Ordinal
st ( for F being
Ordinal
st F
in
E holds
S
5
[F] ) holds
S
5
[E]
proof
let
E be
Ordinal
;
:: thesis:
( ( for F being
Ordinal
st F
in
E holds
S
5
[F] ) implies S
5
[E] )
assume
A20
:
for F being
Ordinal
st F
in
E holds
S
5
[F]
;
:: thesis:
S
5
[E]
set
YE = Y
|
(
succ
E
)
;
assume
A21
:
E
in
D
;
:: thesis:
( Y
|
(
succ
E
)
is
strictly_decreasing
& R
|
(
succ
E
)
=
(
S
.
E
)
`1
& Y
|
(
succ
E
)
=
(
S
.
E
)
`2
)
A22
:
dom
(
Y
|
(
succ
E
)
)
=
succ
E
by
A21
,
ORDINAL1:21
,
A17
,
RELAT_1:62
;
reconsider
r =
(
S
.
E
)
`1
as
non-zero
Sequence
of
REAL
by
A21
,
A9
;
reconsider
y =
(
S
.
E
)
`2
as
strictly_decreasing
uSurreal-Sequence
by
A21
,
A9
;
set
sE =
succ
E;
S
2
[E,S
.
E]
by
A21
,
A9
;
then
A23
:
(
dom
r
=
succ
E &
succ
E
=
dom
y & r,y,
succ
E
name_like
x )
;
thus
Y
|
(
succ
E
)
is
strictly_decreasing
:: thesis:
( R
|
(
succ
E
)
=
(
S
.
E
)
`1
& Y
|
(
succ
E
)
=
(
S
.
E
)
`2
)
proof
let
a, b be
Ordinal
;
:: according to
SURREALC:def 11
:: thesis:
( a
in
b & b
in
dom
(
Y
|
(
succ
E
)
)
implies for sa, sb being
Surreal
st sa
=
(
Y
|
(
succ
E
)
)
.
a & sb
=
(
Y
|
(
succ
E
)
)
.
b holds
sb
<
sa )
assume
A24
:
( a
in
b & b
in
dom
(
Y
|
(
succ
E
)
)
)
;
:: thesis:
for sa, sb being
Surreal
st sa
=
(
Y
|
(
succ
E
)
)
.
a & sb
=
(
Y
|
(
succ
E
)
)
.
b holds
sb
<
sa
let
sa, sb be
Surreal
;
:: thesis:
( sa
=
(
Y
|
(
succ
E
)
)
.
a & sb
=
(
Y
|
(
succ
E
)
)
.
b implies sb
<
sa )
assume
A25
:
( sa
=
(
Y
|
(
succ
E
)
)
.
a & sb
=
(
Y
|
(
succ
E
)
)
.
b )
;
:: thesis:
sb
<
sa
A26
:
( sa
=
Y
.
a & sb
=
Y
.
b )
by
A24
,
ORDINAL1:10
,
A25
,
FUNCT_1:47
;
per
cases
( b
=
E or b
in
E )
by
A24
,
ORDINAL1:8
;
suppose
A27
:
b
=
E
;
:: thesis:
sb
<
sa
A28
:
a
in
D
by
A27
,
A21
,
A24
,
ORDINAL1:10
;
A29
:
S
2
[a,S
.
a]
by
A28
,
A9
;
reconsider
ra =
(
S
.
a
)
`1
as
non-zero
Sequence
of
REAL
by
A28
,
A9
;
reconsider
ya =
(
S
.
a
)
`2
as
strictly_decreasing
Surreal-Sequence
by
A28
,
A9
;
A30
:
(
dom
ra
=
succ
a &
succ
a
=
dom
ya & ra,ya,
succ
a
name_like
x )
by
A29
;
succ
a
c=
E
by
A27
,
A24
,
ORDINAL1:21
;
then
succ
a
in
succ
E
by
ORDINAL1:22
;
then
A31
:
succ
a
c=
succ
E
by
ORDINAL1:def 2
;
r,y,
succ
a
name_like
x
by
A23
,
A31
;
then
A32
:
( r
|
(
succ
a
)
=
ra
|
(
succ
a
)
& y
|
(
succ
a
)
=
ya
|
(
succ
a
)
)
by
A30
,
Th87
;
( R
|
(
succ
a
)
=
ra & Y
|
(
succ
a
)
=
ya )
by
A27
,
A24
,
A28
,
A20
;
then
( sa
=
Y
.
a & Y
.
a
=
ya
.
a )
by
A24
,
ORDINAL1:6
,
ORDINAL1:10
,
A25
,
FUNCT_1:49
;
then
A33
:
sa
=
y
.
a
by
A30
,
A32
,
FUNCT_1:49
,
ORDINAL1:6
;
sb
=
y
.
b
by
A26
,
A27
,
A17
,
A21
;
hence
sb
<
sa
by
A24
,
A33
,
A23
,
Def11
;
:: thesis:
verum
end;
suppose
A34
:
b
in
E
;
:: thesis:
sb
<
sa
then
A35
:
S
5
[b]
by
A20
;
A36
:
Y
|
(
succ
b
)
is
strictly_decreasing
by
A35
,
A21
,
A34
,
ORDINAL1:10
;
succ
b
c=
D
by
A21
,
A34
,
ORDINAL1:10
,
ORDINAL1:21
;
then
A37
:
dom
(
Y
|
(
succ
b
)
)
=
succ
b
by
A17
,
RELAT_1:62
;
A38
:
b
in
succ
b
by
ORDINAL1:6
;
then
( sa
=
(
Y
|
(
succ
b
)
)
.
a & sb
=
(
Y
|
(
succ
b
)
)
.
b )
by
A26
,
A37
,
FUNCT_1:47
,
A24
,
ORDINAL1:10
;
hence
sb
<
sa
by
A38
,
A36
,
A24
,
A37
;
:: thesis:
verum
end;
end;
end;
then
reconsider
YE = Y
|
(
succ
E
)
as
strictly_decreasing
Surreal-Sequence
;
A39
:
dom
(
R
|
(
succ
E
)
)
=
succ
E
by
A21
,
A12
,
ORDINAL1:21
,
RELAT_1:62
;
A40
:
for o being
object
st o
in
succ
E holds
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
proof
let
o be
object
;
:: thesis:
( o
in
succ
E implies (
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o ) )
assume
A41
:
o
in
succ
E
;
:: thesis:
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
then
reconsider
o = o as
Ordinal
;
A42
:
(
(
R
|
(
succ
E
)
)
.
o
=
R
.
o & YE
.
o
=
Y
.
o )
by
A41
,
FUNCT_1:49
;
per
cases
( o
=
E or o
in
E )
by
A41
,
ORDINAL1:8
;
suppose
o
=
E
;
:: thesis:
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
hence
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
by
A42
,
A21
,
A12
,
A17
;
:: thesis:
verum
end;
suppose
A43
:
o
in
E
;
:: thesis:
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
A44
:
o
in
D
by
A43
,
A21
,
ORDINAL1:10
;
then
A45
:
S
2
[o,S
.
o]
by
A9
;
reconsider
ro =
(
S
.
o
)
`1
as
non-zero
Sequence
of
REAL
by
A9
,
A44
;
reconsider
yo =
(
S
.
o
)
`2
as
strictly_decreasing
Surreal-Sequence
by
A9
,
A44
;
A46
:
(
dom
ro
=
succ
o &
succ
o
=
dom
yo & ro,yo,
succ
o
name_like
x )
by
A45
;
succ
o
c=
E
by
A43
,
ORDINAL1:21
;
then
succ
o
in
succ
E
by
ORDINAL1:22
;
then
A47
:
succ
o
c=
succ
E
by
ORDINAL1:def 2
;
r,y,
succ
o
name_like
x
by
A23
,
A47
;
then
A48
:
( r
|
(
succ
o
)
=
ro
|
(
succ
o
)
& y
|
(
succ
o
)
=
yo
|
(
succ
o
)
)
by
A46
,
Th87
;
o
in
succ
o
by
ORDINAL1:8
;
then
( yo
.
o
=
y
.
o & ro
.
o
=
r
.
o )
by
A48
,
A46
,
FUNCT_1:49
;
hence
(
(
R
|
(
succ
E
)
)
.
o
=
r
.
o & YE
.
o
=
y
.
o )
by
A42
,
A43
,
A21
,
ORDINAL1:10
,
A12
,
A17
;
:: thesis:
verum
end;
end;
end;
A49
:
for o being
object
st o
in
succ
E holds
(
R
|
(
succ
E
)
)
.
o
=
r
.
o
by
A40
;
for o being
object
st o
in
succ
E holds
YE
.
o
=
y
.
o
by
A40
;
hence
( R
|
(
succ
E
)
=
(
S
.
E
)
`1
& Y
|
(
succ
E
)
=
(
S
.
E
)
`2
)
by
A49
,
A23
,
A22
,
FUNCT_1:2
,
A39
;
:: thesis:
verum
end;
A50
:
for D being
Ordinal
holds S
5
[D]
from
ORDINAL1:sch 2
(
A19
);
Y is
strictly_decreasing
proof
let
a, b be
Ordinal
;
:: according to
SURREALC:def 11
:: thesis:
( a
in
b & b
in
dom
Y implies for sa, sb being
Surreal
st sa
=
Y
.
a & sb
=
Y
.
b holds
sb
<
sa )
assume
A51
:
( a
in
b & b
in
dom
Y )
;
:: thesis:
for sa, sb being
Surreal
st sa
=
Y
.
a & sb
=
Y
.
b holds
sb
<
sa
let
sa, sb be
Surreal
;
:: thesis:
( sa
=
Y
.
a & sb
=
Y
.
b implies sb
<
sa )
assume
A52
:
( sa
=
Y
.
a & sb
=
Y
.
b )
;
:: thesis:
sb
<
sa
set
B = Y
|
(
succ
b
)
;
A53
:
b
in
succ
b
by
ORDINAL1:6
;
a
in
succ
b
by
A51
,
ORDINAL1:8
;
then
A54
:
( sa
=
(
Y
|
(
succ
b
)
)
.
a & sb
=
(
Y
|
(
succ
b
)
)
.
b )
by
A52
,
ORDINAL1:6
,
FUNCT_1:49
;
A55
:
dom
(
Y
|
(
succ
b
)
)
=
succ
b
by
RELAT_1:62
,
A51
,
ORDINAL1:21
;
Y
|
(
succ
b
)
is
strictly_decreasing
by
A50
,
A51
,
A17
;
hence
sb
<
sa
by
A55
,
A51
,
A53
,
A54
;
:: thesis:
verum
end;
then
reconsider
Y = Y as
strictly_decreasing
Surreal-Sequence
;
A56
:
R,Y,D
name_like
x
proof
thus
( D
c=
dom
R &
dom
R
=
dom
Y )
by
A17
,
A12
;
:: according to
SURREALC:def 19
:: thesis:
for beta being
Ordinal
st beta
in
D holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(R,Y)
)
.
beta holds
( not x
==
Pb & R
.
beta
=
omega-r
(
x
-
Pb
)
& Y
.
beta
=
omega-exp
(
x
-
Pb
)
)
let
b be
Ordinal
;
:: thesis:
( b
in
D implies for Pb being
Surreal
st Pb
=
(
Partial_Sums
(R,Y)
)
.
b holds
( not x
==
Pb & R
.
b
=
omega-r
(
x
-
Pb
)
& Y
.
b
=
omega-exp
(
x
-
Pb
)
) )
assume
A57
:
b
in
D
;
:: thesis:
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(R,Y)
)
.
b holds
( not x
==
Pb & R
.
b
=
omega-r
(
x
-
Pb
)
& Y
.
b
=
omega-exp
(
x
-
Pb
)
)
let
Pb be
Surreal
;
:: thesis:
( Pb
=
(
Partial_Sums
(R,Y)
)
.
b implies ( not x
==
Pb & R
.
b
=
omega-r
(
x
-
Pb
)
& Y
.
b
=
omega-exp
(
x
-
Pb
)
) )
assume
A58
:
Pb
=
(
Partial_Sums
(R,Y)
)
.
b
;
:: thesis:
( not x
==
Pb & R
.
b
=
omega-r
(
x
-
Pb
)
& Y
.
b
=
omega-exp
(
x
-
Pb
)
)
A59
:
S
2
[b,S
.
b]
by
A57
,
A9
;
reconsider
rb =
(
S
.
b
)
`1
as
non-zero
Sequence
of
REAL
by
A57
,
A9
;
reconsider
yb =
(
S
.
b
)
`2
as
strictly_decreasing
Surreal-Sequence
by
A57
,
A9
;
set
sb =
succ
b;
A60
:
(
dom
rb
=
succ
b &
succ
b
=
dom
yb & rb,yb,
succ
b
name_like
x )
by
A59
;
A61
:
( Y
|
(
succ
b
)
is
strictly_decreasing
& R
|
(
succ
b
)
=
rb & Y
|
(
succ
b
)
=
yb )
by
A50
,
A57
;
A62
:
( b
in
succ
b &
succ
b
in
succ
(
succ
b
)
)
by
ORDINAL1:6
;
b
in
succ
(
succ
b
)
by
ORDINAL1:6
,
ORDINAL1:8
;
then
Pb =
(
(
Partial_Sums
(R,Y)
)
|
(
succ
(
succ
b
)
)
)
.
b
by
A58
,
FUNCT_1:49
.=
(
Partial_Sums
(rb,yb)
)
.
b
by
A61
,
Th85
;
then
( not x
==
Pb & rb
.
b
=
omega-r
(
x
-
Pb
)
& yb
.
b
=
omega-exp
(
x
-
Pb
)
)
by
A62
,
A60
;
hence
( not x
==
Pb & R
.
b
=
omega-r
(
x
-
Pb
)
& Y
.
b
=
omega-exp
(
x
-
Pb
)
)
by
ORDINAL1:6
,
A61
,
FUNCT_1:49
;
:: thesis:
verum
end;
then
A63
:
not
Sum
(R,Y)
==
x
by
A1
,
A17
;
then
A64
:
not x
-
(
Sum
(R,Y)
)
==
0_No
by
SURREALR:47
;
reconsider
Rx =
omega-r
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
as
Element
of
REAL
by
XREAL_0:def 1
;
not
0
in
{
Rx
}
;
then
not
0
in
rng
<%
Rx
%>
by
AFINSQ_1:33
;
then
reconsider
RX =
<%
Rx
%>
as
non-zero
Sequence
of
REAL
by
ORDINAL1:def 15
;
rng
(
R
^
RX
)
=
(
rng
R
)
\/
(
rng
RX
)
by
ORDINAL4:2
;
then
reconsider
RRX = R
^
RX as
non-zero
Sequence
of
REAL
by
RELAT_1:def 19
;
take
RRX ;
:: thesis:
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
RRX
=
succ
D &
succ
D
=
dom
y & RRX,y,
succ
D
name_like
x )
A65
:
dom
RX
=
1
by
AFINSQ_1:def 4
;
then
A66
:
dom
RRX
=
(
dom
R
)
+^
1
by
ORDINAL4:def 1
;
then
A67
:
dom
RRX
=
succ
D
by
A12
,
ORDINAL2:31
;
set
Yx =
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
;
set
YX =
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
;
set
YYX = Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
;
A68
:
dom
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
=
1
by
AFINSQ_1:def 4
;
then
A69
:
dom
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
=
(
dom
Y
)
+^
1
by
ORDINAL4:def 1
;
then
A70
:
dom
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
=
succ
D
by
A17
,
ORDINAL2:31
;
0
in
1
by
CARD_1:49
,
TARSKI:def 1
;
then
A71
:
( Rx
=
RX
.
0
& RX
.
0
=
RRX
.
(
D
+^
0
)
& D
+^
0
=
D &
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
=
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
.
0
&
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
.
0
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
(
D
+^
0
)
)
by
A17
,
A12
,
A65
,
A68
,
ORDINAL4:def 1
,
ORDINAL2:27
;
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
is
strictly_decreasing
proof
let
a, b be
Ordinal
;
:: according to
SURREALC:def 11
:: thesis:
( a
in
b & b
in
dom
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
implies for sa, sb being
Surreal
st sa
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
a & sb
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
b holds
sb
<
sa )
assume
A72
:
( a
in
b & b
in
dom
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
)
;
:: thesis:
for sa, sb being
Surreal
st sa
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
a & sb
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
b holds
sb
<
sa
let
sa, sb be
Surreal
;
:: thesis:
( sa
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
a & sb
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
b implies sb
<
sa )
assume
A73
:
( sa
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
a & sb
=
(
Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
)
.
b )
;
:: thesis:
sb
<
sa
per
cases
( b
in
D or b
=
D )
by
A72
,
A70
,
ORDINAL1:8
;
suppose
A74
:
b
in
D
;
:: thesis:
sb
<
sa
then
a
in
D
by
A72
,
ORDINAL1:10
;
then
( sa
=
Y
.
a & sb
=
Y
.
b )
by
A73
,
A74
,
A17
,
ORDINAL4:def 1
;
hence
sb
<
sa
by
A72
,
A74
,
A17
,
Def11
;
:: thesis:
verum
end;
suppose
A75
:
b
=
D
;
:: thesis:
sb
<
sa
sa
=
Y
.
a
by
A75
,
A73
,
A72
,
A17
,
ORDINAL4:def 1
;
then
A76
:
omega-exp
(
(
Sum
(R,Y)
)
-
x
)
<
sa
by
A12
,
A72
,
A75
,
A63
,
Th92
,
A56
,
Th88
;
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
=
omega-exp
(
-
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
by
A64
,
Th56
.=
omega-exp
(
(
-
x
)
+
(
-
(
-
(
Sum
(R,Y)
)
)
)
)
by
SURREALR:40
.=
omega-exp
(
(
-
x
)
+
(
Sum
(R,Y)
)
)
;
hence
sb
<
sa
by
A71
,
A75
,
A76
,
A73
;
:: thesis:
verum
end;
end;
end;
then
reconsider
YYX = Y
^
<%
(
omega-exp
(
x
+
(
-
(
Sum
(R,Y)
)
)
)
)
%>
as
strictly_decreasing
uSurreal-Sequence
;
take
YYX ;
:: thesis:
(
dom
RRX
=
succ
D &
succ
D
=
dom
YYX & RRX,YYX,
succ
D
name_like
x )
thus
(
dom
RRX
=
succ
D &
succ
D
=
dom
YYX )
by
A66
,
A12
,
A69
,
A17
,
ORDINAL2:31
;
:: thesis:
RRX,YYX,
succ
D
name_like
x
thus
(
succ
D
c=
dom
RRX &
dom
RRX
=
dom
YYX )
by
A66
,
A12
,
A68
,
A17
,
ORDINAL2:31
,
ORDINAL4:def 1
;
:: according to
SURREALC:def 19
:: thesis:
for beta being
Ordinal
st beta
in
succ
D holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(RRX,YYX)
)
.
beta holds
( not x
==
Pb & RRX
.
beta
=
omega-r
(
x
-
Pb
)
& YYX
.
beta
=
omega-exp
(
x
-
Pb
)
)
let
b be
Ordinal
;
:: thesis:
( b
in
succ
D implies for Pb being
Surreal
st Pb
=
(
Partial_Sums
(RRX,YYX)
)
.
b holds
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
) )
assume
A77
:
b
in
succ
D
;
:: thesis:
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(RRX,YYX)
)
.
b holds
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
let
Pb be
Surreal
;
:: thesis:
( Pb
=
(
Partial_Sums
(RRX,YYX)
)
.
b implies ( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
) )
assume
A78
:
Pb
=
(
Partial_Sums
(RRX,YYX)
)
.
b
;
:: thesis:
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
A79
:
dom
R
=
(
dom
RRX
)
/\
(
dom
R
)
by
ORDINAL7:1
,
A67
,
A12
;
for o being
object
st o
in
dom
R holds
R
.
o
=
RRX
.
o
by
ORDINAL4:def 1
;
then
A80
:
RRX
|
D
=
R
by
A79
,
FUNCT_1:46
,
A12
;
A81
:
dom
Y
=
(
dom
YYX
)
/\
(
dom
Y
)
by
ORDINAL7:1
,
A70
,
A17
;
A82
:
for o being
object
st o
in
dom
Y holds
Y
.
o
=
YYX
.
o
by
ORDINAL4:def 1
;
A83
: Pb =
(
(
Partial_Sums
(RRX,YYX)
)
|
(
succ
D
)
)
.
b
by
A77
,
A78
,
FUNCT_1:49
.=
(
Partial_Sums
(
(
RRX
|
D
)
,
(
YYX
|
D
)
)
)
.
b
by
Th85
.=
(
Partial_Sums
(R,Y)
)
.
b
by
A80
,
A82
,
A81
,
FUNCT_1:46
,
A17
;
per
cases
( b
=
D or b
in
D )
by
A77
,
ORDINAL1:8
;
suppose
b
=
D
;
:: thesis:
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
hence
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
by
A56
,
A1
,
A17
,
A83
,
A71
;
:: thesis:
verum
end;
suppose
A84
:
b
in
D
;
:: thesis:
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
then
( RRX
.
b
=
R
.
b & YYX
.
b
=
Y
.
b )
by
A12
,
A17
,
ORDINAL4:def 1
;
hence
( not x
==
Pb & RRX
.
b
=
omega-r
(
x
-
Pb
)
& YYX
.
b
=
omega-exp
(
x
-
Pb
)
)
by
A56
,
A84
,
A83
;
:: thesis:
verum
end;
end;
end;
for D being
Ordinal
holds S
1
[D]
from
ORDINAL1:sch 2
(
A2
);
hence
for alpha being
Ordinal
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
succ
alpha &
succ
alpha
=
dom
y & r,y,
succ
alpha
name_like
x )
;
:: thesis:
verum
end;
definition
let
s be
Surreal-Sequence
;
func
born
s
->
Ordinal-Sequence
means
:
Def20
:
:: SURREALC:def 20
(
dom
it
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
it
.
alpha
=
born
sa ) );
existence
ex b
1
being
Ordinal-Sequence
st
(
dom
b
1
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
1
.
alpha
=
born
sa ) )
proof
defpred
S
1
[
object
,
object
]
means
( $2 is
Ordinal
& ( for sa being
Surreal
st sa
=
s
.
$1 holds
$2
=
born
sa ) );
A1
:
for o being
object
st o
in
dom
s holds
ex u being
object
st S
1
[o,u]
proof
let
o be
object
;
:: thesis:
( o
in
dom
s implies ex u being
object
st S
1
[o,u] )
assume
o
in
dom
s
;
:: thesis:
ex u being
object
st S
1
[o,u]
then
s
.
o
in
rng
s
by
FUNCT_1:def 3
;
then
reconsider
so = s
.
o as
Surreal
by
SURREAL0:def 16
;
take
born
so ;
:: thesis:
S
1
[o,
born
so]
thus
S
1
[o,
born
so]
;
:: thesis:
verum
end;
consider
b being
Function
such that
A2
:
(
dom
b
=
dom
s & ( for o being
object
st o
in
dom
s holds
S
1
[o,b
.
o] ) )
from
CLASSES1:sch 1
(
A1
);
reconsider
b = b as
Sequence
by
A2
,
ORDINAL1:def 7
;
consider
M being
Ordinal
such that
A3
:
for o being
object
st o
in
rng
s holds
ex A being
Ordinal
st
( A
in
M & o
in
Day
A )
by
SURREAL0:47
;
rng
b
c=
M
proof
let
a be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not a
in
rng
b or a
in
M )
assume
A4
:
a
in
rng
b
;
:: thesis:
a
in
M
consider
o being
object
such that
A5
:
( o
in
dom
b & b
.
o
=
a )
by
A4
,
FUNCT_1:def 3
;
A6
:
s
.
o
in
rng
s
by
A2
,
A5
,
FUNCT_1:def 3
;
then
reconsider
so = s
.
o as
Surreal
by
SURREAL0:def 16
;
consider
A being
Ordinal
such that
A7
:
( A
in
M & so
in
Day
A )
by
A6
,
A3
;
born
so
c=
A
by
A7
,
SURREAL0:def 18
;
then
born
so
in
M
by
A7
,
ORDINAL1:12
;
hence
a
in
M
by
A5
,
A2
;
:: thesis:
verum
end;
then
reconsider
b = b as
Ordinal-Sequence
by
ORDINAL2:def 4
;
take
b ;
:: thesis:
(
dom
b
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
.
alpha
=
born
sa ) )
thus
(
dom
b
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
.
alpha
=
born
sa ) )
by
A2
;
:: thesis:
verum
end;
uniqueness
for b
1
, b
2
being
Ordinal-Sequence
st
dom
b
1
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
1
.
alpha
=
born
sa ) &
dom
b
2
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
2
.
alpha
=
born
sa ) holds
b
1
=
b
2
proof
let
b1, b2 be
Ordinal-Sequence
;
:: thesis:
(
dom
b1
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b1
.
alpha
=
born
sa ) &
dom
b2
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b2
.
alpha
=
born
sa ) implies b1
=
b2 )
assume
that
A8
:
(
dom
b1
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b1
.
alpha
=
born
sa ) )
and
A9
:
(
dom
b2
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b2
.
alpha
=
born
sa ) )
;
:: thesis:
b1
=
b2
for o being
object
st o
in
dom
s holds
b1
.
o
=
b2
.
o
proof
let
o be
object
;
:: thesis:
( o
in
dom
s implies b1
.
o
=
b2
.
o )
assume
A10
:
o
in
dom
s
;
:: thesis:
b1
.
o
=
b2
.
o
then
s
.
o
in
rng
s
by
FUNCT_1:def 3
;
then
reconsider
so = s
.
o as
Surreal
by
SURREAL0:def 16
;
b1
.
o
=
born
so
by
A10
,
A8
;
hence
b1
.
o
=
b2
.
o
by
A10
,
A9
;
:: thesis:
verum
end;
hence
b1
=
b2
by
A8
,
A9
,
FUNCT_1:2
;
:: thesis:
verum
end;
end;
::
deftheorem
Def20
defines
born
SURREALC:def 20 :
for s being
Surreal-Sequence
for b
2
being
Ordinal-Sequence
holds
( b
2
=
born
s iff (
dom
b
2
=
dom
s & ( for alpha being
Ordinal
st alpha
in
dom
s holds
for sa being
Surreal
st sa
=
s
.
alpha holds
b
2
.
alpha
=
born
sa ) ) );
theorem
Th96
:
:: SURREALC:96
for r being
Sequence
of
REAL
for y being
Surreal-Sequence
for s being
uSurreal-Sequence
for A being
Ordinal
st s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
holds
s
|
A is
one-to-one
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y being
Surreal-Sequence
for s being
uSurreal-Sequence
for A being
Ordinal
st s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
holds
s
|
A is
one-to-one
let
y be
Surreal-Sequence
;
:: thesis:
for s being
uSurreal-Sequence
for A being
Ordinal
st s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
holds
s
|
A is
one-to-one
let
s be
uSurreal-Sequence
;
:: thesis:
for A being
Ordinal
st s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
holds
s
|
A is
one-to-one
let
A be
Ordinal
;
:: thesis:
( s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
implies s
|
A is
one-to-one
)
assume
A1
:
( s,y,r
simplest_up_to
A & A
c=
succ
(
dom
y
)
)
;
:: thesis:
s
|
A is
one-to-one
A2
:
for a, b being
Ordinal
st a
in
b & b
in
dom
(
s
|
A
)
holds
(
s
|
A
)
.
a
<>
(
s
|
A
)
.
b
proof
let
a, b be
Ordinal
;
:: thesis:
( a
in
b & b
in
dom
(
s
|
A
)
implies
(
s
|
A
)
.
a
<>
(
s
|
A
)
.
b )
assume
A3
:
( a
in
b & b
in
dom
(
s
|
A
)
)
;
:: thesis:
(
s
|
A
)
.
a
<>
(
s
|
A
)
.
b
A4
:
( b
in
A & b
in
dom
s )
by
A3
,
RELAT_1:57
;
then
a
in
dom
s
by
A3
,
ORDINAL1:10
;
then
( s
.
b
in
rng
s & s
.
a
in
rng
s )
by
A4
,
FUNCT_1:def 3
;
then
reconsider
sb = s
.
b, sa = s
.
a as
uSurreal
by
SURREALO:def 12
;
A5
:
( sa
=
(
s
|
A
)
.
a & sb
=
(
s
|
A
)
.
b )
by
A3
,
FUNCT_1:47
,
ORDINAL1:10
;
A6
:
succ
a
c=
b
by
A3
,
ORDINAL1:21
;
s,y,r
simplest_on_position
b
by
A1
,
A3
;
then
sb
in_meets_terms
s,y,r,b
;
then
A7
:
sb
in_meets_terms
s,y,r,
succ
a
by
A6
;
b
c=
dom
y
by
A1
,
A4
,
ORDINAL1:22
;
then
y
.
a
in
rng
y
by
A3
,
FUNCT_1:def 3
;
then
reconsider
ya = y
.
a as
Surreal
by
SURREAL0:def 16
;
sb is sa,ya,r
.
a
-terms
by
A7
,
ORDINAL1:6
;
then
A8
:
not sb
+
(
-
sa
)
==
0_No
;
not sb
==
sa
proof
assume
sb
==
sa
;
:: thesis:
contradiction
then
( sb
+
(
-
sa
)
==
sa
-
sa & sa
-
sa
==
0_No
)
by
SURREALR:43
,
SURREALR:39
;
hence
contradiction
by
A8
,
SURREALO:4
;
:: thesis:
verum
end;
hence
(
s
|
A
)
.
a
<>
(
s
|
A
)
.
b
by
A5
;
:: thesis:
verum
end;
for x1, x2 being
object
st x1
in
dom
(
s
|
A
)
& x2
in
dom
(
s
|
A
)
&
(
s
|
A
)
.
x1
=
(
s
|
A
)
.
x2 holds
x1
=
x2
proof
let
x1, x2 be
object
;
:: thesis:
( x1
in
dom
(
s
|
A
)
& x2
in
dom
(
s
|
A
)
&
(
s
|
A
)
.
x1
=
(
s
|
A
)
.
x2 implies x1
=
x2 )
assume
A9
:
( x1
in
dom
(
s
|
A
)
& x2
in
dom
(
s
|
A
)
&
(
s
|
A
)
.
x1
=
(
s
|
A
)
.
x2 )
;
:: thesis:
x1
=
x2
reconsider
x1 = x1, x2 = x2 as
Ordinal
by
A9
;
( not x1
in
x2 & not x2
in
x1 )
by
A9
,
A2
;
hence
x1
=
x2
by
ORDINAL1:14
;
:: thesis:
verum
end;
hence
s
|
A is
one-to-one
by
FUNCT_1:def 4
;
:: thesis:
verum
end;
registration
let
r be
non-zero
Sequence
of
REAL
;
let
y be
strictly_decreasing
Surreal-Sequence
;
cluster
Partial_Sums
(r,y)
->
one-to-one
;
coherence
Partial_Sums
(r,y) is
one-to-one
proof
set
s =
Partial_Sums
(r,y);
(
dom
y
)
/\
(
dom
r
)
in
succ
(
dom
y
)
by
XBOOLE_1:17
,
ORDINAL1:22
;
then
A1
:
(
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
y
)
/\
(
dom
r
)
)
&
succ
(
(
dom
y
)
/\
(
dom
r
)
)
c=
succ
(
dom
y
)
)
by
ORDINAL1:21
,
Def17
;
Partial_Sums
(r,y),y,r
simplest_up_to
dom
(
Partial_Sums
(r,y)
)
by
Def17
;
then
(
Partial_Sums
(r,y)
)
|
(
dom
(
Partial_Sums
(r,y)
)
)
is
one-to-one
by
A1
,
Th96
;
hence
Partial_Sums
(r,y) is
one-to-one
;
:: thesis:
verum
end;
end;
theorem
Th97
:
:: SURREALC:97
for r being
Sequence
of
REAL
for y being
Surreal-Sequence
for s being
uSurreal-Sequence
for alpha being
Ordinal
st s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
holds
(
born
s
)
|
alpha is
increasing
proof
let
r be
Sequence
of
REAL
;
:: thesis:
for y being
Surreal-Sequence
for s being
uSurreal-Sequence
for alpha being
Ordinal
st s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
holds
(
born
s
)
|
alpha is
increasing
let
y be
Surreal-Sequence
;
:: thesis:
for s being
uSurreal-Sequence
for alpha being
Ordinal
st s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
holds
(
born
s
)
|
alpha is
increasing
let
s be
uSurreal-Sequence
;
:: thesis:
for alpha being
Ordinal
st s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
holds
(
born
s
)
|
alpha is
increasing
let
alpha be
Ordinal
;
:: thesis:
( s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
implies
(
born
s
)
|
alpha is
increasing
)
assume
A1
:
( s,y,r
simplest_up_to
alpha & s
|
alpha is
one-to-one
)
;
:: thesis:
(
born
s
)
|
alpha is
increasing
for A, B being
Ordinal
st A
in
B & B
in
dom
(
(
born
s
)
|
alpha
)
holds
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
proof
set
bs =
born
s;
let
A, B be
Ordinal
;
:: thesis:
( A
in
B & B
in
dom
(
(
born
s
)
|
alpha
)
implies
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B )
assume
A2
:
( A
in
B & B
in
dom
(
(
born
s
)
|
alpha
)
)
;
:: thesis:
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
A3
:
( B
in
alpha & B
in
dom
(
born
s
)
&
dom
(
born
s
)
=
dom
s )
by
Def20
,
A2
,
RELAT_1:57
;
A4
:
s,y,r
simplest_on_position
B
by
A1
,
A2
;
A5
:
( B
in
dom
s & A
in
dom
s )
by
A2
,
A3
,
ORDINAL1:10
;
then
( s
.
B
in
rng
s & s
.
A
in
rng
s )
by
FUNCT_1:def 3
;
then
reconsider
sB = s
.
B, sA = s
.
A as
uSurreal
by
SURREALO:def 12
;
A6
:
A
in
alpha
by
A2
,
ORDINAL1:10
;
A7
:
s,y,r
simplest_on_position
A
by
A1
,
A2
,
ORDINAL1:10
;
A8
:
A
c=
B
by
A2
,
ORDINAL1:def 2
;
sB
in_meets_terms
s,y,r,B
by
A4
;
then
A9
:
sB
in_meets_terms
s,y,r,A
by
A8
;
A10
:
A
<>
B
by
A2
;
( B
in
dom
(
s
|
alpha
)
& A
in
dom
(
s
|
alpha
)
& sA
=
(
s
|
alpha
)
.
A & sB
=
(
s
|
alpha
)
.
B )
by
RELAT_1:57
,
A2
,
A5
,
A6
,
FUNCT_1:49
;
then
A11
:
sA
<>
sB
by
A10
,
A1
,
FUNCT_1:def 4
;
(
(
(
born
s
)
|
alpha
)
.
A
=
(
born
s
)
.
A &
(
(
born
s
)
|
alpha
)
.
B
=
(
born
s
)
.
B )
by
A2
,
ORDINAL1:10
,
FUNCT_1:49
;
then
A12
:
(
(
(
born
s
)
|
alpha
)
.
A
=
born
sA &
(
(
born
s
)
|
alpha
)
.
B
=
born
sB )
by
Def20
,
A2
,
A3
,
ORDINAL1:10
;
per
cases
( A
=
0
or A
<>
0
)
;
suppose
A
=
0
;
:: thesis:
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
then
A13
:
sA
=
0_No
by
A7
;
then
A14
:
born
sA
=
0
by
SURREAL0:37
;
A15
:
{}
c=
born
sB
;
born
sB
<>
0
by
A13
,
A11
,
SURREAL0:37
;
hence
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
by
A12
,
A14
,
ORDINAL1:11
,
A15
,
XBOOLE_0:def 8
;
:: thesis:
verum
end;
suppose
A
<>
0
;
:: thesis:
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
hence
(
(
born
s
)
|
alpha
)
.
A
in
(
(
born
s
)
|
alpha
)
.
B
by
A12
,
A7
,
A9
,
A11
;
:: thesis:
verum
end;
end;
end;
hence
(
born
s
)
|
alpha is
increasing
by
ORDINAL2:def 12
;
:: thesis:
verum
end;
registration
let
r be
non-zero
Sequence
of
REAL
;
let
y be
strictly_decreasing
Surreal-Sequence
;
cluster
born
(
Partial_Sums
(r,y)
)
->
increasing
;
coherence
born
(
Partial_Sums
(r,y)
)
is
increasing
proof
set
s =
Partial_Sums
(r,y);
dom
(
Partial_Sums
(r,y)
)
=
dom
(
born
(
Partial_Sums
(r,y)
)
)
by
Def20
;
then
A1
:
(
born
(
Partial_Sums
(r,y)
)
)
|
(
dom
(
Partial_Sums
(r,y)
)
)
=
born
(
Partial_Sums
(r,y)
)
;
(
Partial_Sums
(r,y),y,r
simplest_up_to
dom
(
Partial_Sums
(r,y)
)
&
(
Partial_Sums
(r,y)
)
|
(
dom
(
Partial_Sums
(r,y)
)
)
is
one-to-one
)
by
Def17
;
hence
born
(
Partial_Sums
(r,y)
)
is
increasing
by
A1
,
Th97
;
:: thesis:
verum
end;
end;
theorem
Th98
:
:: SURREALC:98
for x being
Surreal
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for s being
uSurreal-Sequence
for A being
Ordinal
st A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A holds
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
proof
let
x be
Surreal
;
:: thesis:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
for s being
uSurreal-Sequence
for A being
Ordinal
st A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A holds
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
for s being
uSurreal-Sequence
for A being
Ordinal
st A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A holds
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
for s being
uSurreal-Sequence
for A being
Ordinal
st A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A holds
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
let
s be
uSurreal-Sequence
;
:: thesis:
for A being
Ordinal
st A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A holds
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
let
A be
Ordinal
;
:: thesis:
( A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A implies
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
)
assume
A1
:
( A
c=
dom
r & x
in_meets_terms
s,y,r,A & s,y,r
simplest_up_to
succ
A )
;
:: thesis:
rng
(
born
(
s
|
(
succ
A
)
)
)
c=
succ
(
born_eq
x
)
let
o be
object
;
:: according to
TARSKI:def 3
:: thesis:
( not o
in
rng
(
born
(
s
|
(
succ
A
)
)
)
or o
in
succ
(
born_eq
x
)
)
assume
A2
:
o
in
rng
(
born
(
s
|
(
succ
A
)
)
)
;
:: thesis:
o
in
succ
(
born_eq
x
)
consider
a being
object
such that
A3
:
( a
in
dom
(
born
(
s
|
(
succ
A
)
)
)
&
(
born
(
s
|
(
succ
A
)
)
)
.
a
=
o )
by
A2
,
FUNCT_1:def 3
;
reconsider
a = a as
Ordinal
by
A3
;
A4
:
a
in
dom
(
s
|
(
succ
A
)
)
by
A3
,
Def20
;
then
( a
in
dom
s & a
in
succ
A )
by
RELAT_1:57
;
then
s
.
a
in
rng
s
by
FUNCT_1:def 3
;
then
reconsider
sa = s
.
a as
Surreal
by
SURREAL0:def 16
;
sa
=
(
s
|
(
succ
A
)
)
.
a
by
A4
,
FUNCT_1:47
;
then
A5
:
o
=
born
sa
by
A3
,
A4
,
Def20
;
A6
:
a
c=
A
by
A4
,
ORDINAL1:22
;
then
A7
:
x
in_meets_terms
s,y,r,a
by
A1
;
Unique_No
x
==
x
by
SURREALO:def 10
;
then
A8
:
Unique_No
x
in_meets_terms
s,y,r,a
by
A7
,
A1
,
A6
,
XBOOLE_1:1
,
Th81
;
A9
:
s,y,r
simplest_on_position
a
by
A1
,
A4
;
A10
:
(
born
(
Unique_No
x
)
=
born_eq
(
Unique_No
x
)
&
born_eq
(
Unique_No
x
)
=
born_eq
x )
by
SURREALO:33
,
SURREALO:48
,
SURREALO:def 10
;
per
cases
( a
=
0
or ( a
<>
0
&
Unique_No
x
=
sa ) or ( a
<>
0
&
Unique_No
x
<>
sa ) )
;
suppose
a
=
0
;
:: thesis:
o
in
succ
(
born_eq
x
)
then
sa
=
0_No
by
A9
;
then
(
born
sa
=
0
&
0
c=
born_eq
x )
by
SURREAL0:37
;
hence
o
in
succ
(
born_eq
x
)
by
A5
,
ORDINAL1:22
;
:: thesis:
verum
end;
suppose
( a
<>
0
&
Unique_No
x
=
sa )
;
:: thesis:
o
in
succ
(
born_eq
x
)
hence
o
in
succ
(
born_eq
x
)
by
A10
,
ORDINAL1:8
,
A5
;
:: thesis:
verum
end;
suppose
( a
<>
0
&
Unique_No
x
<>
sa )
;
:: thesis:
o
in
succ
(
born_eq
x
)
then
born
sa
in
born
(
Unique_No
x
)
by
A8
,
A9
;
hence
o
in
succ
(
born_eq
x
)
by
A5
,
A10
,
ORDINAL1:8
;
:: thesis:
verum
end;
end;
end;
theorem
Th99
:
:: SURREALC:99
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
Surreal-Sequence
holds
(
dom
r
)
/\
(
dom
y
)
c=
born
(
Sum
(r,y)
)
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
Surreal-Sequence
holds
(
dom
r
)
/\
(
dom
y
)
c=
born
(
Sum
(r,y)
)
let
y be
strictly_decreasing
Surreal-Sequence
;
:: thesis:
(
dom
r
)
/\
(
dom
y
)
c=
born
(
Sum
(r,y)
)
set
s =
Partial_Sums
(r,y);
A1
:
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
r
)
/\
(
dom
y
)
)
by
Def17
;
(
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
(
dom
r
)
/\
(
dom
y
)
&
Partial_Sums
(r,y),y,r
simplest_up_to
dom
(
Partial_Sums
(r,y)
)
)
by
Def17
,
Th89
;
then
A2
:
rng
(
born
(
(
Partial_Sums
(r,y)
)
|
(
dom
(
Partial_Sums
(r,y)
)
)
)
)
c=
succ
(
born_eq
(
Sum
(r,y)
)
)
by
XBOOLE_1:17
,
Th98
,
A1
;
A3
:
born_eq
(
Sum
(r,y)
)
=
born
(
Sum
(r,y)
)
by
SURREALO:48
;
succ
(
(
dom
r
)
/\
(
dom
y
)
)
c=
succ
(
born
(
Sum
(r,y)
)
)
proof
let
o be
Ordinal
;
:: according to
ORDINAL1:def 5
:: thesis:
( not o
in
succ
(
(
dom
r
)
/\
(
dom
y
)
)
or o
in
succ
(
born
(
Sum
(r,y)
)
)
)
assume
A4
:
o
in
succ
(
(
dom
r
)
/\
(
dom
y
)
)
;
:: thesis:
o
in
succ
(
born
(
Sum
(r,y)
)
)
A5
:
o
in
dom
(
Partial_Sums
(r,y)
)
by
A4
,
Def17
;
then
(
Partial_Sums
(r,y)
)
.
o
in
rng
(
Partial_Sums
(r,y)
)
by
FUNCT_1:def 3
;
then
reconsider
so =
(
Partial_Sums
(r,y)
)
.
o as
uSurreal
by
SURREALO:def 12
;
A6
:
dom
(
born
(
Partial_Sums
(r,y)
)
)
=
dom
(
Partial_Sums
(r,y)
)
by
Def20
;
A7
:
born
so
=
(
born
(
Partial_Sums
(r,y)
)
)
.
o
by
A5
,
Def20
;
then
A8
:
born
so
in
rng
(
born
(
Partial_Sums
(r,y)
)
)
by
A6
,
A5
,
FUNCT_1:def 3
;
o
c=
(
born
(
Partial_Sums
(r,y)
)
)
.
o
by
A5
,
A6
,
ORDINAL4:10
;
hence
o
in
succ
(
born
(
Sum
(r,y)
)
)
by
A7
,
A8
,
A2
,
A3
,
ORDINAL1:12
;
:: thesis:
verum
end;
then
(
dom
r
)
/\
(
dom
y
)
in
succ
(
born
(
Sum
(r,y)
)
)
by
ORDINAL1:21
;
hence
(
dom
r
)
/\
(
dom
y
)
c=
born
(
Sum
(r,y)
)
by
ORDINAL1:22
;
:: thesis:
verum
end;
theorem
:: SURREALC:100
for x being
Surreal
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
dom
y &
dom
y
c=
born_eq
x &
Sum
(r,y)
==
x )
proof
let
x be
Surreal
;
:: thesis:
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
dom
y &
dom
y
c=
born_eq
x &
Sum
(r,y)
==
x )
ex r being
non-zero
Sequence
of
REAL
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
dom
y & r,y,
dom
r
name_like
x &
Sum
(r,y)
==
x )
proof
assume
A1
:
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y & r,y,
dom
r
name_like
x holds
not
Sum
(r,y)
==
x
;
:: thesis:
contradiction
set
b =
card
(
bool
(
succ
(
born_eq
x
)
)
)
;
consider
r being
non-zero
Sequence
of
REAL
, y being
strictly_decreasing
uSurreal-Sequence
such that
A2
:
(
dom
r
=
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
&
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
=
dom
y & r,y,
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
name_like
x )
by
A1
,
Th95
;
set
s =
Partial_Sums
(r,y);
A3
:
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
/\
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
)
by
A2
,
Def17
.=
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
;
Partial_Sums
(r,y),y,r
simplest_up_to
dom
(
Partial_Sums
(r,y)
)
by
Def17
;
then
Partial_Sums
(r,y),y,r
simplest_up_to
succ
(
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
/\
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
)
by
A2
,
Def17
;
then
rng
(
born
(
(
Partial_Sums
(r,y)
)
|
(
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
)
)
)
c=
succ
(
born_eq
x
)
by
A2
,
Th88
,
Th98
;
then
A4
:
card
(
rng
(
born
(
Partial_Sums
(r,y)
)
)
)
c=
card
(
succ
(
born_eq
x
)
)
by
A3
,
CARD_1:11
;
born
(
Partial_Sums
(r,y)
)
is
one-to-one
by
CARD_5:11
;
then
A5
:
card
(
rng
(
born
(
Partial_Sums
(r,y)
)
)
)
=
card
(
dom
(
born
(
Partial_Sums
(r,y)
)
)
)
by
CARD_1:5
,
WELLORD2:def 4
.=
card
(
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
)
by
A3
,
Def20
;
A6
:
card
(
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
)
in
card
(
bool
(
succ
(
born_eq
x
)
)
)
by
A4
,
A5
,
CARD_1:14
,
ORDINAL1:12
;
card
(
bool
(
succ
(
born_eq
x
)
)
)
in
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
by
ORDINAL1:6
,
ORDINAL1:8
;
then
card
(
bool
(
succ
(
born_eq
x
)
)
)
c=
succ
(
succ
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
)
by
ORDINAL1:def 2
;
then
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
=
card
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
&
card
(
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
in
card
(
bool
(
succ
(
born_eq
x
)
)
)
)
by
A6
,
ORDINAL1:12
,
CARD_1:11
;
hence
contradiction
;
:: thesis:
verum
end;
then
consider
r being
non-zero
Sequence
of
REAL
, y being
strictly_decreasing
uSurreal-Sequence
such that
A7
:
(
dom
r
=
dom
y & r,y,
dom
r
name_like
x &
Sum
(r,y)
==
x )
;
take
r ;
:: thesis:
ex y being
strictly_decreasing
uSurreal-Sequence
st
(
dom
r
=
dom
y &
dom
y
c=
born_eq
x &
Sum
(r,y)
==
x )
take
y ;
:: thesis:
(
dom
r
=
dom
y &
dom
y
c=
born_eq
x &
Sum
(r,y)
==
x )
(
born
(
Sum
(r,y)
)
=
born_eq
(
Sum
(r,y)
)
&
born_eq
(
Sum
(r,y)
)
=
born_eq
x )
by
A7
,
SURREALO:33
,
SURREALO:48
;
hence
(
dom
r
=
dom
y &
dom
y
c=
born_eq
x &
Sum
(r,y)
==
x )
by
A7
,
Th99
;
:: thesis:
verum
end;
theorem
Th101
:
:: SURREALC:101
for r being
non-zero
Sequence
of
REAL
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y holds
r,y,
dom
r
name_like
Sum
(r,y)
proof
let
r be
non-zero
Sequence
of
REAL
;
:: thesis:
for y being
strictly_decreasing
uSurreal-Sequence
st
dom
r
=
dom
y holds
r,y,
dom
r
name_like
Sum
(r,y)
let
y be
strictly_decreasing
uSurreal-Sequence
;
:: thesis:
(
dom
r
=
dom
y implies r,y,
dom
r
name_like
Sum
(r,y) )
assume
A1
:
dom
r
=
dom
y
;
:: thesis:
r,y,
dom
r
name_like
Sum
(r,y)
thus
(
dom
r
c=
dom
r &
dom
r
=
dom
y )
by
A1
;
:: according to
SURREALC:def 19
:: thesis:
for beta being
Ordinal
st beta
in
dom
r holds
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(r,y)
)
.
beta holds
( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
)
set
P =
Partial_Sums
(r,y);
set
s =
Sum
(r,y);
let
beta be
Ordinal
;
:: thesis:
( beta
in
dom
r implies for Pb being
Surreal
st Pb
=
(
Partial_Sums
(r,y)
)
.
beta holds
( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
) )
assume
A2
:
beta
in
dom
r
;
:: thesis:
for Pb being
Surreal
st Pb
=
(
Partial_Sums
(r,y)
)
.
beta holds
( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
)
let
Pb be
Surreal
;
:: thesis:
( Pb
=
(
Partial_Sums
(r,y)
)
.
beta implies ( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
) )
assume
A3
:
Pb
=
(
Partial_Sums
(r,y)
)
.
beta
;
:: thesis:
( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
)
A4
:
dom
(
Partial_Sums
(r,y)
)
=
succ
(
(
dom
r
)
/\
(
dom
r
)
)
by
A1
,
Def17
;
y
.
beta
in
rng
y
by
A1
,
A2
,
FUNCT_1:def 3
;
then
reconsider
yb = y
.
beta as
uSurreal
by
SURREALO:def 12
;
Partial_Sums
(r,y),y,r
simplest_on_position
dom
r
by
A4
,
Def17
,
ORDINAL1:6
;
then
Sum
(r,y)
in_meets_terms
Partial_Sums
(r,y),y,r,
dom
r
by
A1
;
then
A5
:
Sum
(r,y) is Pb,yb,r
.
beta
-terms
by
A2
,
A3
;
then
A6
:
( not
(
Sum
(r,y)
)
+
(
-
Pb
)
==
0_No
&
omega-exp
(
(
Sum
(r,y)
)
+
(
-
Pb
)
)
==
yb &
omega-r
(
(
Sum
(r,y)
)
+
(
-
Pb
)
)
=
r
.
beta )
;
not
Sum
(r,y)
==
Pb
proof
assume
Sum
(r,y)
==
Pb
;
:: thesis:
contradiction
then
(
(
Sum
(r,y)
)
+
(
-
Pb
)
==
Pb
-
Pb & Pb
-
Pb
==
0_No
)
by
SURREALR:43
,
SURREALR:39
;
hence
contradiction
by
A6
,
SURREALO:4
;
:: thesis:
verum
end;
hence
( not
Sum
(r,y)
==
Pb & r
.
beta
=
omega-r
(
(
Sum
(r,y)
)
-
Pb
)
& y
.
beta
=
omega-exp
(
(
Sum
(r,y)
)
-
Pb
)
)
by
A5
,
SURREALO:50
;
:: thesis:
verum
end;
theorem
:: SURREALC:102
for r1, r2 being
non-zero
Sequence
of
REAL
for y1, y2 being
strictly_decreasing
uSurreal-Sequence
st
dom
r1
=
dom
y1 &
dom
r2
=
dom
y2 &
Sum
(r1,y1)
==
Sum
(r2,y2) holds
( r1
=
r2 & y1
=
y2 )
proof
let
r1, r2 be
non-zero
Sequence
of
REAL
;
:: thesis:
for y1, y2 being
strictly_decreasing
uSurreal-Sequence
st
dom
r1
=
dom
y1 &
dom
r2
=
dom
y2 &
Sum
(r1,y1)
==
Sum
(r2,y2) holds
( r1
=
r2 & y1
=
y2 )
let
y1, y2 be
strictly_decreasing
uSurreal-Sequence
;
:: thesis:
(
dom
r1
=
dom
y1 &
dom
r2
=
dom
y2 &
Sum
(r1,y1)
==
Sum
(r2,y2) implies ( r1
=
r2 & y1
=
y2 ) )
assume
A1
:
(
dom
r1
=
dom
y1 &
dom
r2
=
dom
y2 &
Sum
(r1,y1)
==
Sum
(r2,y2) )
;
:: thesis:
( r1
=
r2 & y1
=
y2 )
A2
:
Sum
(r1,y1)
=
Sum
(r2,y2)
by
A1
,
SURREALO:50
;
A3
:
r1,y1,
dom
r1
name_like
Sum
(r1,y1)
by
Th101
,
A1
;
A4
:
r2,y2,
dom
r2
name_like
Sum
(r2,y2)
by
Th101
,
A1
;
per
cases
(
dom
r1
in
dom
r2 or
dom
r1
=
dom
r2 or
dom
r2
in
dom
r1 )
by
ORDINAL1:14
;
suppose
A5
:
dom
r1
in
dom
r2
;
:: thesis:
( r1
=
r2 & y1
=
y2 )
then
A6
:
dom
r1
c=
dom
r2
by
ORDINAL1:def 2
;
r2,y2,
dom
r1
name_like
Sum
(r2,y2)
by
A4
,
A6
;
then
A7
:
( r1
|
(
dom
r1
)
=
r2
|
(
dom
r1
)
& y1
|
(
dom
r1
)
=
y2
|
(
dom
r1
)
)
by
A3
,
A2
,
Th87
;
set
s =
Partial_Sums
(r2,y2);
(
Partial_Sums
(r2,y2)
)
.
(
dom
r1
)
=
(
(
Partial_Sums
(r2,y2)
)
|
(
succ
(
dom
r1
)
)
)
.
(
dom
r1
)
by
FUNCT_1:49
,
ORDINAL1:6
.=
(
Partial_Sums
(
(
r2
|
(
dom
r1
)
)
,
(
y2
|
(
dom
r1
)
)
)
)
.
(
dom
r1
)
by
Th85
.=
Sum
(r1,y1)
by
A1
,
A7
;
hence
( r1
=
r2 & y1
=
y2 )
by
A1
,
A4
,
A5
;
:: thesis:
verum
end;
suppose
A8
:
dom
r1
=
dom
r2
;
:: thesis:
( r1
=
r2 & y1
=
y2 )
r2,y2,
dom
r1
name_like
Sum
(r2,y2)
by
Th101
,
A1
,
A8
;
then
( r1
=
r1
|
(
dom
r1
)
& r1
|
(
dom
r1
)
=
r2
|
(
dom
r1
)
& r2
|
(
dom
r1
)
=
r2 & y1
=
y1
|
(
dom
r1
)
& y1
|
(
dom
r1
)
=
y2
|
(
dom
r1
)
& y2
|
(
dom
r1
)
=
y2 )
by
A8
,
A3
,
A2
,
Th87
;
hence
( r1
=
r2 & y1
=
y2 )
;
:: thesis:
verum
end;
suppose
A9
:
dom
r2
in
dom
r1
;
:: thesis:
( r1
=
r2 & y1
=
y2 )
then
A10
:
dom
r2
c=
dom
r1
by
ORDINAL1:def 2
;
r1,y1,
dom
r2
name_like
Sum
(r1,y1)
by
A10
,
A3
;
then
A11
:
( r1
|
(
dom
r2
)
=
r2
|
(
dom
r2
)
& y1
|
(
dom
r2
)
=
y2
|
(
dom
r2
)
)
by
A4
,
A2
,
Th87
;
set
s =
Partial_Sums
(r1,y1);
(
Partial_Sums
(r1,y1)
)
.
(
dom
r2
)
=
(
(
Partial_Sums
(r1,y1)
)
|
(
succ
(
dom
r2
)
)
)
.
(
dom
r2
)
by
ORDINAL1:6
,
FUNCT_1:49
.=
(
Partial_Sums
(
(
r1
|
(
dom
r2
)
)
,
(
y1
|
(
dom
r2
)
)
)
)
.
(
dom
r2
)
by
Th85
.=
Sum
(r2,y2)
by
A1
,
A11
;
hence
( r1
=
r2 & y1
=
y2 )
by
A1
,
A3
,
A9
;
:: thesis:
verum
end;
end;
end;