definition
let lamb be
object ;
let X, Y be
set ;
existence
ex b1 being surreal-membered set st
for o being object holds
( o in b1 iff ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) )
proof
defpred S
1[
object ,
object ]
means ( $1 is
Surreal & $2 is
Surreal & $1
in X & $2
in Y & not $1
+' $2
== 0_No );
set S =
{ ((lamb +' (x1 *' y1)) * ((x1 +' y1) ")) where x1 is Element of X, y1 is Element of Y : S1[x1,y1] } ;
{ ((lamb +' (x1 *' y1)) * ((x1 +' y1) ")) where x1 is Element of X, y1 is Element of Y : S1[x1,y1] } is surreal-membered
then reconsider S =
{ ((lamb +' (x1 *' y1)) * ((x1 +' y1) ")) where x1 is Element of X, y1 is Element of Y : S1[x1,y1] } as
surreal-membered set ;
take
S
;
for o being object holds
( o in S iff ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) )
let o be
object ;
( o in S iff ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) )
thus
( o in S implies ex x1, y1 being Surreal st
( x1 in X & y1 in Y & not x1 + y1 == 0_No & o = (lamb +' (x1 * y1)) * ((x1 + y1) ") ) )
( ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) implies o in S )
proof
assume
o in S
;
ex x1, y1 being Surreal st
( x1 in X & y1 in Y & not x1 + y1 == 0_No & o = (lamb +' (x1 * y1)) * ((x1 + y1) ") )
then consider x1 being
Element of X, y1 being
Element of Y
such that A1:
( o = (lamb +' (x1 *' y1)) * ((x1 +' y1) ") & S1[x1,y1] )
;
reconsider x1 = x1, y1 = y1 as
Surreal by A1;
take
x1
;
ex y1 being Surreal st
( x1 in X & y1 in Y & not x1 + y1 == 0_No & o = (lamb +' (x1 * y1)) * ((x1 + y1) ") )
take
y1
;
( x1 in X & y1 in Y & not x1 + y1 == 0_No & o = (lamb +' (x1 * y1)) * ((x1 + y1) ") )
thus
( x1 in X & y1 in Y & not x1 + y1 == 0_No & o = (lamb +' (x1 * y1)) * ((x1 + y1) ") )
by A1;
verum
end;
thus
( ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) implies o in S )
;
verum
end;
uniqueness
for b1, b2 being surreal-membered set st ( for o being object holds
( o in b1 iff ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) ) ) & ( for o being object holds
( o in b2 iff ex x, y being Surreal st
( x in X & y in Y & not x + y == 0_No & o = (lamb +' (x * y)) * ((x + y) ") ) ) ) holds
b1 = b2
end;
definition
let x0 be
pair object ;
let x be
object ;
existence
ex b1 being Function st
( dom b1 = NAT & b1 . 0 = x0 & ( for n being Nat holds
( b1 . n is pair & (b1 . (n + 1)) `1 = (L_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(R_ (b1 . n)))) & (b1 . (n + 1)) `2 = ((R_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(L_ (b1 . n))))) \/ (sqrt (x,(R_ (b1 . n)),(R_ (b1 . n)))) ) ) )
proof
deffunc H
1(
object ,
object )
-> object =
[((L_ $2) \/ (sqrt (x,(L_ $2),(R_ $2)))),(((R_ $2) \/ (sqrt (x,(L_ $2),(L_ $2)))) \/ (sqrt (x,(R_ $2),(R_ $2))))];
consider f being
Function such that A1:
( dom f = NAT & f . 0 = x0 & ( for n being Nat holds f . (n + 1) = H1(n,f . n) ) )
from NAT_1:sch 11();
take
f
;
( dom f = NAT & f . 0 = x0 & ( for n being Nat holds
( f . n is pair & (f . (n + 1)) `1 = (L_ (f . n)) \/ (sqrt (x,(L_ (f . n)),(R_ (f . n)))) & (f . (n + 1)) `2 = ((R_ (f . n)) \/ (sqrt (x,(L_ (f . n)),(L_ (f . n))))) \/ (sqrt (x,(R_ (f . n)),(R_ (f . n)))) ) ) )
thus
( dom f = omega & f . 0 = x0 )
by A1;
for n being Nat holds
( f . n is pair & (f . (n + 1)) `1 = (L_ (f . n)) \/ (sqrt (x,(L_ (f . n)),(R_ (f . n)))) & (f . (n + 1)) `2 = ((R_ (f . n)) \/ (sqrt (x,(L_ (f . n)),(L_ (f . n))))) \/ (sqrt (x,(R_ (f . n)),(R_ (f . n)))) )
let k be
Nat;
( f . k is pair & (f . (k + 1)) `1 = (L_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(R_ (f . k)))) & (f . (k + 1)) `2 = ((R_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(L_ (f . k))))) \/ (sqrt (x,(R_ (f . k)),(R_ (f . k)))) )
thus
f . k is pair
( (f . (k + 1)) `1 = (L_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(R_ (f . k)))) & (f . (k + 1)) `2 = ((R_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(L_ (f . k))))) \/ (sqrt (x,(R_ (f . k)),(R_ (f . k)))) )
f . (k + 1) = H1(k,f . k)
by A1;
hence
( (f . (k + 1)) `1 = (L_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(R_ (f . k)))) & (f . (k + 1)) `2 = ((R_ (f . k)) \/ (sqrt (x,(L_ (f . k)),(L_ (f . k))))) \/ (sqrt (x,(R_ (f . k)),(R_ (f . k)))) )
;
verum
end;
uniqueness
for b1, b2 being Function st dom b1 = NAT & b1 . 0 = x0 & ( for n being Nat holds
( b1 . n is pair & (b1 . (n + 1)) `1 = (L_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(R_ (b1 . n)))) & (b1 . (n + 1)) `2 = ((R_ (b1 . n)) \/ (sqrt (x,(L_ (b1 . n)),(L_ (b1 . n))))) \/ (sqrt (x,(R_ (b1 . n)),(R_ (b1 . n)))) ) ) & dom b2 = NAT & b2 . 0 = x0 & ( for n being Nat holds
( b2 . n is pair & (b2 . (n + 1)) `1 = (L_ (b2 . n)) \/ (sqrt (x,(L_ (b2 . n)),(R_ (b2 . n)))) & (b2 . (n + 1)) `2 = ((R_ (b2 . n)) \/ (sqrt (x,(L_ (b2 . n)),(L_ (b2 . n))))) \/ (sqrt (x,(R_ (b2 . n)),(R_ (b2 . n)))) ) ) holds
b1 = b2
proof
let T1, T2 be
Function;
( dom T1 = NAT & T1 . 0 = x0 & ( for n being Nat holds
( T1 . n is pair & (T1 . (n + 1)) `1 = (L_ (T1 . n)) \/ (sqrt (x,(L_ (T1 . n)),(R_ (T1 . n)))) & (T1 . (n + 1)) `2 = ((R_ (T1 . n)) \/ (sqrt (x,(L_ (T1 . n)),(L_ (T1 . n))))) \/ (sqrt (x,(R_ (T1 . n)),(R_ (T1 . n)))) ) ) & dom T2 = NAT & T2 . 0 = x0 & ( for n being Nat holds
( T2 . n is pair & (T2 . (n + 1)) `1 = (L_ (T2 . n)) \/ (sqrt (x,(L_ (T2 . n)),(R_ (T2 . n)))) & (T2 . (n + 1)) `2 = ((R_ (T2 . n)) \/ (sqrt (x,(L_ (T2 . n)),(L_ (T2 . n))))) \/ (sqrt (x,(R_ (T2 . n)),(R_ (T2 . n)))) ) ) implies T1 = T2 )
assume that A2:
( dom T1 = omega & T1 . 0 = x0 )
and A3:
for k being Nat holds
( T1 . k is pair & (T1 . (k + 1)) `1 = (L_ (T1 . k)) \/ (sqrt (x,(L_ (T1 . k)),(R_ (T1 . k)))) & (T1 . (k + 1)) `2 = ((R_ (T1 . k)) \/ (sqrt (x,(L_ (T1 . k)),(L_ (T1 . k))))) \/ (sqrt (x,(R_ (T1 . k)),(R_ (T1 . k)))) )
and A4:
( dom T2 = omega & T2 . 0 = x0 )
and A5:
for k being Nat holds
( T2 . k is pair & (T2 . (k + 1)) `1 = (L_ (T2 . k)) \/ (sqrt (x,(L_ (T2 . k)),(R_ (T2 . k)))) & (T2 . (k + 1)) `2 = ((R_ (T2 . k)) \/ (sqrt (x,(L_ (T2 . k)),(L_ (T2 . k))))) \/ (sqrt (x,(R_ (T2 . k)),(R_ (T2 . k)))) )
;
T1 = T2
defpred S
1[
Nat]
means T1
. $1
= T2
. $1;
A6:
S1[ 0 ]
by A2, A4;
A7:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A8:
S1[n]
;
S1[n + 1]
A9:
( T1 . (n + 1) is pair & T2 . (n + 1) is pair )
by A3, A5;
R_ (T1 . (n + 1)) = ((R_ (T1 . n)) \/ (sqrt (x,(L_ (T1 . n)),(L_ (T1 . n))))) \/ (sqrt (x,(R_ (T1 . n)),(R_ (T1 . n))))
by A3;
then A10:
(T1 . (n + 1)) `2 = R_ (T2 . (n + 1))
by A5, A8;
L_ (T1 . (n + 1)) = (L_ (T1 . n)) \/ (sqrt (x,(L_ (T1 . n)),(R_ (T1 . n))))
by A3;
then
(T1 . (n + 1)) `1 = (T2 . (n + 1)) `1
by A5, A8;
hence
S1[n + 1]
by A9, A10, XTUPLE_0:2;
verum
end;
for n being Nat holds S1[n]
from NAT_1:sch 2(A6, A7);
then
for o being object st o in dom T1 holds
T1 . o = T2 . o
by A2;
hence
T1 = T2
by A2, A4, FUNCT_1:2;
verum
end;
end;
theorem Th1:
proof
let o be
object ;
for p being pair object holds
( (sqrtL (p,o)) . 0 = L_ p & (sqrtR (p,o)) . 0 = R_ p )let p be
pair object ;
( (sqrtL (p,o)) . 0 = L_ p & (sqrtR (p,o)) . 0 = R_ p )
( (sqrtL (p,o)) . 0 = L_ ((transitions_of (p,o)) . 0) & (sqrtR (p,o)) . 0 = R_ ((transitions_of (p,o)) . 0) )
by Def3, Def4;
hence
( (sqrtL (p,o)) . 0 = L_ p & (sqrtR (p,o)) . 0 = R_ p )
by Def2;
verum
end;
theorem Th2:
proof
let n, m be
Nat;
for o being object
for p being pair object st n <= m holds
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . m & (sqrtR (p,o)) . n c= (sqrtR (p,o)) . m )let o be
object ;
for p being pair object st n <= m holds
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . m & (sqrtR (p,o)) . n c= (sqrtR (p,o)) . m )let p be
pair object ;
( n <= m implies ( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . m & (sqrtR (p,o)) . n c= (sqrtR (p,o)) . m ) )
defpred S
1[
Nat]
means (
(sqrtL (p,o)) . n
c= (sqrtL (p,o)) . (n + $1) &
(sqrtR (p,o)) . n
c= (sqrtR (p,o)) . (n + $1) );
A1:
S1[ 0 ]
;
A2:
for k being Nat st S1[k] holds
S1[k + 1]
proof
set T =
transitions_of (p,o);
let k be
Nat;
( S1[k] implies S1[k + 1] )
assume A3:
S1[k]
;
S1[k + 1]
set nk = n
+ k;
A4:
( (sqrtL (p,o)) . ((n + k) + 1) = ((transitions_of (p,o)) . ((n + k) + 1)) `1 & (sqrtR (p,o)) . ((n + k) + 1) = ((transitions_of (p,o)) . ((n + k) + 1)) `2 )
by Def3, Def4;
A5:
( (sqrtL (p,o)) . (n + k) = L_ ((transitions_of (p,o)) . (n + k)) & (sqrtR (p,o)) . (n + k) = R_ ((transitions_of (p,o)) . (n + k)) )
by Def3, Def4;
( ((transitions_of (p,o)) . ((n + k) + 1)) `1 = (L_ ((transitions_of (p,o)) . (n + k))) \/ (sqrt (o,(L_ ((transitions_of (p,o)) . (n + k))),(R_ ((transitions_of (p,o)) . (n + k))))) & ((transitions_of (p,o)) . ((n + k) + 1)) `2 = ((R_ ((transitions_of (p,o)) . (n + k))) \/ (sqrt (o,(L_ ((transitions_of (p,o)) . (n + k))),(L_ ((transitions_of (p,o)) . (n + k)))))) \/ (sqrt (o,(R_ ((transitions_of (p,o)) . (n + k))),(R_ ((transitions_of (p,o)) . (n + k))))) )
by Def2;
then
( ((transitions_of (p,o)) . ((n + k) + 1)) `1 = (L_ ((transitions_of (p,o)) . (n + k))) \/ (sqrt (o,(L_ ((transitions_of (p,o)) . (n + k))),(R_ ((transitions_of (p,o)) . (n + k))))) & ((transitions_of (p,o)) . ((n + k) + 1)) `2 = (R_ ((transitions_of (p,o)) . (n + k))) \/ ((sqrt (o,(L_ ((transitions_of (p,o)) . (n + k))),(L_ ((transitions_of (p,o)) . (n + k))))) \/ (sqrt (o,(R_ ((transitions_of (p,o)) . (n + k))),(R_ ((transitions_of (p,o)) . (n + k)))))) )
by XBOOLE_1:4;
then
( L_ ((transitions_of (p,o)) . (n + k)) c= L_ ((transitions_of (p,o)) . ((n + k) + 1)) & R_ ((transitions_of (p,o)) . (n + k)) c= R_ ((transitions_of (p,o)) . ((n + k) + 1)) )
by XBOOLE_1:7;
hence
S1[k + 1]
by A4, A5, A3, XBOOLE_1:1;
verum
end;
A6:
for k being Nat holds S1[k]
from NAT_1:sch 2(A1, A2);
assume
n <= m
;
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . m & (sqrtR (p,o)) . n c= (sqrtR (p,o)) . m )
then reconsider mn = m
- n as
Nat by NAT_1:21;
m = n + mn
;
hence
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . m & (sqrtR (p,o)) . n c= (sqrtR (p,o)) . m )
by A6;
verum
end;
theorem Th3:
for n being
Nat for o being
object for p being
pair object holds
(
(sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) &
(sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )
proof
let n be
Nat;
for o being object
for p being pair object holds
( (sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) & (sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )let o be
object ;
for p being pair object holds
( (sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) & (sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )let p be
pair object ;
( (sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) & (sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )
set T =
transitions_of (p,o);
A1:
( (sqrtL (p,o)) . (n + 1) = ((transitions_of (p,o)) . (n + 1)) `1 & (sqrtR (p,o)) . (n + 1) = ((transitions_of (p,o)) . (n + 1)) `2 )
by Def3, Def4;
( (sqrtL (p,o)) . n = ((transitions_of (p,o)) . n) `1 & (sqrtR (p,o)) . n = ((transitions_of (p,o)) . n) `2 )
by Def3, Def4;
hence
( (sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) & (sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )
by Def2, A1;
verum
end;
theorem Th4:
proof
let n be
Nat;
for o being object
for p being pair object st L_ p is surreal-membered & R_ p is surreal-membered holds
( (sqrtL (p,o)) . n is surreal-membered & (sqrtR (p,o)) . n is surreal-membered )let o be
object ;
for p being pair object st L_ p is surreal-membered & R_ p is surreal-membered holds
( (sqrtL (p,o)) . n is surreal-membered & (sqrtR (p,o)) . n is surreal-membered )let p be
pair object ;
( L_ p is surreal-membered & R_ p is surreal-membered implies ( (sqrtL (p,o)) . n is surreal-membered & (sqrtR (p,o)) . n is surreal-membered ) )
assume A1:
( L_ p is surreal-membered & R_ p is surreal-membered )
;
( (sqrtL (p,o)) . n is surreal-membered & (sqrtR (p,o)) . n is surreal-membered )
defpred S
1[
Nat]
means (
(sqrtL (p,o)) . $1 is
surreal-membered &
(sqrtR (p,o)) . $1 is
surreal-membered );
A2:
S1[ 0 ]
by A1, Th1;
A3:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A4:
S1[n]
;
S1[n + 1]
( (sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))) & (sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))) )
by Th3;
hence
S1[n + 1]
by A4;
verum
end;
for n being Nat holds S1[n]
from NAT_1:sch 2(A2, A3);
hence
( (sqrtL (p,o)) . n is surreal-membered & (sqrtR (p,o)) . n is surreal-membered )
;
verum
end;
theorem Th5:
proof
let o be
object ;
for p being pair object st L_ p is surreal-membered & R_ p is surreal-membered holds
( Union (sqrtL (p,o)) is surreal-membered & Union (sqrtR (p,o)) is surreal-membered )let p be
pair object ;
( L_ p is surreal-membered & R_ p is surreal-membered implies ( Union (sqrtL (p,o)) is surreal-membered & Union (sqrtR (p,o)) is surreal-membered ) )
assume A1:
( L_ p is surreal-membered & R_ p is surreal-membered )
;
( Union (sqrtL (p,o)) is surreal-membered & Union (sqrtR (p,o)) is surreal-membered )
thus
Union (sqrtL (p,o)) is surreal-membered
Union (sqrtR (p,o)) is surreal-membered
let a be
object ;
SURREAL0:def 16 ( not a in Union (sqrtR (p,o)) or a is surreal )
assume
a in Union (sqrtR (p,o))
;
a is surreal
then consider n being
object such that A3:
( n in dom (sqrtR (p,o)) & a in (sqrtR (p,o)) . n )
by CARD_5:2;
dom (sqrtR (p,o)) = NAT
by Def4;
then reconsider n = n as
Nat by A3;
(sqrtR (p,o)) . n is surreal-membered
by A1, Th4;
hence
a is surreal
by A3;
verum
end;
theorem Th6:
proof
let o be
object ;
for X1, X2, Y1, Y2 being set st X1 c= X2 & Y1 c= Y2 holds
sqrt (o,X1,Y1) c= sqrt (o,X2,Y2)let X1, X2, Y1, Y2 be
set ;
( X1 c= X2 & Y1 c= Y2 implies sqrt (o,X1,Y1) c= sqrt (o,X2,Y2) )
assume A1:
( X1 c= X2 & Y1 c= Y2 )
;
sqrt (o,X1,Y1) c= sqrt (o,X2,Y2)
let a be
object ;
TARSKI:def 3 ( not a in sqrt (o,X1,Y1) or a in sqrt (o,X2,Y2) )
assume
a in sqrt (o,X1,Y1)
;
a in sqrt (o,X2,Y2)
then
ex x1, y1 being Surreal st
( x1 in X1 & y1 in Y1 & not x1 + y1 == 0_No & a = (o +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
hence
a in sqrt (o,X2,Y2)
by A1, Def1;
verum
end;
theorem
proof
let o be
object ;
for p being pair object holds Union (sqrtL (p,o)) = (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))let p be
pair object ;
Union (sqrtL (p,o)) = (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
defpred S
1[
Nat]
means (sqrtL (p,o)) . $1
c= (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))));
(sqrtL (p,o)) . 0 = L_ p
by Th1;
then A1:
S1[ 0 ]
by XBOOLE_1:7;
A2:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A3:
S1[n]
;
S1[n + 1]
let a be
object ;
TARSKI:def 3 ( not a in (sqrtL (p,o)) . (n + 1) or a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))) )
assume A4:
a in (sqrtL (p,o)) . (n + 1)
;
a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
(sqrtL (p,o)) . (n + 1) = ((sqrtL (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n)))
by Th3;
per cases then
( a in (sqrtL (p,o)) . n or a in sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n)) )
by XBOOLE_0:def 3, A4;
suppose A5:
a in sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n))
;
a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
( (sqrtL (p,o)) . n c= Union (sqrtL (p,o)) & (sqrtR (p,o)) . n c= Union (sqrtR (p,o)) )
by ABCMIZ_1:1;
then
sqrt (o,((sqrtL (p,o)) . n),((sqrtR (p,o)) . n)) c= sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))
by Th6;
hence
a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
by A5, XBOOLE_0:def 3;
verum
end;
end;
end;
A6:
for n being Nat holds S1[n]
from NAT_1:sch 2(A1, A2);
thus
Union (sqrtL (p,o)) c= (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
XBOOLE_0:def 10 (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))) c= Union (sqrtL (p,o))
proof
let a be
object ;
TARSKI:def 3 ( not a in Union (sqrtL (p,o)) or a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))) )
assume
a in Union (sqrtL (p,o))
;
a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
then consider n being
object such that A7:
( n in dom (sqrtL (p,o)) & a in (sqrtL (p,o)) . n )
by CARD_5:2;
n in NAT
by A7, Def3;
then reconsider n = n as
Nat ;
(sqrtL (p,o)) . n c= (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
by A6;
hence
a in (L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))))
by A7;
verum
end;
A8:
sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))) c= Union (sqrtL (p,o))
proof
let a be
object ;
TARSKI:def 3 ( not a in sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o)))) or a in Union (sqrtL (p,o)) )
assume
a in sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))
;
a in Union (sqrtL (p,o))
then consider x1, y1 being
Surreal such that A9:
( x1 in Union (sqrtL (p,o)) & y1 in Union (sqrtR (p,o)) & not x1 + y1 == 0_No & a = (o +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider n being
object such that A10:
( n in dom (sqrtL (p,o)) & x1 in (sqrtL (p,o)) . n )
by A9, CARD_5:2;
consider m being
object such that A11:
( m in dom (sqrtR (p,o)) & y1 in (sqrtR (p,o)) . m )
by A9, CARD_5:2;
( n in NAT & m in NAT )
by A11, A10, Def3, Def4;
then reconsider n = n, m = m as
Nat ;
set nm = n
+ m;
( m <= n + m & n <= n + m )
by NAT_1:11;
then
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . (n + m) & (sqrtR (p,o)) . m c= (sqrtR (p,o)) . (n + m) )
by Th2;
then A12:
a in sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtR (p,o)) . (n + m)))
by A9, A10, A11, Def1;
(sqrtL (p,o)) . ((n + m) + 1) = ((sqrtL (p,o)) . (n + m)) \/ (sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtR (p,o)) . (n + m))))
by Th3;
then A13:
a in (sqrtL (p,o)) . ((n + m) + 1)
by A12, XBOOLE_0:def 3;
(n + m) + 1 in NAT
;
then
(n + m) + 1 in dom (sqrtL (p,o))
by Def3;
hence
a in Union (sqrtL (p,o))
by A13, CARD_5:2;
verum
end;
L_ p = (sqrtL (p,o)) . 0
by Th1;
then
L_ p c= Union (sqrtL (p,o))
by ABCMIZ_1:1;
hence
(L_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtR (p,o))))) c= Union (sqrtL (p,o))
by A8, XBOOLE_1:8;
verum
end;
theorem
proof
let o be
object ;
for p being pair object holds Union (sqrtR (p,o)) = ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))let p be
pair object ;
Union (sqrtR (p,o)) = ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
defpred S
1[
Nat]
means (sqrtR (p,o)) . $1
c= ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))));
(sqrtR (p,o)) . 0 = R_ p
by Th1;
then A1:
S1[ 0 ]
by XBOOLE_1:7, XBOOLE_1:10;
A2:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A3:
S1[n]
;
S1[n + 1]
let a be
object ;
TARSKI:def 3 ( not a in (sqrtR (p,o)) . (n + 1) or a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))) )
assume A4:
a in (sqrtR (p,o)) . (n + 1)
;
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
(sqrtR (p,o)) . (n + 1) = (((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)))) \/ (sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n)))
by Th3;
then
( a in ((sqrtR (p,o)) . n) \/ (sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n))) or a in sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n)) )
by XBOOLE_0:def 3, A4;
per cases then
( a in (sqrtR (p,o)) . n or a in sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)) or a in sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n)) )
by XBOOLE_0:def 3;
suppose A5:
a in sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n))
;
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
(sqrtL (p,o)) . n c= Union (sqrtL (p,o))
by ABCMIZ_1:1;
then
sqrt (o,((sqrtL (p,o)) . n),((sqrtL (p,o)) . n)) c= sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o))))
by Th6;
then
a in (R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))
by A5, XBOOLE_0:def 3;
hence
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
by XBOOLE_0:def 3;
verum
end;
suppose A6:
a in sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n))
;
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
(sqrtR (p,o)) . n c= Union (sqrtR (p,o))
by ABCMIZ_1:1;
then
sqrt (o,((sqrtR (p,o)) . n),((sqrtR (p,o)) . n)) c= sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))
by Th6;
hence
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
by A6, XBOOLE_0:def 3;
verum
end;
end;
end;
A7:
for n being Nat holds S1[n]
from NAT_1:sch 2(A1, A2);
thus
Union (sqrtR (p,o)) c= ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
XBOOLE_0:def 10 ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))) c= Union (sqrtR (p,o))
proof
let a be
object ;
TARSKI:def 3 ( not a in Union (sqrtR (p,o)) or a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))) )
assume
a in Union (sqrtR (p,o))
;
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
then consider n being
object such that A8:
( n in dom (sqrtR (p,o)) & a in (sqrtR (p,o)) . n )
by CARD_5:2;
n in NAT
by A8, Def4;
then reconsider n = n as
Nat ;
(sqrtR (p,o)) . n c= ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
by A7;
hence
a in ((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))))
by A8;
verum
end;
A9:
sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))) c= Union (sqrtR (p,o))
proof
let a be
object ;
TARSKI:def 3 ( not a in sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))) or a in Union (sqrtR (p,o)) )
assume
a in sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o))))
;
a in Union (sqrtR (p,o))
then consider x1, y1 being
Surreal such that A10:
( x1 in Union (sqrtL (p,o)) & y1 in Union (sqrtL (p,o)) & not x1 + y1 == 0_No & a = (o +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider n being
object such that A11:
( n in dom (sqrtL (p,o)) & x1 in (sqrtL (p,o)) . n )
by A10, CARD_5:2;
consider m being
object such that A12:
( m in dom (sqrtL (p,o)) & y1 in (sqrtL (p,o)) . m )
by A10, CARD_5:2;
( n in NAT & m in NAT )
by A12, A11, Def3;
then reconsider n = n, m = m as
Nat ;
set nm = n
+ m;
( m <= n + m & n <= n + m )
by NAT_1:11;
then
( (sqrtL (p,o)) . n c= (sqrtL (p,o)) . (n + m) & (sqrtL (p,o)) . m c= (sqrtL (p,o)) . (n + m) )
by Th2;
then
a in sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtL (p,o)) . (n + m)))
by A10, A11, A12, Def1;
then A13:
a in ((sqrtR (p,o)) . (n + m)) \/ (sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtL (p,o)) . (n + m))))
by XBOOLE_0:def 3;
(sqrtR (p,o)) . ((n + m) + 1) = (((sqrtR (p,o)) . (n + m)) \/ (sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtL (p,o)) . (n + m))))) \/ (sqrt (o,((sqrtR (p,o)) . (n + m)),((sqrtR (p,o)) . (n + m))))
by Th3;
then A14:
a in (sqrtR (p,o)) . ((n + m) + 1)
by A13, XBOOLE_0:def 3;
(n + m) + 1 in NAT
;
then
(n + m) + 1 in dom (sqrtR (p,o))
by Def4;
hence
a in Union (sqrtR (p,o))
by A14, CARD_5:2;
verum
end;
A15:
sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))) c= Union (sqrtR (p,o))
proof
let a be
object ;
TARSKI:def 3 ( not a in sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o)))) or a in Union (sqrtR (p,o)) )
assume
a in sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))
;
a in Union (sqrtR (p,o))
then consider x1, y1 being
Surreal such that A16:
( x1 in Union (sqrtR (p,o)) & y1 in Union (sqrtR (p,o)) & not x1 + y1 == 0_No & a = (o +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider n being
object such that A17:
( n in dom (sqrtR (p,o)) & x1 in (sqrtR (p,o)) . n )
by A16, CARD_5:2;
consider m being
object such that A18:
( m in dom (sqrtR (p,o)) & y1 in (sqrtR (p,o)) . m )
by A16, CARD_5:2;
( n in NAT & m in NAT )
by A18, A17, Def4;
then reconsider n = n, m = m as
Nat ;
set nm = n
+ m;
( m <= n + m & n <= n + m )
by NAT_1:11;
then
( (sqrtR (p,o)) . n c= (sqrtR (p,o)) . (n + m) & (sqrtR (p,o)) . m c= (sqrtR (p,o)) . (n + m) )
by Th2;
then A19:
a in sqrt (o,((sqrtR (p,o)) . (n + m)),((sqrtR (p,o)) . (n + m)))
by A16, A17, A18, Def1;
(sqrtR (p,o)) . ((n + m) + 1) = (((sqrtR (p,o)) . (n + m)) \/ (sqrt (o,((sqrtL (p,o)) . (n + m)),((sqrtL (p,o)) . (n + m))))) \/ (sqrt (o,((sqrtR (p,o)) . (n + m)),((sqrtR (p,o)) . (n + m))))
by Th3;
then A20:
a in (sqrtR (p,o)) . ((n + m) + 1)
by A19, XBOOLE_0:def 3;
(n + m) + 1 in NAT
;
then
(n + m) + 1 in dom (sqrtR (p,o))
by Def4;
hence
a in Union (sqrtR (p,o))
by A20, CARD_5:2;
verum
end;
R_ p = (sqrtR (p,o)) . 0
by Th1;
then
R_ p c= Union (sqrtR (p,o))
by ABCMIZ_1:1;
then
(R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o))))) c= Union (sqrtR (p,o))
by A9, XBOOLE_1:8;
hence
((R_ p) \/ (sqrt (o,(Union (sqrtL (p,o))),(Union (sqrtL (p,o)))))) \/ (sqrt (o,(Union (sqrtR (p,o))),(Union (sqrtR (p,o))))) c= Union (sqrtR (p,o))
by XBOOLE_1:8, A15;
verum
end;
definition
let A be
Ordinal;
existence
ex b1 being ManySortedSet of Day A ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) )
proof
deffunc H
1(
Ordinal)
-> Element of
K10(
(Games $1)) =
Day $1;
A1:
for A, B being Ordinal st A c= B holds
H1(A) c= H1(B)
by SURREAL0:35;
deffunc H
2(
object ,
c=-monotone Function-yielding Sequence)
-> object =
[(Union (sqrtL ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1))),(Union (sqrtR ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1)))];
A2:
for S being c=-monotone Function-yielding Sequence st ( for A being Ordinal st A in dom S holds
dom (S . A) = H1(A) ) holds
for A being Ordinal
for o being object st o in dom (S . A) holds
H2(o,S | A) = H2(o,S)
proof
let S be
c=-monotone Function-yielding Sequence;
( ( for A being Ordinal st A in dom S holds
dom (S . A) = H1(A) ) implies for A being Ordinal
for o being object st o in dom (S . A) holds
H2(o,S | A) = H2(o,S) )
assume A3:
for A being Ordinal st A in dom S holds
dom (S . A) = H1(A)
;
for A being Ordinal
for o being object st o in dom (S . A) holds
H2(o,S | A) = H2(o,S)
let A be
Ordinal;
for o being object st o in dom (S . A) holds
H2(o,S | A) = H2(o,S)let o be
object ;
( o in dom (S . A) implies H2(o,S | A) = H2(o,S) )
assume A4:
o in dom (S . A)
;
H2(o,S | A) = H2(o,S)
S . A <> {}
by A4;
then A5:
A in dom S
by FUNCT_1:def 2;
then A6:
dom (S . A) = H1(A)
by A3;
then reconsider x = o as
Surreal by A4;
set Nx =
NonNegativePart x;
A7:
born x c= A
by SURREAL0:def 18, A6, A4;
born (NonNegativePart x) c= born x
by Th11;
then A8:
born (NonNegativePart x) c= A
by A7, XBOOLE_1:1;
A9:
for a being object st a in L_ (NonNegativePart x) holds
ex B being Ordinal st
( a in dom (S . B) & B in A )
A13:
for a being object st a in R_ (NonNegativePart x) holds
ex B being Ordinal st
( a in dom (S . B) & B in A )
A17:
(union (rng S)) .: (L_ (NonNegativePart x)) = (union (rng (S | A))) .: (L_ (NonNegativePart x))
by A9, SURREALR:3;
(union (rng S)) .: (R_ (NonNegativePart x)) = (union (rng (S | A))) .: (R_ (NonNegativePart x))
by A13, SURREALR:3;
hence
H2(o,S | A) = H2(o,S)
by A17;
verum
end;
consider S being
c=-monotone Function-yielding Sequence such that A18:
dom S = succ A
and A19:
for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S . B = SB & ( for o being object st o in H1(B) holds
SB . o = H2(o,S | B) ) )
from SURREALR:sch 1(A2, A1);
consider SA being
ManySortedSet of H
1(A)
such that A20:
( S . A = SA & ( for o being object st o in H1(A) holds
SA . o = H2(o,S | A) ) )
by A19, ORDINAL1:6;
take
SA
;
ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & SA = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) )
take
S
;
( dom S = succ A & SA = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) )
thus
( dom S = succ A & SA = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) )
by A18, A20, A19;
verum
end;
uniqueness
for b1, b2 being ManySortedSet of Day A st ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) & ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & b2 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) holds
b1 = b2
proof
let dA1, dA2 be
ManySortedSet of
Day A;
( ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & dA1 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) & ex S being c=-monotone Function-yielding Sequence st
( dom S = succ A & dA2 = S . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for x being object st x in Day B holds
SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) implies dA1 = dA2 )
deffunc H
1(
Ordinal)
-> Element of
K10(
(Games $1)) =
Day $1;
deffunc H
2(
object ,
c=-monotone Function-yielding Sequence)
-> object =
[(Union (sqrtL ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1))),(Union (sqrtR ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1)))];
given S1 being
c=-monotone Function-yielding Sequence such that A21:
( dom S1 = succ A & dA1 = S1 . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S1 . B = SB & ( for x being object st x in Day B holds
SB . x = H2(x,S1 | B) ) ) ) )
;
( for S being c=-monotone Function-yielding Sequence holds
( not dom S = succ A or not dA2 = S . A or ex B being Ordinal st
( B in succ A & ( for SB being ManySortedSet of Day B holds
( not S . B = SB or ex x being object st
( x in Day B & not SB . x = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart x))),((union (rng (S | B))) .: (R_ (NonNegativePart x)))],x)))] ) ) ) ) ) or dA1 = dA2 )
given S2 being
c=-monotone Function-yielding Sequence such that A22:
( dom S2 = succ A & dA2 = S2 . A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of Day B st
( S2 . B = SB & ( for x being object st x in Day B holds
SB . x = H2(x,S2 | B) ) ) ) )
;
dA1 = dA2
A23:
( succ A c= dom S1 & succ A c= dom S2 )
by A21, A22;
A24:
for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S1 . B = SB & ( for o being object st o in H1(B) holds
SB . o = H2(o,S1 | B) ) )
by A21;
A25:
for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S2 . B = SB & ( for o being object st o in H1(B) holds
SB . o = H2(o,S2 | B) ) )
by A22;
S1 | (succ A) = S2 | (succ A)
from SURREALR:sch 2(A23, A24, A25);
then
S1 | (succ A) = S2
by A22;
hence
dA1 = dA2
by A21, A22;
verum
end;
end;
theorem Th14:
proof
deffunc H
1(
Ordinal)
-> Element of
K10(
(Games $1)) =
Day $1;
deffunc H
2(
object ,
c=-monotone Function-yielding Sequence)
-> object =
[(Union (sqrtL ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1))),(Union (sqrtR ([((union (rng $2)) .: (L_ (NonNegativePart $1))),((union (rng $2)) .: (R_ (NonNegativePart $1)))],$1)))];
let S1 be
c=-monotone Function-yielding Sequence;
( ( for B being Ordinal st B in dom S1 holds
ex SB being ManySortedSet of Day B st
( S1 . B = SB & ( for o being object st o in Day B holds
SB . o = [(Union (sqrtL ([((union (rng (S1 | B))) .: (L_ (NonNegativePart o))),((union (rng (S1 | B))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S1 | B))) .: (L_ (NonNegativePart o))),((union (rng (S1 | B))) .: (R_ (NonNegativePart o)))],o)))] ) ) ) implies for A being Ordinal st A in dom S1 holds
No_sqrt_op A = S1 . A )
assume A1:
for B being Ordinal st B in dom S1 holds
ex SB being ManySortedSet of H1(B) st
( S1 . B = SB & ( for x being object st x in H1(B) holds
SB . x = H2(x,S1 | B) ) )
;
for A being Ordinal st A in dom S1 holds
No_sqrt_op A = S1 . A
let A be
Ordinal;
( A in dom S1 implies No_sqrt_op A = S1 . A )
assume A2:
A in dom S1
;
No_sqrt_op A = S1 . A
A3:
succ A c= dom S1
by A2, ORDINAL1:21;
consider S2 being
c=-monotone Function-yielding Sequence such that A4:
( dom S2 = succ A & S2 . A = No_sqrt_op A & ( for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S2 . B = SB & ( for x being object st x in H1(B) holds
SB . x = H2(x,S2 | B) ) ) ) )
by Def6;
A5:
for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S1 . B = SB & ( for x being object st x in H1(B) holds
SB . x = H2(x,S1 | B) ) )
by A1, A3;
A6:
for B being Ordinal st B in succ A holds
ex SB being ManySortedSet of H1(B) st
( S2 . B = SB & ( for x being object st x in H1(B) holds
SB . x = H2(x,S2 | B) ) )
by A4;
A7:
( succ A c= dom S1 & succ A c= dom S2 )
by A2, ORDINAL1:21, A4;
A8:
S1 | (succ A) = S2 | (succ A)
from SURREALR:sch 2(A7, A5, A6);
A in succ A
by ORDINAL1:8;
hence
No_sqrt_op A = S1 . A
by A4, A8, FUNCT_1:49;
verum
end;
theorem Th15:
proof
let x be
Surreal;
sqrt x = [(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))]
set A =
born x;
set Nx =
NonNegativePart x;
consider S being
c=-monotone Function-yielding Sequence such that A1:
( dom S = succ (born x) & No_sqrt_op (born x) = S . (born x) )
and A2:
for B being Ordinal st B in succ (born x) holds
ex SB being ManySortedSet of Day B st
( S . B = SB & ( for o being object st o in Day B holds
SB . o = [(Union (sqrtL ([((union (rng (S | B))) .: (L_ (NonNegativePart o))),((union (rng (S | B))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | B))) .: (L_ (NonNegativePart o))),((union (rng (S | B))) .: (R_ (NonNegativePart o)))],o)))] ) )
by Def6;
set UA =
union (rng (S | (born x)));
consider SB being
ManySortedSet of
Day (born x) such that A3:
S . (born x) = SB
and A4:
for o being object st o in Day (born x) holds
SB . o = [(Union (sqrtL ([((union (rng (S | (born x)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born x)))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | (born x)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born x)))) .: (R_ (NonNegativePart o)))],o)))]
by A2, ORDINAL1:6;
x in Day (born x)
by SURREAL0:def 18;
then A5:
sqrt x = [(Union (sqrtL ([((union (rng (S | (born x)))) .: (L_ (NonNegativePart x))),((union (rng (S | (born x)))) .: (R_ (NonNegativePart x)))],x))),(Union (sqrtR ([((union (rng (S | (born x)))) .: (L_ (NonNegativePart x))),((union (rng (S | (born x)))) .: (R_ (NonNegativePart x)))],x)))]
by A4, A1, A3;
A6:
(union (rng (S | (born x)))) .: (L_ (NonNegativePart x)) c= L_ (sqrt_0 x)
proof
let y be
object ;
TARSKI:def 3 ( not y in (union (rng (S | (born x)))) .: (L_ (NonNegativePart x)) or y in L_ (sqrt_0 x) )
assume A7:
y in (union (rng (S | (born x)))) .: (L_ (NonNegativePart x))
;
y in L_ (sqrt_0 x)
consider o being
object such that A8:
( o in dom (union (rng (S | (born x)))) & o in L_ (NonNegativePart x) & (union (rng (S | (born x)))) . o = y )
by A7, FUNCT_1:def 6;
reconsider o = o as
Surreal by SURREAL0:def 16, A8;
set b =
born o;
A9:
o in L_ x
by Th10, A8;
A10:
o in Day (born o)
by SURREAL0:def 18;
A11:
o in (L_ x) \/ (R_ x)
by A9, XBOOLE_0:def 3;
then A12:
born o in born x
by SURREALO:1;
A13:
born o in succ (born x)
by A11, SURREALO:1, ORDINAL1:8;
then
ex SB being ManySortedSet of Day (born o) st
( S . (born o) = SB & ( for o being object st o in Day (born o) holds
SB . o = [(Union (sqrtL ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o)))] ) )
by A2;
then A14:
o in dom (S . (born o))
by A10, PARTFUN1:def 2;
then A15:
(union (rng (S | (born x)))) . o = (union (rng S)) . o
by A12, SURREALR:5;
A16:
No_sqrt_op (born o) = S . (born o)
by A1, A2, Th14, A13;
y = sqrt o
by A8, A15, A13, A1, A14, SURREALR:2, A16;
hence
y in L_ (sqrt_0 x)
by Def9, A8;
verum
end;
A17:
L_ (sqrt_0 x) c= (union (rng (S | (born x)))) .: (L_ (NonNegativePart x))
proof
let y be
object ;
TARSKI:def 3 ( not y in L_ (sqrt_0 x) or y in (union (rng (S | (born x)))) .: (L_ (NonNegativePart x)) )
assume
y in L_ (sqrt_0 x)
;
y in (union (rng (S | (born x)))) .: (L_ (NonNegativePart x))
then consider o being
Surreal such that A18:
( y = sqrt o & o in L_ (NonNegativePart x) )
by Def9;
set b =
born o;
A19:
o in L_ x
by Th10, A18;
A20:
o in Day (born o)
by SURREAL0:def 18;
A21:
o in (L_ x) \/ (R_ x)
by A19, XBOOLE_0:def 3;
then A22:
born o in born x
by SURREALO:1;
A23:
born o in succ (born x)
by SURREALO:1, A21, ORDINAL1:8;
then
ex SB being ManySortedSet of Day (born o) st
( S . (born o) = SB & ( for o being object st o in Day (born o) holds
SB . o = [(Union (sqrtL ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o)))] ) )
by A2;
then A24:
o in dom (S . (born o))
by A20, PARTFUN1:def 2;
then A25:
(union (rng (S | (born x)))) . o = (union (rng S)) . o
by A22, SURREALR:5;
A26:
born o in dom S
by SURREALO:1, A21, ORDINAL1:8, A1;
A27:
No_sqrt_op (born o) = S . (born o)
by A1, A2, Th14, A23;
A28:
y = (union (rng S)) . o
by A18, A24, A26, SURREALR:2, A27;
o in dom (union (rng (S | (born x))))
by SURREALR:5, A22, A24;
hence
y in (union (rng (S | (born x)))) .: (L_ (NonNegativePart x))
by A18, A28, A25, FUNCT_1:def 6;
verum
end;
A29:
(union (rng (S | (born x)))) .: (R_ (NonNegativePart x)) c= R_ (sqrt_0 x)
proof
let y be
object ;
TARSKI:def 3 ( not y in (union (rng (S | (born x)))) .: (R_ (NonNegativePart x)) or y in R_ (sqrt_0 x) )
assume A30:
y in (union (rng (S | (born x)))) .: (R_ (NonNegativePart x))
;
y in R_ (sqrt_0 x)
consider o being
object such that A31:
( o in dom (union (rng (S | (born x)))) & o in R_ (NonNegativePart x) & (union (rng (S | (born x)))) . o = y )
by A30, FUNCT_1:def 6;
reconsider o = o as
Surreal by A31, SURREAL0:def 16;
set b =
born o;
A32:
o in R_ x
by Th10, A31;
A33:
o in Day (born o)
by SURREAL0:def 18;
A34:
o in (L_ x) \/ (R_ x)
by A32, XBOOLE_0:def 3;
then A35:
born o in born x
by SURREALO:1;
A36:
born o in succ (born x)
by A34, SURREALO:1, ORDINAL1:8;
then
ex SB being ManySortedSet of Day (born o) st
( S . (born o) = SB & ( for o being object st o in Day (born o) holds
SB . o = [(Union (sqrtL ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o)))] ) )
by A2;
then A37:
o in dom (S . (born o))
by A33, PARTFUN1:def 2;
A38:
born o in dom S
by A34, SURREALO:1, ORDINAL1:8, A1;
A39:
No_sqrt_op (born o) = S . (born o)
by A1, A2, Th14, A36;
(S . (born o)) . o = (union (rng S)) . o
by A37, A38, SURREALR:2;
then
y = sqrt o
by A39, A31, A37, A35, SURREALR:5;
hence
y in R_ (sqrt_0 x)
by Def9, A31;
verum
end;
A40:
R_ (sqrt_0 x) c= (union (rng (S | (born x)))) .: (R_ (NonNegativePart x))
proof
let y be
object ;
TARSKI:def 3 ( not y in R_ (sqrt_0 x) or y in (union (rng (S | (born x)))) .: (R_ (NonNegativePart x)) )
assume
y in R_ (sqrt_0 x)
;
y in (union (rng (S | (born x)))) .: (R_ (NonNegativePart x))
then consider o being
Surreal such that A41:
( y = sqrt o & o in R_ (NonNegativePart x) )
by Def9;
set b =
born o;
A42:
o in R_ x
by Th10, A41;
A43:
o in Day (born o)
by SURREAL0:def 18;
A44:
o in (L_ x) \/ (R_ x)
by A42, XBOOLE_0:def 3;
then A45:
born o in born x
by SURREALO:1;
A46:
born o in succ (born x)
by A44, ORDINAL1:8, SURREALO:1;
then
ex SB being ManySortedSet of Day (born o) st
( S . (born o) = SB & ( for o being object st o in Day (born o) holds
SB . o = [(Union (sqrtL ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o))),(Union (sqrtR ([((union (rng (S | (born o)))) .: (L_ (NonNegativePart o))),((union (rng (S | (born o)))) .: (R_ (NonNegativePart o)))],o)))] ) )
by A2;
then A47:
o in dom (S . (born o))
by A43, PARTFUN1:def 2;
then A48:
(union (rng (S | (born x)))) . o = (union (rng S)) . o
by A45, SURREALR:5;
A49:
born o in dom S
by A44, ORDINAL1:8, SURREALO:1, A1;
A50:
No_sqrt_op (born o) = S . (born o)
by A1, A2, Th14, A46;
A51:
y = (union (rng S)) . o
by A41, A47, A49, SURREALR:2, A50;
o in dom (union (rng (S | (born x))))
by SURREALR:5, A45, A47;
hence
y in (union (rng (S | (born x)))) .: (R_ (NonNegativePart x))
by A41, A51, A48, FUNCT_1:def 6;
verum
end;
A52:
(union (rng (S | (born x)))) .: (L_ (NonNegativePart x)) = L_ (sqrt_0 x)
by A6, A17, XBOOLE_0:def 10;
(union (rng (S | (born x)))) .: (R_ (NonNegativePart x)) = R_ (sqrt_0 x)
by A29, A40, XBOOLE_0:def 10;
hence
sqrt x = [(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))]
by A5, A52;
verum
end;
theorem Th17:
for x1, x2, y, z being
Surreal st not x2
== 0_No & y
= x1
* (x2 ") holds
( ( y
* y
< z implies x1
* x1
< z
* (x2 * x2) ) & ( x1
* x1
< z
* (x2 * x2) implies y
* y
< z ) & ( z
< y
* y implies z
* (x2 * x2) < x1
* x1 ) & ( z
* (x2 * x2) < x1
* x1 implies z
< y
* y ) )
proof
let x1, x2, y, z be
Surreal;
( not x2 == 0_No & y = x1 * (x2 ") implies ( ( y * y < z implies x1 * x1 < z * (x2 * x2) ) & ( x1 * x1 < z * (x2 * x2) implies y * y < z ) & ( z < y * y implies z * (x2 * x2) < x1 * x1 ) & ( z * (x2 * x2) < x1 * x1 implies z < y * y ) ) )
assume A1:
( not x2 == 0_No & y = x1 * (x2 ") )
;
( ( y * y < z implies x1 * x1 < z * (x2 * x2) ) & ( x1 * x1 < z * (x2 * x2) implies y * y < z ) & ( z < y * y implies z * (x2 * x2) < x1 * x1 ) & ( z * (x2 * x2) < x1 * x1 implies z < y * y ) )
x2 * (x2 ") == 1_No
by A1, SURREALI:33;
then
( (x2 * (x2 ")) * (x2 * (x2 ")) == 1_No * (x2 * (x2 ")) & 1_No * (x2 * (x2 ")) == 1_No * 1_No & 1_No * 1_No = 1_No )
by SURREALR:54;
then A2:
(x2 * (x2 ")) * (x2 * (x2 ")) == 1_No
by SURREALO:4;
( ((x2 ") * (x2 ")) * (x2 * x2) == (x2 ") * ((x2 ") * (x2 * x2)) & (x2 ") * ((x2 ") * (x2 * x2)) == (x2 ") * (((x2 ") * x2) * x2) )
by SURREALR:54, SURREALR:69;
then
( ((x2 ") * (x2 ")) * (x2 * x2) == (x2 ") * (((x2 ") * x2) * x2) & (x2 ") * (((x2 ") * x2) * x2) == ((x2 ") * x2) * ((x2 ") * x2) )
by SURREALO:4, SURREALR:69;
then
((x2 ") * (x2 ")) * (x2 * x2) == ((x2 ") * x2) * ((x2 ") * x2)
by SURREALO:4;
then A3:
((x2 ") * (x2 ")) * (x2 * x2) == 1_No
by A2, SURREALO:4;
( y * y == x1 * ((x2 ") * ((x2 ") * x1)) & x1 * ((x2 ") * ((x2 ") * x1)) == x1 * (x1 * ((x2 ") * (x2 "))) )
by SURREALR:54, SURREALR:69, A1;
then
( y * y == x1 * (x1 * ((x2 ") * (x2 "))) & x1 * (x1 * ((x2 ") * (x2 "))) == (x1 * x1) * ((x2 ") * (x2 ")) )
by SURREALO:4, SURREALR:69;
then
y * y == (x1 * x1) * ((x2 ") * (x2 "))
by SURREALO:4;
then
( (y * y) * (x2 * x2) == ((x1 * x1) * ((x2 ") * (x2 "))) * (x2 * x2) & ((x1 * x1) * ((x2 ") * (x2 "))) * (x2 * x2) == (x1 * x1) * (((x2 ") * (x2 ")) * (x2 * x2)) )
by SURREALR:54, SURREALR:69;
then
( (y * y) * (x2 * x2) == (x1 * x1) * (((x2 ") * (x2 ")) * (x2 * x2)) & (x1 * x1) * (((x2 ") * (x2 ")) * (x2 * x2)) == (x1 * x1) * 1_No & (x1 * x1) * 1_No = x1 * x1 )
by A3, SURREALO:4, SURREALR:54;
then A4:
(y * y) * (x2 * x2) == x1 * x1
by SURREALO:4;
A5:
0_No < x2 * x2
by A1, SURREALR:72;
thus
( y * y < z implies x1 * x1 < z * (x2 * x2) )
( ( x1 * x1 < z * (x2 * x2) implies y * y < z ) & ( z < y * y implies z * (x2 * x2) < x1 * x1 ) & ( z * (x2 * x2) < x1 * x1 implies z < y * y ) )
A6:
0_No <= x2 * x2
by A1, SURREALR:72;
thus
( x1 * x1 < z * (x2 * x2) implies y * y < z )
( z < y * y iff z * (x2 * x2) < x1 * x1 )
thus
( z < y * y implies z * (x2 * x2) < x1 * x1 )
( z * (x2 * x2) < x1 * x1 implies z < y * y )
assume
z * (x2 * x2) < x1 * x1
;
z < y * y
then
z * (x2 * x2) < (y * y) * (x2 * x2)
by A4, SURREALO:4;
hence
z < y * y
by A6, SURREALR:75;
verum
end;
Lm1:
for x, y, z being Surreal holds z * ((x + y) * (x + y)) == ((z * (x * x)) + (z * (y * y))) + ((z * (x * y)) + (z * (y * x)))
Lm2:
for x, y, z being Surreal holds ((x * x) + ((y * z) * (y * z))) - ((x * (y * y)) + (x * (z * z))) == (x - (y * y)) * (x - (z * z))
theorem Th18:
proof
let o be
object ;
for x being Surreal st x <= 0_No holds
Union (sqrtL ((sqrt_0 x),o)) = {} let x be
Surreal;
( x <= 0_No implies Union (sqrtL ((sqrt_0 x),o)) = {} )
assume A1:
x <= 0_No
;
Union (sqrtL ((sqrt_0 x),o)) = {}
defpred S
1[
Nat]
means (sqrtL ((sqrt_0 x),o)) . $1
= {} ;
A2:
S1[ 0 ]
A6:
for n being Nat st S1[n] holds
S1[n + 1]
A9:
for n being Nat holds S1[n]
from NAT_1:sch 2(A2, A6);
assume
Union (sqrtL ((sqrt_0 x),o)) <> {}
;
contradiction
then consider a being
object such that A10:
a in Union (sqrtL ((sqrt_0 x),o))
by XBOOLE_0:def 1;
consider n being
object such that A11:
( n in dom (sqrtL ((sqrt_0 x),o)) & a in (sqrtL ((sqrt_0 x),o)) . n )
by A10, CARD_5:2;
dom (sqrtL ((sqrt_0 x),o)) = NAT
by Def3;
then reconsider n = n as
Nat by A11;
(sqrtL ((sqrt_0 x),o)) . n = {}
by A9;
hence
contradiction
by A11;
verum
end;
theorem Th19:
proof
let x, y be
Surreal;
( 0_No <= x implies ( ( y = sqrt x implies ( 0_No <= y & y * y == x & ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) ) ) & ( y in L_ (sqrt x) implies ( 0_No <= y & y * y < x ) ) & ( y in R_ (sqrt x) implies ( 0_No < y & x < y * y ) ) & sqrt x is surreal ) )
defpred S
1[
Ordinal]
means for x being
Surreal st
born x
= $1 &
0_No <= x holds
(
sqrt x is
surreal & ( for y being
Surreal st y
= sqrt x holds
(
0_No <= y & y
* y
== x & ( x
== 0_No implies y
== 0_No ) & (
0_No < x implies
0_No < y ) ) ) & ( for y being
Surreal st y
in L_ (sqrt x) holds
(
0_No <= y & y
* y
< x ) ) & ( for y being
Surreal st y
in R_ (sqrt x) holds
(
0_No < y & x
< y
* y ) ) );
A1:
for D being Ordinal st ( for C being Ordinal st C in D holds
S1[C] ) holds
S1[D]
proof
let D be
Ordinal;
( ( for C being Ordinal st C in D holds
S1[C] ) implies S1[D] )
assume A2:
for C being Ordinal st C in D holds
S1[C]
;
S1[D]
let x be
Surreal;
( born x = D & 0_No <= x implies ( sqrt x is surreal & ( for y being Surreal st y = sqrt x holds
( 0_No <= y & y * y == x & ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) ) ) & ( for y being Surreal st y in L_ (sqrt x) holds
( 0_No <= y & y * y < x ) ) & ( for y being Surreal st y in R_ (sqrt x) holds
( 0_No < y & x < y * y ) ) ) )
assume A3:
( born x = D & 0_No <= x )
;
( sqrt x is surreal & ( for y being Surreal st y = sqrt x holds
( 0_No <= y & y * y == x & ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) ) ) & ( for y being Surreal st y in L_ (sqrt x) holds
( 0_No <= y & y * y < x ) ) & ( for y being Surreal st y in R_ (sqrt x) holds
( 0_No < y & x < y * y ) ) )
set S =
sqrt x;
set S0 =
sqrt_0 x;
A4:
sqrt x = [(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))]
by Th15;
defpred S
2[
Nat]
means ( ( for y being
Surreal st y
in (sqrtL ((sqrt_0 x),x)) . $1 holds
(
0_No <= y & y
* y
< x ) ) & ( for y being
Surreal st y
in (sqrtR ((sqrt_0 x),x)) . $1 holds
(
0_No < y & x
< y
* y ) ) );
set Nx =
NonNegativePart x;
A5:
S2[ 0 ]
proof
thus
for y being Surreal st y in (sqrtL ((sqrt_0 x),x)) . 0 holds
( 0_No <= y & y * y < x )
for y being Surreal st y in (sqrtR ((sqrt_0 x),x)) . 0 holds
( 0_No < y & x < y * y )
proof
let y be
Surreal;
( y in (sqrtL ((sqrt_0 x),x)) . 0 implies ( 0_No <= y & y * y < x ) )
assume A6:
y in (sqrtL ((sqrt_0 x),x)) . 0
;
( 0_No <= y & y * y < x )
y in L_ (sqrt_0 x)
by A6, Th1;
then consider l being
Surreal such that A7:
( y = sqrt l & l in L_ (NonNegativePart x) )
by Def9;
A8:
( l in L_ x & 0_No <= l )
by Th10, A7;
A9:
( L_ x << {x} & x in {x} )
by SURREALO:11, TARSKI:def 1;
l in (L_ x) \/ (R_ x)
by A8, XBOOLE_0:def 3;
then
born l in D
by A3, SURREALO:1;
then
( 0_No <= y & y * y == l )
by A2, A8, A7;
hence
( 0_No <= y & y * y < x )
by A9, A8, SURREALO:4;
verum
end;
let y be
Surreal;
( y in (sqrtR ((sqrt_0 x),x)) . 0 implies ( 0_No < y & x < y * y ) )
assume A10:
y in (sqrtR ((sqrt_0 x),x)) . 0
;
( 0_No < y & x < y * y )
y in R_ (sqrt_0 x)
by A10, Th1;
then consider r being
Surreal such that A11:
( y = sqrt r & r in R_ (NonNegativePart x) )
by Def9;
A12:
( r in R_ x & 0_No <= r )
by A11, Th10;
then
r in (L_ x) \/ (R_ x)
by XBOOLE_0:def 3;
then A13:
born r in D
by A3, SURREALO:1;
then A14:
( 0_No <= y & y * y == r )
by A2, A11, A12;
A15:
( x in {x} & {x} << R_ x )
by SURREALO:11, TARSKI:def 1;
then
0_No < r
by A3, A12, SURREALO:4;
hence
( 0_No < y & x < y * y )
by A15, A12, A13, A2, A11, A14, SURREALO:4;
verum
end;
A16:
for n being Nat st S2[n] holds
S2[n + 1]
proof
let n be
Nat;
( S2[n] implies S2[n + 1] )
assume A17:
S2[n]
;
S2[n + 1]
thus
for y being Surreal st y in (sqrtL ((sqrt_0 x),x)) . (n + 1) holds
( 0_No <= y & y * y < x )
for y being Surreal st y in (sqrtR ((sqrt_0 x),x)) . (n + 1) holds
( 0_No < y & x < y * y )
proof
let y be
Surreal;
( y in (sqrtL ((sqrt_0 x),x)) . (n + 1) implies ( 0_No <= y & y * y < x ) )
assume A18:
y in (sqrtL ((sqrt_0 x),x)) . (n + 1)
;
( 0_No <= y & y * y < x )
y in ((sqrtL ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)))
by A18, Th3;
per cases then
( y in (sqrtL ((sqrt_0 x),x)) . n or y in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by XBOOLE_0:def 3;
suppose
y in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n))
;
( 0_No <= y & y * y < x )
then consider L1, R1 being
Surreal such that A19:
( L1 in (sqrtL ((sqrt_0 x),x)) . n & R1 in (sqrtR ((sqrt_0 x),x)) . n & not L1 + R1 == 0_No & y = (x +' (L1 * R1)) * ((L1 + R1) ") )
by Def1;
A20:
( 0_No <= L1 & 0_No <= R1 )
by A19, A17;
then
0_No + 0_No <= L1 + R1
by SURREALR:43;
then A21:
0_No <= (L1 + R1) "
by A19, SURREALI:40;
0_No * R1 <= L1 * R1
by A20, SURREALR:75;
then
0_No + 0_No <= x + (L1 * R1)
by A3, SURREALR:43;
then A22:
0_No * ((L1 + R1) ") <= (x +' (L1 * R1)) * ((L1 + R1) ")
by A21, SURREALR:75;
( L1 * L1 < x & x < R1 * R1 )
by A19, A17;
then
( 0_No < x - (L1 * L1) & x - (R1 * R1) < 0_No )
by SURREALR:45, SURREALR:46;
then A23:
(x - (L1 * L1)) * (x - (R1 * R1)) < 0_No
by SURREALR:74;
((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1))) == (x - (L1 * L1)) * (x - (R1 * R1))
by Lm2;
then
((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1))) < 0_No
by A23, SURREALO:4;
then A24:
(x * x) + ((L1 * R1) * (L1 * R1)) < (x * (L1 * L1)) + (x * (R1 * R1))
by SURREALR:46;
A25:
x * ((L1 + R1) * (L1 + R1)) == ((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + (x * (R1 * L1)))
by Lm1;
A26:
(x + (L1 * R1)) * (x + (L1 * R1)) == ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by SURREALR:76;
((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x)) < ((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by A24, SURREALR:44;
then
((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + (x * (L1 * R1))) < x * ((L1 + R1) * (L1 + R1))
by A25, SURREALO:4;
then
(x + (L1 * R1)) * (x + (L1 * R1)) < x * ((L1 + R1) * (L1 + R1))
by A26, SURREALO:4;
hence
( 0_No <= y & y * y < x )
by A22, A19, Th17;
verum
end;
end;
end;
let y be
Surreal;
( y in (sqrtR ((sqrt_0 x),x)) . (n + 1) implies ( 0_No < y & x < y * y ) )
assume A27:
y in (sqrtR ((sqrt_0 x),x)) . (n + 1)
;
( 0_No < y & x < y * y )
y in (((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n)))) \/ (sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)))
by A27, Th3;
then
( y in ((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n))) or y in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by XBOOLE_0:def 3;
per cases then
( y in (sqrtR ((sqrt_0 x),x)) . n or y in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n)) or y in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by XBOOLE_0:def 3;
suppose
y in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n))
;
( 0_No < y & x < y * y )
then consider L1, R1 being
Surreal such that A28:
( L1 in (sqrtL ((sqrt_0 x),x)) . n & R1 in (sqrtL ((sqrt_0 x),x)) . n & not L1 + R1 == 0_No & y = (x +' (L1 * R1)) * ((L1 + R1) ") )
by Def1;
A29:
( 0_No <= L1 & 0_No <= R1 )
by A28, A17;
then
0_No + 0_No <= L1 + R1
by SURREALR:43;
then A30:
0_No < (L1 + R1) "
by A28, SURREALI:40;
A31:
(sqrtL ((sqrt_0 x),x)) . n c= Union (sqrtL ((sqrt_0 x),x))
by ABCMIZ_1:1;
0_No * R1 <= L1 * R1
by A29, SURREALR:75;
then A32:
0_No + 0_No < x + (L1 * R1)
by A31, Th18, A28, SURREALR:44;
( 0_No < x - (L1 * L1) & 0_No < x - (R1 * R1) )
by A28, A17, SURREALR:45;
then A33:
0_No < (x - (L1 * L1)) * (x - (R1 * R1))
by SURREALR:72;
((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1))) == (x - (L1 * L1)) * (x - (R1 * R1))
by Lm2;
then
0_No < ((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1)))
by A33, SURREALO:4;
then A34:
(x * (L1 * L1)) + (x * (R1 * R1)) < (x * x) + ((L1 * R1) * (L1 * R1))
by SURREALR:45;
A35:
x * ((L1 + R1) * (L1 + R1)) == ((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + (x * (R1 * L1)))
by Lm1;
A36:
(x + (L1 * R1)) * (x + (L1 * R1)) == ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by SURREALR:76;
((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x)) < ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by A34, SURREALR:44;
then
x * ((L1 + R1) * (L1 + R1)) < ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + (x * (L1 * R1)))
by A35, SURREALO:4;
then
x * ((L1 + R1) * (L1 + R1)) < (x + (L1 * R1)) * (x + (L1 * R1))
by A36, SURREALO:4;
hence
( 0_No < y & x < y * y )
by A32, A28, Th17, A30, SURREALR:72;
verum
end;
suppose
y in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n))
;
( 0_No < y & x < y * y )
then consider L1, R1 being
Surreal such that A37:
( L1 in (sqrtR ((sqrt_0 x),x)) . n & R1 in (sqrtR ((sqrt_0 x),x)) . n & not L1 + R1 == 0_No & y = (x +' (L1 * R1)) * ((L1 + R1) ") )
by Def1;
A38:
( 0_No < L1 & 0_No < R1 )
by A37, A17;
( 0_No < L1 & 0_No <= R1 )
by A37, A17;
then
0_No + 0_No < L1 + R1
by SURREALR:44;
then A39:
0_No < (L1 + R1) "
by A37, SURREALI:40;
0_No < L1 * R1
by A38, SURREALR:72;
then A40:
0_No + 0_No < x + (L1 * R1)
by A3, SURREALR:44;
( x < L1 * L1 & x < R1 * R1 )
by A37, A17;
then
( x - (L1 * L1) < 0_No & x - (R1 * R1) < 0_No )
by SURREALR:46;
then A41:
0_No < (x - (L1 * L1)) * (x - (R1 * R1))
by SURREALR:72;
((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1))) == (x - (L1 * L1)) * (x - (R1 * R1))
by Lm2;
then
0_No < ((x * x) + ((L1 * R1) * (L1 * R1))) - ((x * (L1 * L1)) + (x * (R1 * R1)))
by A41, SURREALO:4;
then A42:
(x * (L1 * L1)) + (x * (R1 * R1)) < (x * x) + ((L1 * R1) * (L1 * R1))
by SURREALR:45;
A43:
x * ((L1 + R1) * (L1 + R1)) == ((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + (x * (R1 * L1)))
by Lm1;
A44:
(x + (L1 * R1)) * (x + (L1 * R1)) == ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by SURREALR:76;
((x * (L1 * L1)) + (x * (R1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x)) < ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + ((L1 * R1) * x))
by A42, SURREALR:44;
then
x * ((L1 + R1) * (L1 + R1)) < ((x * x) + ((L1 * R1) * (L1 * R1))) + ((x * (L1 * R1)) + (x * (L1 * R1)))
by A43, SURREALO:4;
then
x * ((L1 + R1) * (L1 + R1)) < (x + (L1 * R1)) * (x + (L1 * R1))
by A44, SURREALO:4;
hence
( 0_No < y & x < y * y )
by A40, A37, A39, SURREALR:72, Th17;
verum
end;
end;
end;
A45:
for n being Nat holds S2[n]
from NAT_1:sch 2(A5, A16);
A46:
for y being Surreal st y in L_ (sqrt x) holds
( 0_No <= y & y * y < x )
A48:
for y being Surreal st y in R_ (sqrt x) holds
( 0_No < y & x < y * y )
A50:
L_ (sqrt_0 x) is surreal-membered
R_ (sqrt_0 x) is surreal-membered
then
( Union (sqrtL ((sqrt_0 x),x)) is surreal-membered & Union (sqrtR ((sqrt_0 x),x)) is surreal-membered )
by A50, Th5;
then consider M being
Ordinal such that A55:
for o being object st o in (Union (sqrtL ((sqrt_0 x),x))) \/ (Union (sqrtR ((sqrt_0 x),x))) holds
ex A being Ordinal st
( A in M & o in Day A )
by SURREAL0:47;
Union (sqrtL ((sqrt_0 x),x)) << Union (sqrtR ((sqrt_0 x),x))
proof
let l, r be
Surreal;
SURREAL0:def 20 ( not l in Union (sqrtL ((sqrt_0 x),x)) or not r in Union (sqrtR ((sqrt_0 x),x)) or not r <= l )
assume A56:
( l in Union (sqrtL ((sqrt_0 x),x)) & r in Union (sqrtR ((sqrt_0 x),x)) & r <= l )
;
contradiction
consider n being
object such that A57:
( n in dom (sqrtL ((sqrt_0 x),x)) & l in (sqrtL ((sqrt_0 x),x)) . n )
by A56, CARD_5:2;
consider k being
object such that A58:
( k in dom (sqrtR ((sqrt_0 x),x)) & r in (sqrtR ((sqrt_0 x),x)) . k )
by A56, CARD_5:2;
( dom (sqrtL ((sqrt_0 x),x)) = NAT & NAT = dom (sqrtR ((sqrt_0 x),x)) )
by Def3, Def4;
then reconsider n = n, k = k as
Nat by A57, A58;
A59:
( S2[n] & S2[k] )
by A45;
then A60:
( 0_No <= l & l * l < x & 0_No <= r & x < r * r )
by A57, A58;
then
( r * r <= r * l & r * l <= l * l )
by A56, SURREALR:75;
then
r * r <= l * l
by SURREALO:4;
then
x <= l * l
by A60, SURREALO:4;
hence
contradiction
by A57, A59;
verum
end;
then
[(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))] in Day M
by A55, SURREAL0:46;
then reconsider S =
sqrt x as
Surreal by Th15;
A61:
for y being Surreal st y = sqrt x holds
( 0_No <= y & y * y == x )
proof
let y be
Surreal;
( y = sqrt x implies ( 0_No <= y & y * y == x ) )
assume A62:
y = sqrt x
;
( 0_No <= y & y * y == x )
A63:
L_ 0_No << {y}
;
{0_No} << R_ y
hence A66:
0_No <= y
by A63, SURREAL0:43;
y * y == x
A67:
y * y = [((comp ((L_ y),y,y,(L_ y))) \/ (comp ((R_ y),y,y,(R_ y)))),((comp ((L_ y),y,y,(R_ y))) \/ (comp ((R_ y),y,y,(L_ y))))]
by SURREALR:50;
A68:
L_ (y * y) << {x}
proof
let a, b be
Surreal;
SURREAL0:def 20 ( not a in L_ (y * y) or not b in {x} or not b <= a )
assume A69:
( a in L_ (y * y) & b in {x} )
;
not b <= a
per cases
( a in comp ((L_ y),y,y,(L_ y)) or a in comp ((R_ y),y,y,(R_ y)) )
by XBOOLE_0:def 3, A67, A69;
suppose
a in comp ((L_ y),y,y,(L_ y))
;
not b <= a
then consider x1, y1 being
Surreal such that A70:
( a = ((x1 * y) + (y * y1)) - (x1 * y1) & x1 in L_ y & y1 in L_ y )
by SURREALR:def 15;
consider n being
object such that A71:
( n in dom (sqrtL ((sqrt_0 x),x)) & x1 in (sqrtL ((sqrt_0 x),x)) . n )
by A70, A4, A62, CARD_5:2;
dom (sqrtL ((sqrt_0 x),x)) = NAT
by Def3;
then reconsider n = n as
Nat by A71;
consider m being
object such that A72:
( m in dom (sqrtL ((sqrt_0 x),x)) & y1 in (sqrtL ((sqrt_0 x),x)) . m )
by A70, A4, A62, CARD_5:2;
dom (sqrtL ((sqrt_0 x),x)) = NAT
by Def3;
then reconsider n = n, m = m as
Nat by A72;
set nm = n
+ m;
A73:
( n <= n + m & m <= n + m )
by NAT_1:11;
then A74:
( (sqrtL ((sqrt_0 x),x)) . n c= (sqrtL ((sqrt_0 x),x)) . (n + m) & (sqrtL ((sqrt_0 x),x)) . m c= (sqrtL ((sqrt_0 x),x)) . (n + m) )
by Th2;
A75:
(sqrtL ((sqrt_0 x),x)) . n c= Union (sqrtL ((sqrt_0 x),x))
by ABCMIZ_1:1;
set X = x
+ (x1 * y1);
A76:
( 0_No <= x1 & 0_No <= y1 )
by A73, A71, A72, A45;
per cases
( ( x1 == 0_No & y1 == 0_No ) or not x1 == 0_No or not y1 == 0_No )
;
suppose A77:
( not x1 == 0_No or not y1 == 0_No )
;
not b <= a
then
0_No + 0_No < x1 + y1
by A76, SURREALR:44;
then A78:
not x1 + y1 == 0_No
;
then
(x + (x1 * y1)) * ((x1 + y1) ") in sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtL ((sqrt_0 x),x)) . (n + m)))
by A74, A71, A72, Def1;
then
(x + (x1 * y1)) * ((x1 + y1) ") in ((sqrtR ((sqrt_0 x),x)) . (n + m)) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtL ((sqrt_0 x),x)) . (n + m))))
by XBOOLE_0:def 3;
then
(x + (x1 * y1)) * ((x1 + y1) ") in (((sqrtR ((sqrt_0 x),x)) . (n + m)) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtL ((sqrt_0 x),x)) . (n + m))))) \/ (sqrt (x,((sqrtR ((sqrt_0 x),x)) . (n + m)),((sqrtR ((sqrt_0 x),x)) . (n + m))))
by XBOOLE_0:def 3;
then A79:
( (x + (x1 * y1)) * ((x1 + y1) ") in (sqrtR ((sqrt_0 x),x)) . ((n + m) + 1) & (sqrtR ((sqrt_0 x),x)) . ((n + m) + 1) c= Union (sqrtR ((sqrt_0 x),x)) )
by Th3, ABCMIZ_1:1;
A80:
( y in {y} & {y} << R_ y )
by TARSKI:def 1, SURREALO:11;
then A81:
y < (x + (x1 * y1)) * ((x1 + y1) ")
by A79, A62, A4;
A82:
y <= (x + (x1 * y1)) * ((x1 + y1) ")
by A80, A79, A62, A4;
A83:
(x1 + y1) * ((x1 + y1) ") == 1_No
by A78, SURREALI:33;
A84:
(x1 * y) + (y * y1) < (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) ")))
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) & (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) )
by SURREALR:67, SURREALR:69;
then
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) & ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) == 1_No * (x + (x1 * y1)) )
by A83, SURREALR:54, SURREALO:4;
then
(x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == 1_No * (x + (x1 * y1))
by SURREALO:4;
then
(x1 * y) + (y * y1) < x + (x1 * y1)
by A84, SURREALO:4;
then A85:
((x1 * y) + (y * y1)) + (- (x1 * y1)) < (x + (x1 * y1)) + (- (x1 * y1))
by SURREALR:44;
(x1 * y1) - (x1 * y1) == 0_No
by SURREALR:39;
then
( (x + (x1 * y1)) + (- (x1 * y1)) = x + ((x1 * y1) + (- (x1 * y1))) & x + ((x1 * y1) + (- (x1 * y1))) == x + 0_No )
by SURREALR:37, SURREALR:66;
then
a < x
by A70, A85, SURREALO:4;
hence
not b <= a
by A69, TARSKI:def 1;
verum
end;
end;
end;
suppose
a in comp ((R_ y),y,y,(R_ y))
;
not b <= a
then consider x1, y1 being
Surreal such that A86:
( a = ((x1 * y) + (y * y1)) - (x1 * y1) & x1 in R_ y & y1 in R_ y )
by SURREALR:def 15;
consider n being
object such that A87:
( n in dom (sqrtR ((sqrt_0 x),x)) & x1 in (sqrtR ((sqrt_0 x),x)) . n )
by A86, A4, A62, CARD_5:2;
dom (sqrtR ((sqrt_0 x),x)) = NAT
by Def4;
then reconsider n = n as
Nat by A87;
consider m being
object such that A88:
( m in dom (sqrtR ((sqrt_0 x),x)) & y1 in (sqrtR ((sqrt_0 x),x)) . m )
by A86, A4, A62, CARD_5:2;
dom (sqrtR ((sqrt_0 x),x)) = NAT
by Def4;
then reconsider n = n, m = m as
Nat by A88;
set nm = n
+ m;
A89:
( n <= n + m & m <= n + m )
by NAT_1:11;
then A90:
( (sqrtR ((sqrt_0 x),x)) . n c= (sqrtR ((sqrt_0 x),x)) . (n + m) & (sqrtR ((sqrt_0 x),x)) . m c= (sqrtR ((sqrt_0 x),x)) . (n + m) )
by Th2;
set X = x
+ (x1 * y1);
A91:
( 0_No < x1 & 0_No <= y1 )
by A89, A87, A88, A45;
then
0_No + 0_No < x1 + y1
by SURREALR:44;
then A92:
not x1 + y1 == 0_No
;
then
(x + (x1 * y1)) * ((x1 + y1) ") in sqrt (x,((sqrtR ((sqrt_0 x),x)) . (n + m)),((sqrtR ((sqrt_0 x),x)) . (n + m)))
by A87, A88, A90, Def1;
then
(x + (x1 * y1)) * ((x1 + y1) ") in (((sqrtR ((sqrt_0 x),x)) . (n + m)) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtL ((sqrt_0 x),x)) . (n + m))))) \/ (sqrt (x,((sqrtR ((sqrt_0 x),x)) . (n + m)),((sqrtR ((sqrt_0 x),x)) . (n + m))))
by XBOOLE_0:def 3;
then A93:
( (x + (x1 * y1)) * ((x1 + y1) ") in (sqrtR ((sqrt_0 x),x)) . ((n + m) + 1) & (sqrtR ((sqrt_0 x),x)) . ((n + m) + 1) c= Union (sqrtR ((sqrt_0 x),x)) )
by Th3, ABCMIZ_1:1;
A94:
( y in {y} & {y} << R_ y )
by TARSKI:def 1, SURREALO:11;
then A95:
y < (x + (x1 * y1)) * ((x1 + y1) ")
by A93, A62, A4;
A96:
y <= (x + (x1 * y1)) * ((x1 + y1) ")
by A93, A94, A62, A4;
A97:
(x1 + y1) * ((x1 + y1) ") == 1_No
by A92, SURREALI:33;
( x1 * y < x1 * ((x + (x1 * y1)) * ((x1 + y1) ")) & y1 * y <= y1 * ((x + (x1 * y1)) * ((x1 + y1) ")) )
by A91, A95, A96, SURREALR:70, SURREALR:75;
then A98:
(x1 * y) + (y * y1) < (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) ")))
by SURREALR:44;
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) & (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) )
by SURREALR:67, SURREALR:69;
then
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) & ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) == 1_No * (x + (x1 * y1)) )
by A97, SURREALR:54, SURREALO:4;
then
(x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == 1_No * (x + (x1 * y1))
by SURREALO:4;
then
(x1 * y) + (y * y1) < x + (x1 * y1)
by A98, SURREALO:4;
then A99:
((x1 * y) + (y * y1)) + (- (x1 * y1)) < (x + (x1 * y1)) + (- (x1 * y1))
by SURREALR:44;
(x1 * y1) - (x1 * y1) == 0_No
by SURREALR:39;
then
( (x + (x1 * y1)) + (- (x1 * y1)) = x + ((x1 * y1) + (- (x1 * y1))) & x + ((x1 * y1) + (- (x1 * y1))) == x + 0_No )
by SURREALR:37, SURREALR:66;
then
a < x
by A86, A99, SURREALO:4;
hence
not b <= a
by A69, TARSKI:def 1;
verum
end;
end;
end;
A100:
{(y * y)} << R_ x
proof
let a, b be
Surreal;
SURREAL0:def 20 ( not a in {(y * y)} or not b in R_ x or not b <= a )
assume A101:
( a in {(y * y)} & b in R_ x )
;
not b <= a
A102:
( x in {x} & {x} << R_ x )
by TARSKI:def 1, SURREALO:11;
then A103:
0_No < b
by A101, A3, SURREALO:4;
A104:
0_No <= b
by A102, A101, A3, SURREALO:4;
b in (L_ x) \/ (R_ x)
by A101, XBOOLE_0:def 3;
then A105:
born b in born x
by SURREALO:1;
then reconsider sb =
sqrt b as
Surreal by A104, A2, A3;
A106:
( 0_No < sb & sb * sb == b )
by A103, A104, A105, A2, A3;
b in R_ (NonNegativePart x)
by A101, A104, Def5;
then A107:
( sb in R_ (sqrt_0 x) & R_ (sqrt_0 x) = (sqrtR ((sqrt_0 x),x)) . 0 & (sqrtR ((sqrt_0 x),x)) . 0 c= Union (sqrtR ((sqrt_0 x),x)) )
by Th1, Def9, ABCMIZ_1:1;
( y in {y} & {y} << R_ y )
by TARSKI:def 1, SURREALO:11;
then
( y < sb & y <= sb )
by A107, A62, A4;
then
( y * y <= sb * y & sb * y < sb * sb )
by A106, A66, SURREALR:75, SURREALR:70;
then
y * y < sb * sb
by SURREALO:4;
then
y * y < b
by A106, SURREALO:4;
hence
not b <= a
by A101, TARSKI:def 1;
verum
end;
A108:
L_ x << {(y * y)}
proof
let b, a be
Surreal;
SURREAL0:def 20 ( not b in L_ x or not a in {(y * y)} or not a <= b )
assume A109:
( b in L_ x & a in {(y * y)} )
;
not a <= b
per cases
( b < 0_No or 0_No <= b )
;
suppose A111:
0_No <= b
;
not a <= b
b in (L_ x) \/ (R_ x)
by A109, XBOOLE_0:def 3;
then A112:
born b in born x
by SURREALO:1;
then reconsider sb =
sqrt b as
Surreal by A111, A2, A3;
b in L_ (NonNegativePart x)
by A109, A111, Def5;
then A113:
( sb in L_ (sqrt_0 x) & L_ (sqrt_0 x) = (sqrtL ((sqrt_0 x),x)) . 0 & (sqrtL ((sqrt_0 x),x)) . 0 c= Union (sqrtL ((sqrt_0 x),x)) )
by Th1, Def9, ABCMIZ_1:1;
A114:
( 0_No <= sb & sb * sb == b )
by A111, A112, A2, A3;
A115:
( y in {y} & L_ y << {y} )
by TARSKI:def 1, SURREALO:11;
then A116:
( sb < y & sb <= y )
by A113, A62, A4;
0_No < y
by A114, A113, A62, A4, A115, SURREALO:4;
then
( sb * sb <= sb * y & sb * y < y * y )
by A116, A114, SURREALR:75, SURREALR:70;
then
sb * sb < y * y
by SURREALO:4;
then
b < y * y
by A114, SURREALO:4;
hence
not a <= b
by A109, TARSKI:def 1;
verum
end;
end;
end;
{x} << R_ (y * y)
proof
let b, a be
Surreal;
SURREAL0:def 20 ( not b in {x} or not a in R_ (y * y) or not a <= b )
assume A117:
( b in {x} & a in R_ (y * y) )
;
not a <= b
comp ((L_ y),y,y,(R_ y)) = comp ((R_ y),y,y,(L_ y))
by SURREALR:53;
then consider x1, y1 being
Surreal such that A118:
( a = ((x1 * y) + (y * y1)) - (x1 * y1) & x1 in L_ y & y1 in R_ y )
by A67, A117, SURREALR:def 15;
consider n being
object such that A119:
( n in dom (sqrtL ((sqrt_0 x),x)) & x1 in (sqrtL ((sqrt_0 x),x)) . n )
by A118, A4, A62, CARD_5:2;
dom (sqrtL ((sqrt_0 x),x)) = NAT
by Def3;
then reconsider n = n as
Nat by A119;
consider m being
object such that A120:
( m in dom (sqrtR ((sqrt_0 x),x)) & y1 in (sqrtR ((sqrt_0 x),x)) . m )
by A118, A4, A62, CARD_5:2;
dom (sqrtR ((sqrt_0 x),x)) = NAT
by Def4;
then reconsider n = n, m = m as
Nat by A120;
set nm = n
+ m;
A121:
( n <= n + m & m <= n + m )
by NAT_1:11;
then A122:
( (sqrtL ((sqrt_0 x),x)) . n c= (sqrtL ((sqrt_0 x),x)) . (n + m) & (sqrtR ((sqrt_0 x),x)) . m c= (sqrtR ((sqrt_0 x),x)) . (n + m) )
by Th2;
set X = x
+ (x1 * y1);
A123:
( 0_No <= x1 & 0_No < y1 )
by A121, A119, A120, A45;
then
0_No + 0_No < x1 + y1
by SURREALR:44;
then A124:
not x1 + y1 == 0_No
;
then
(x + (x1 * y1)) * ((x1 + y1) ") in sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtR ((sqrt_0 x),x)) . (n + m)))
by A122, A119, A120, Def1;
then
(x + (x1 * y1)) * ((x1 + y1) ") in ((sqrtL ((sqrt_0 x),x)) . (n + m)) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . (n + m)),((sqrtR ((sqrt_0 x),x)) . (n + m))))
by XBOOLE_0:def 3;
then A125:
( (x + (x1 * y1)) * ((x1 + y1) ") in (sqrtL ((sqrt_0 x),x)) . ((n + m) + 1) & (sqrtL ((sqrt_0 x),x)) . ((n + m) + 1) c= Union (sqrtL ((sqrt_0 x),x)) )
by Th3, ABCMIZ_1:1;
A126:
( y in {y} & L_ y << {y} )
by TARSKI:def 1, SURREALO:11;
then A127:
(x + (x1 * y1)) * ((x1 + y1) ") < y
by A125, A62, A4;
A128:
(x + (x1 * y1)) * ((x1 + y1) ") <= y
by A126, A125, A62, A4;
A129:
(x1 + y1) * ((x1 + y1) ") == 1_No
by A124, SURREALI:33;
( x1 * ((x + (x1 * y1)) * ((x1 + y1) ")) <= x1 * y & y1 * ((x + (x1 * y1)) * ((x1 + y1) ")) < y1 * y )
by A123, A127, A128, SURREALR:70, SURREALR:75;
then A130:
(x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) < (x1 * y) + (y * y1)
by SURREALR:44;
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) & (x1 + y1) * ((x + (x1 * y1)) * ((x1 + y1) ")) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) )
by SURREALR:67, SURREALR:69;
then
( (x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) & ((x1 + y1) * ((x1 + y1) ")) * (x + (x1 * y1)) == 1_No * (x + (x1 * y1)) )
by A129, SURREALR:54, SURREALO:4;
then
(x1 * ((x + (x1 * y1)) * ((x1 + y1) "))) + (y1 * ((x + (x1 * y1)) * ((x1 + y1) "))) == 1_No * (x + (x1 * y1))
by SURREALO:4;
then
x + (x1 * y1) < (x1 * y) + (y * y1)
by A130, SURREALO:4;
then A131:
(x + (x1 * y1)) + (- (x1 * y1)) < ((x1 * y) + (y * y1)) + (- (x1 * y1))
by SURREALR:44;
(x1 * y1) - (x1 * y1) == 0_No
by SURREALR:39;
then
( (x + (x1 * y1)) + (- (x1 * y1)) = x + ((x1 * y1) + (- (x1 * y1))) & x + ((x1 * y1) + (- (x1 * y1))) == x + 0_No )
by SURREALR:37, SURREALR:66;
then
x < a
by A118, A131, SURREALO:4;
hence
not a <= b
by A117, TARSKI:def 1;
verum
end;
hence
y * y == x
by A68, A100, SURREAL0:43, A108;
verum
end;
A132:
for y being Surreal st y = sqrt x holds
( ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) )
S is Surreal
;
hence
( sqrt x is surreal & ( for y being Surreal st y = sqrt x holds
( 0_No <= y & y * y == x & ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) ) ) & ( for y being Surreal st y in L_ (sqrt x) holds
( 0_No <= y & y * y < x ) ) & ( for y being Surreal st y in R_ (sqrt x) holds
( 0_No < y & x < y * y ) ) )
by A46, A48, A61, A132;
verum
end;
for D being Ordinal holds S1[D]
from ORDINAL1:sch 2(A1);
hence
( 0_No <= x implies ( ( y = sqrt x implies ( 0_No <= y & y * y == x & ( x == 0_No implies y == 0_No ) & ( 0_No < x implies 0_No < y ) ) ) & ( y in L_ (sqrt x) implies ( 0_No <= y & y * y < x ) ) & ( y in R_ (sqrt x) implies ( 0_No < y & x < y * y ) ) & sqrt x is surreal ) )
;
verum
end;
theorem Th20:
proof
let x be
Surreal;
( x <= 0_No implies sqrt x is surreal )
assume A1:
x <= 0_No
;
sqrt x is surreal
A2:
L_ (sqrt_0 x) is surreal-membered
R_ (sqrt_0 x) is surreal-membered
then
( Union (sqrtR ((sqrt_0 x),x)) is surreal-membered & Union (sqrtL ((sqrt_0 x),x)) is surreal-membered )
by A2, Th5;
then consider M being
Ordinal such that A5:
for o being object st o in (Union (sqrtL ((sqrt_0 x),x))) \/ (Union (sqrtR ((sqrt_0 x),x))) holds
ex A being Ordinal st
( A in M & o in Day A )
by SURREAL0:47;
Union (sqrtL ((sqrt_0 x),x)) << Union (sqrtR ((sqrt_0 x),x))
by A1, Th18;
then
[(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))] in Day M
by A5, SURREAL0:46;
hence
sqrt x is surreal
by Th15;
verum
end;
registration
let x be
Surreal;
coherence
sqrt_0 x is surreal
proof
set S0 =
sqrt_0 x;
A1:
sqrt_0 x = [(L_ (sqrt_0 x)),(R_ (sqrt_0 x))]
;
A2:
sqrt x = [(L_ (sqrt x)),(R_ (sqrt x))]
;
A3:
sqrt x = [(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))]
by Th15;
A4:
( L_ (sqrt_0 x) = (sqrtL ((sqrt_0 x),x)) . 0 & (sqrtL ((sqrt_0 x),x)) . 0 c= Union (sqrtL ((sqrt_0 x),x)) & R_ (sqrt_0 x) = (sqrtR ((sqrt_0 x),x)) . 0 & (sqrtR ((sqrt_0 x),x)) . 0 c= Union (sqrtR ((sqrt_0 x),x)) )
by Th1, ABCMIZ_1:1;
then
( L_ (sqrt_0 x) c= L_ (sqrt x) & R_ (sqrt_0 x) c= R_ (sqrt x) )
by A3;
then A5:
( L_ (sqrt_0 x) is surreal-membered & R_ (sqrt_0 x) is surreal-membered )
by SURREAL0:def 16;
( L_ (sqrt_0 x) <=_ L_ (sqrt x) & R_ (sqrt_0 x) <=_ R_ (sqrt x) )
by A4, A3;
hence
sqrt_0 x is surreal
by A5, A1, A2, SURREALI:37;
verum
end;
end;
theorem
proof
let x be
Surreal;
( x < 0_No & ( for y being Surreal st y in R_ x holds
y < 0_No ) implies sqrt x = 0_No )
assume that A1:
x < 0_No
and A2:
for y being Surreal st y in R_ x holds
y < 0_No
;
sqrt x = 0_No
defpred S
1[
Nat]
means (sqrtR ((sqrt_0 x),x)) . $1
= {} ;
A3:
S1[ 0 ]
A6:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A7:
S1[n]
;
S1[n + 1]
assume
(sqrtR ((sqrt_0 x),x)) . (n + 1) <> {}
;
contradiction
then consider y being
object such that A8:
y in (sqrtR ((sqrt_0 x),x)) . (n + 1)
by XBOOLE_0:def 1;
y in (((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n)))) \/ (sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)))
by A8, Th3;
then
( y in ((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n))) or y in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by XBOOLE_0:def 3;
end;
A10:
for n being Nat holds S1[n]
from NAT_1:sch 2(A3, A6);
A11:
Union (sqrtR ((sqrt_0 x),x)) = {}
x <= 0_No
by A1;
then
Union (sqrtL ((sqrt_0 x),x)) = {}
by Th18;
hence
sqrt x = 0_No
by A11, Th15;
verum
end;
theorem Th25:
proof
let x be
Surreal;
( ( for y being Surreal st y in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x)) holds
y == 0_No ) implies sqrt x = sqrt_0 x )
assume A1:
for y being Surreal st y in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x)) holds
y == 0_No
;
sqrt x = sqrt_0 x
defpred S
1[
Nat]
means (
(sqrtL ((sqrt_0 x),x)) . $1
= L_ (sqrt_0 x) &
(sqrtR ((sqrt_0 x),x)) . $1
= R_ (sqrt_0 x) );
A2:
S1[ 0 ]
by Th1;
A3:
for n being Nat st S1[n] holds
S1[n + 1]
proof
let n be
Nat;
( S1[n] implies S1[n + 1] )
assume A4:
S1[n]
;
S1[n + 1]
set S0 =
sqrt_0 x;
set n1 = n
+ 1;
(sqrtL ((sqrt_0 x),x)) . 0 c= (sqrtL ((sqrt_0 x),x)) . (n + 1)
by Th2;
then A5:
L_ (sqrt_0 x) c= (sqrtL ((sqrt_0 x),x)) . (n + 1)
by Th1;
(sqrtL ((sqrt_0 x),x)) . (n + 1) c= L_ (sqrt_0 x)
proof
let o be
object ;
TARSKI:def 3 ( not o in (sqrtL ((sqrt_0 x),x)) . (n + 1) or o in L_ (sqrt_0 x) )
assume A6:
( o in (sqrtL ((sqrt_0 x),x)) . (n + 1) & not o in L_ (sqrt_0 x) )
;
contradiction
o in ((sqrtL ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)))
by A6, Th3;
then
o in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n))
by A4, A6, XBOOLE_0:def 3;
then consider x1, y1 being
Surreal such that A7:
( x1 in (sqrtL ((sqrt_0 x),x)) . n & y1 in (sqrtR ((sqrt_0 x),x)) . n & not x1 + y1 == 0_No & o = (x +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider l being
Surreal such that A8:
( x1 = sqrt l & l in L_ (NonNegativePart x) )
by A4, A7, Def9;
l in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A8, XBOOLE_0:def 3;
then
l == 0_No
by A1;
then A9:
x1 == 0_No
by A8, Th19;
consider r being
Surreal such that A10:
( y1 = sqrt r & r in R_ (NonNegativePart x) )
by A4, A7, Def9;
r in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A10, XBOOLE_0:def 3;
then
r == 0_No
by A1;
then
y1 == 0_No
by A10, Th19;
then
x1 + y1 == 0_No + 0_No
by A9, SURREALR:66;
hence
contradiction
by A7;
verum
end;
hence
(sqrtL ((sqrt_0 x),x)) . (n + 1) = L_ (sqrt_0 x)
by A5, XBOOLE_0:def 10;
(sqrtR ((sqrt_0 x),x)) . (n + 1) = R_ (sqrt_0 x)
(sqrtR ((sqrt_0 x),x)) . 0 c= (sqrtR ((sqrt_0 x),x)) . (n + 1)
by Th2;
then A11:
R_ (sqrt_0 x) c= (sqrtR ((sqrt_0 x),x)) . (n + 1)
by Th1;
(sqrtR ((sqrt_0 x),x)) . (n + 1) c= R_ (sqrt_0 x)
proof
let o be
object ;
TARSKI:def 3 ( not o in (sqrtR ((sqrt_0 x),x)) . (n + 1) or o in R_ (sqrt_0 x) )
assume A12:
( o in (sqrtR ((sqrt_0 x),x)) . (n + 1) & not o in R_ (sqrt_0 x) )
;
contradiction
o in (((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n)))) \/ (sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)))
by A12, Th3;
then
( o in ((sqrtR ((sqrt_0 x),x)) . n) \/ (sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n))) or o in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by XBOOLE_0:def 3;
per cases then
( o in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n)) or o in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n)) )
by A4, A12, XBOOLE_0:def 3;
suppose
o in sqrt (x,((sqrtL ((sqrt_0 x),x)) . n),((sqrtL ((sqrt_0 x),x)) . n))
;
contradiction
then consider x1, y1 being
Surreal such that A13:
( x1 in (sqrtL ((sqrt_0 x),x)) . n & y1 in (sqrtL ((sqrt_0 x),x)) . n & not x1 + y1 == 0_No & o = (x +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider l being
Surreal such that A14:
( x1 = sqrt l & l in L_ (NonNegativePart x) )
by Def9, A4, A13;
l in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A14, XBOOLE_0:def 3;
then
l == 0_No
by A1;
then A15:
x1 == 0_No
by A14, Th19;
consider r being
Surreal such that A16:
( y1 = sqrt r & r in L_ (NonNegativePart x) )
by Def9, A4, A13;
r in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A16, XBOOLE_0:def 3;
then
r == 0_No
by A1;
then
y1 == 0_No
by A16, Th19;
then
x1 + y1 == 0_No + 0_No
by A15, SURREALR:66;
hence
contradiction
by A13;
verum
end;
suppose
o in sqrt (x,((sqrtR ((sqrt_0 x),x)) . n),((sqrtR ((sqrt_0 x),x)) . n))
;
contradiction
then consider x1, y1 being
Surreal such that A17:
( x1 in (sqrtR ((sqrt_0 x),x)) . n & y1 in (sqrtR ((sqrt_0 x),x)) . n & not x1 + y1 == 0_No & o = (x +' (x1 * y1)) * ((x1 + y1) ") )
by Def1;
consider l being
Surreal such that A18:
( x1 = sqrt l & l in R_ (NonNegativePart x) )
by Def9, A4, A17;
l in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A18, XBOOLE_0:def 3;
then
l == 0_No
by A1;
then A19:
x1 == 0_No
by A18, Th19;
consider r being
Surreal such that A20:
( y1 = sqrt r & r in R_ (NonNegativePart x) )
by Def9, A4, A17;
r in (L_ (NonNegativePart x)) \/ (R_ (NonNegativePart x))
by A20, XBOOLE_0:def 3;
then
r == 0_No
by A1;
then
y1 == 0_No
by A20, Th19;
then
x1 + y1 == 0_No + 0_No
by A19, SURREALR:66;
hence
contradiction
by A17;
verum
end;
end;
end;
hence
(sqrtR ((sqrt_0 x),x)) . (n + 1) = R_ (sqrt_0 x)
by A11, XBOOLE_0:def 10;
verum
end;
A21:
for n being Nat holds S1[n]
from NAT_1:sch 2(A2, A3);
A22:
sqrt x = [(Union (sqrtL ((sqrt_0 x),x))),(Union (sqrtR ((sqrt_0 x),x)))]
by Th15;
A23:
L_ (sqrt x) = L_ (sqrt_0 x)
R_ (sqrt x) = R_ (sqrt_0 x)
hence
sqrt x = sqrt_0 x
by A23, XTUPLE_0:2;
verum
end;
theorem
proof
let x, y be
Surreal;
( 0_No <= x & x <= y implies sqrt x <= sqrt y )
assume that A1:
( 0_No <= x & x <= y )
and A2:
sqrt y < sqrt x
;
contradiction
A3:
( 0_No <= sqrt x & (sqrt x) * (sqrt x) == x )
by A1, Th19;
0_No <= y
by A1, SURREALO:4;
then A4:
( 0_No <= sqrt y & (sqrt y) * (sqrt y) == y )
by Th19;
0_No < sqrt x
by A4, A2, SURREALO:4;
then
(sqrt y) * (sqrt x) < (sqrt x) * (sqrt x)
by A2, SURREALR:70;
then A5:
(sqrt y) * (sqrt x) < x
by A3, SURREALO:4;
sqrt y <= sqrt x
by A2;
then
(sqrt y) * (sqrt y) <= (sqrt x) * (sqrt y)
by A4, SURREALR:75;
then
y <= (sqrt x) * (sqrt y)
by A4, SURREALO:4;
hence
contradiction
by A1, A5, SURREALO:4;
verum
end;
theorem Th27:
proof
let x, y be
Surreal;
( 0_No <= x & x < y implies sqrt x < sqrt y )
assume that A1:
( 0_No <= x & x < y )
and A2:
sqrt y <= sqrt x
;
contradiction
A3:
( 0_No <= sqrt x & (sqrt x) * (sqrt x) == x )
by A1, Th19;
0_No <= y
by A1, SURREALO:4;
then A4:
( 0_No <= sqrt y & (sqrt y) * (sqrt y) == y )
by Th19;
(sqrt y) * (sqrt x) <= (sqrt x) * (sqrt x)
by A3, A2, SURREALR:75;
then A5:
(sqrt y) * (sqrt x) <= x
by A3, SURREALO:4;
(sqrt y) * (sqrt y) <= (sqrt x) * (sqrt y)
by A2, A4, SURREALR:75;
then
y <= (sqrt x) * (sqrt y)
by A4, SURREALO:4;
hence
contradiction
by A1, A5, SURREALO:4;
verum
end;
theorem Th28:
proof
let x, y be
Surreal;
( 0_No <= x & x == y * y & not y == sqrt x implies y == - (sqrt x) )
set s =
sqrt x;
assume A1:
( 0_No <= x & x == y * y )
;
( y == sqrt x or y == - (sqrt x) )
then A2:
(sqrt x) * (sqrt x) == x
by Th19;
( ((sqrt x) + (- y)) * (sqrt x) == ((sqrt x) * (sqrt x)) + ((- y) * (sqrt x)) & ((sqrt x) + (- y)) * y == ((sqrt x) * y) + ((- y) * y) )
by SURREALR:67;
then
( ((sqrt x) + (- y)) * ((sqrt x) + y) == (((sqrt x) + (- y)) * (sqrt x)) + (((sqrt x) + (- y)) * y) & (((sqrt x) + (- y)) * (sqrt x)) + (((sqrt x) + (- y)) * y) == (((sqrt x) * (sqrt x)) + ((- y) * (sqrt x))) + (((sqrt x) * y) + ((- y) * y)) )
by SURREALR:67, SURREALR:66;
then A3:
((sqrt x) + (- y)) * ((sqrt x) + y) == (((sqrt x) * (sqrt x)) + ((- y) * (sqrt x))) + (((sqrt x) * y) + ((- y) * y))
by SURREALO:4;
( ((- y) * (sqrt x)) + ((sqrt x) * y) == (- ((sqrt x) * y)) + ((sqrt x) * y) & (- ((sqrt x) * y)) + ((sqrt x) * y) = ((sqrt x) * y) - ((sqrt x) * y) & ((sqrt x) * y) - ((sqrt x) * y) == 0_No )
by SURREALR:39, SURREALR:58;
then A4:
((- y) * (sqrt x)) + ((sqrt x) * y) == 0_No
by SURREALO:4;
A5:
((sqrt x) * (sqrt x)) + ((- y) * y) == ((sqrt x) * (sqrt x)) + (- (y * y))
by SURREALR:58;
A6:
- (y * y) == - x
by A1, SURREALR:65;
(((sqrt x) * (sqrt x)) + ((- y) * (sqrt x))) + (((sqrt x) * y) + ((- y) * y)) =
((sqrt x) * (sqrt x)) + (((- y) * (sqrt x)) + (((sqrt x) * y) + ((- y) * y)))
by SURREALR:37
.=
((sqrt x) * (sqrt x)) + ((((- y) * (sqrt x)) + ((sqrt x) * y)) + ((- y) * y))
by SURREALR:37
.=
(((sqrt x) * (sqrt x)) + ((- y) * y)) + (((- y) * (sqrt x)) + ((sqrt x) * y))
by SURREALR:37
;
then
(((sqrt x) * (sqrt x)) + ((- y) * (sqrt x))) + (((sqrt x) * y) + ((- y) * y)) == (((sqrt x) * (sqrt x)) + (- (y * y))) + 0_No
by A4, A5, SURREALR:66;
then
( ((sqrt x) + (- y)) * ((sqrt x) + y) == ((sqrt x) * (sqrt x)) + (- (y * y)) & ((sqrt x) * (sqrt x)) + (- (y * y)) == x - x )
by SURREALR:66, A3, A6, SURREALO:4, A2;
then
( ((sqrt x) + (- y)) * ((sqrt x) + y) == x - x & x - x == 0_No )
by SURREALO:4, SURREALR:39;
then
((sqrt x) + (- y)) * ((sqrt x) + y) == 0_No
by SURREALO:4;
then
( (sqrt x) - y == 0_No or (sqrt x) - (- y) == 0_No )
by SURREALR:72, SURREALR:74;
then
( sqrt x == y or sqrt x == - y )
by SURREALR:47;
then
( sqrt x == y or - (sqrt x) == - (- y) )
by SURREALR:10;
hence
( y == sqrt x or y == - (sqrt x) )
;
verum
end;
theorem Th29:
proof
let x be
Surreal;
( 0_No <= x implies sqrt (x * x) == x )
set S =
sqrt (x * x);
assume that A1:
0_No <= x
and A2:
not sqrt (x * x) == x
;
contradiction
A3:
0_No * x <= x * x
by A1, SURREALR:75;
0_No * x <= x * x
by A1, SURREALR:75;
then A4:
( x == sqrt (x * x) or x == - (sqrt (x * x)) )
by Th28;
then
- 0_No <= - (sqrt (x * x))
by A2, A1, SURREALO:4;
then A5:
sqrt (x * x) == 0_No
by A3, Th19, SURREALR:10;
then
- (sqrt (x * x)) == - 0_No
by SURREALR:10;
then
x == - 0_No
by A4, A2, SURREALO:4;
hence
contradiction
by A2, A5, SURREALO:4;
verum
end;
theorem
proof
let x be
Surreal;
( 0_No < x implies (sqrt x) " == sqrt (x ") )
assume A1:
0_No < x
;
(sqrt x) " == sqrt (x ")
then reconsider a = x as
positive Surreal by SURREALI:def 8;
set S =
sqrt a;
set T =
sqrt (a ");
A2:
( not sqrt a == 0_No & not sqrt (a ") == 0_No )
by SURREALI:def 8;
A3:
0_No <= a "
by SURREALI:def 8;
0_No <= x
by A1;
then
( ((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == a * ((sqrt (a ")) * (sqrt (a "))) & a * ((sqrt (a ")) * (sqrt (a "))) == a * (a ") )
by A3, Th21, SURREALR:54;
then A4:
((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == a * (a ")
by SURREALO:4;
not a == 0_No
by A1;
then
a * (a ") == 1_No
by SURREALI:33;
then A5:
((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == 1_No
by A4, SURREALO:4;
A6:
0_No <= 1_No
by SURREALI:def 8;
A7:
- 1_No <= - 0_No
by SURREALR:10, SURREALI:def 8;
( ((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == (((sqrt a) * (sqrt a)) * (sqrt (a "))) * (sqrt (a ")) & (((sqrt a) * (sqrt a)) * (sqrt (a "))) * (sqrt (a ")) == ((sqrt a) * ((sqrt a) * (sqrt (a ")))) * (sqrt (a ")) )
by SURREALR:69, SURREALR:54;
then
( ((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == ((sqrt a) * ((sqrt a) * (sqrt (a ")))) * (sqrt (a ")) & ((sqrt a) * ((sqrt a) * (sqrt (a ")))) * (sqrt (a ")) == ((sqrt a) * (sqrt (a "))) * ((sqrt a) * (sqrt (a "))) )
by SURREALO:4, SURREALR:69;
then
((sqrt a) * (sqrt a)) * ((sqrt (a ")) * (sqrt (a "))) == ((sqrt a) * (sqrt (a "))) * ((sqrt a) * (sqrt (a ")))
by SURREALO:4;
then
((sqrt a) * (sqrt (a "))) * ((sqrt a) * (sqrt (a "))) == 1_No
by A5, SURREALO:4;
then
( (sqrt a) * (sqrt (a ")) == sqrt 1_No or (sqrt a) * (sqrt (a ")) == - (sqrt 1_No) )
by A6, Th28;
hence
(sqrt x) " == sqrt (x ")
by A2, A7, SURREALI:def 8, SURREALI:42, SURREALO:4;
verum
end;
theorem Th31:
proof
let x be
Surreal;
( 0_No < x implies ex y being Surreal st
( - 1_No == y & sqrt y < - x & y = [{},{0_No,(((sqrt ((x * x) + 1_No)) - x) * ((sqrt ((x * x) + 1_No)) - x))}] ) )
assume A1:
0_No < x
;
ex y being Surreal st
( - 1_No == y & sqrt y < - x & y = [{},{0_No,(((sqrt ((x * x) + 1_No)) - x) * ((sqrt ((x * x) + 1_No)) - x))}] )
reconsider p = x as
positive Surreal by A1, SURREALI:def 8;
A2:
- 1_No =
[(-- (R_ 1_No)),(-- (L_ 1_No))]
by SURREALR:7
.=
[{},{(- 0_No)}]
by SURREALR:21, SURREALR:22
;
A3:
0_No <= x
by A1;
then A4:
x * 0_No <= x * x
by SURREALR:75;
A5:
(x * x) + 0_No < (x * x) + 1_No
by SURREALR:44, SURREALI:def 8;
then
( x == sqrt (x * x) & sqrt (x * x) < sqrt ((x * x) + 1_No) )
by A4, Th27, A3, Th29;
then
x < sqrt ((x * x) + 1_No)
by SURREALO:4;
then
0_No < (sqrt ((x * x) + 1_No)) - x
by SURREALR:45;
then reconsider Y =
(sqrt ((x * x) + 1_No)) + (- x) as
positive Surreal by SURREALI:def 8;
set YY = Y
* Y;
{0_No} \/ {(Y * Y)} is surreal-membered
;
then reconsider Y0 =
{0_No,(Y * Y)} as
surreal-membered set by ENUMSET1:1;
consider M being
Ordinal such that A6:
for o being object st o in {} \/ Y0 holds
ex A being Ordinal st
( A in M & o in Day A )
by SURREAL0:47;
{} << Y0
;
then
[{},Y0] in Day M
by A6, SURREAL0:46;
then reconsider y =
[{},Y0] as
Surreal ;
take
y
;
( - 1_No == y & sqrt y < - x & y = [{},{0_No,(((sqrt ((x * x) + 1_No)) - x) * ((sqrt ((x * x) + 1_No)) - x))}] )
A7:
0_No <= Y * Y
by SURREALI:def 8;
A8:
for z being Surreal st z in R_ y holds
0_No <= z
by A7, TARSKI:def 2;
A9:
- 1_No = [(L_ y),{0_No}]
by A2;
0_No in R_ y
by TARSKI:def 2;
hence A10:
- 1_No == y
by A9, A8, SURREALO:24;
( sqrt y < - x & y = [{},{0_No,(((sqrt ((x * x) + 1_No)) - x) * ((sqrt ((x * x) + 1_No)) - x))}] )
(sqrt (Y * Y)) + (sqrt (Y * Y)) is positive
;
then A11:
not (sqrt (Y * Y)) + (sqrt (Y * Y)) == 0_No
;
Y * Y in R_ y
by TARSKI:def 2;
then
Y * Y in R_ (NonNegativePart y)
by A7, Def5;
then
sqrt (Y * Y) in R_ (sqrt_0 y)
by Def9;
then
sqrt (Y * Y) in (sqrtR ((sqrt_0 y),y)) . 0
by Th1;
then A12:
(y + ((sqrt (Y * Y)) * (sqrt (Y * Y)))) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") in sqrt (y,((sqrtR ((sqrt_0 y),y)) . 0),((sqrtR ((sqrt_0 y),y)) . 0))
by A11, Def1;
sqrt y = [(Union (sqrtL ((sqrt_0 y),y))),(Union (sqrtR ((sqrt_0 y),y)))]
by Th15;
then A13:
( {(sqrt y)} << R_ (sqrt y) & R_ (sqrt y) = Union (sqrtR ((sqrt_0 y),y)) & sqrt y in {(sqrt y)} )
by TARSKI:def 1, SURREALO:11;
(sqrtR ((sqrt_0 y),y)) . (0 + 1) = (((sqrtR ((sqrt_0 y),y)) . 0) \/ (sqrt (y,((sqrtL ((sqrt_0 y),y)) . 0),((sqrtL ((sqrt_0 y),y)) . 0)))) \/ (sqrt (y,((sqrtR ((sqrt_0 y),y)) . 0),((sqrtR ((sqrt_0 y),y)) . 0)))
by Th3;
then A14:
( (y + ((sqrt (Y * Y)) * (sqrt (Y * Y)))) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") in (sqrtR ((sqrt_0 y),y)) . 1 & (sqrtR ((sqrt_0 y),y)) . 1 c= Union (sqrtR ((sqrt_0 y),y)) )
by ABCMIZ_1:1, XBOOLE_0:def 3, A12;
set TWO =
1_No + 1_No;
A15:
( not 0_No == Y " & not 0_No == Y & not 1_No + 1_No == 0_No )
by SURREALI:def 8;
then A16:
( (Y ") " == Y & Y * (Y ") == 1_No & (1_No + 1_No) * ((1_No + 1_No) ") == 1_No )
by SURREALI:44, SURREALI:33;
0_No <= Y
by SURREALI:def 8;
then
sqrt (Y * Y) == Y
by Th29;
then
( (sqrt (Y * Y)) + (sqrt (Y * Y)) == Y + Y & Y + Y = (1_No * Y) + (1_No * Y) & (1_No * Y) + (1_No * Y) == (1_No + 1_No) * Y )
by SURREALR:66, SURREALR:67;
then
(sqrt (Y * Y)) + (sqrt (Y * Y)) == (1_No + 1_No) * Y
by SURREALO:4;
then
( ((sqrt (Y * Y)) + (sqrt (Y * Y))) " == ((1_No + 1_No) * Y) " & ((1_No + 1_No) * Y) " == ((1_No + 1_No) ") * (Y ") )
by A11, A15, SURREALI:43, SURREALI:45;
then A17:
((sqrt (Y * Y)) + (sqrt (Y * Y))) " == ((1_No + 1_No) ") * (Y ")
by SURREALO:4;
A18:
(sqrt (Y * Y)) * (sqrt (Y * Y)) == Y * Y
by A7, Th19;
A19:
Y * Y == (((sqrt ((x * x) + 1_No)) * (sqrt ((x * x) + 1_No))) + ((- x) * (- x))) + (((sqrt ((x * x) + 1_No)) * (- x)) + ((- x) * (sqrt ((x * x) + 1_No))))
by SURREALR:76;
0_No <= (x * x) + 1_No
by A4, A5, SURREALO:4;
then
( (sqrt ((x * x) + 1_No)) * (sqrt ((x * x) + 1_No)) == (x * x) + 1_No & (- x) * (- x) = x * x )
by Th19, SURREALR:58;
then A20:
( ((sqrt ((x * x) + 1_No)) * (sqrt ((x * x) + 1_No))) + ((- x) * (- x)) == ((x * x) + 1_No) + (x * x) & ((x * x) + 1_No) + (x * x) = 1_No + ((x * x) + (x * x)) )
by SURREALR:37, SURREALR:66;
x * x = 1_No * (x * x)
;
then
(x * x) + (x * x) == (1_No + 1_No) * (x * x)
by SURREALR:67;
then
1_No + ((x * x) + (x * x)) == 1_No + ((1_No + 1_No) * (x * x))
by SURREALR:66;
then A21:
((sqrt ((x * x) + 1_No)) * (sqrt ((x * x) + 1_No))) + ((- x) * (- x)) == 1_No + ((1_No + 1_No) * (x * x))
by A20, SURREALO:4;
1_No * ((sqrt ((x * x) + 1_No)) * (- x)) = (sqrt ((x * x) + 1_No)) * (- x)
;
then
((sqrt ((x * x) + 1_No)) * (- x)) + ((sqrt ((x * x) + 1_No)) * (- x)) == (1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x))
by SURREALR:67;
then
(((sqrt ((x * x) + 1_No)) * (sqrt ((x * x) + 1_No))) + ((- x) * (- x))) + (((sqrt ((x * x) + 1_No)) * (- x)) + ((- x) * (sqrt ((x * x) + 1_No)))) == (1_No + ((1_No + 1_No) * (x * x))) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x)))
by A21, SURREALR:66;
then
Y * Y == (1_No + ((1_No + 1_No) * (x * x))) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x)))
by A19, SURREALO:4;
then A22:
( (sqrt (Y * Y)) * (sqrt (Y * Y)) == (1_No + ((1_No + 1_No) * (x * x))) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x))) & (1_No + ((1_No + 1_No) * (x * x))) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x))) = 1_No + (((1_No + 1_No) * (x * x)) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x)))) )
by A18, SURREALO:4, SURREALR:37;
A23:
1_No - 1_No == 0_No
by SURREALR:39;
x * x = (- x) * (- x)
by SURREALR:58;
then
( ((1_No + 1_No) * (x * x)) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x))) == (1_No + 1_No) * ((x * x) + ((sqrt ((x * x) + 1_No)) * (- x))) & (1_No + 1_No) * ((x * x) + ((sqrt ((x * x) + 1_No)) * (- x))) == (1_No + 1_No) * ((- x) * Y) )
by SURREALR:54, SURREALR:67;
then
((1_No + 1_No) * (x * x)) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x))) == (1_No + 1_No) * ((- x) * Y)
by SURREALO:4;
then
1_No + (((1_No + 1_No) * (x * x)) + ((1_No + 1_No) * ((sqrt ((x * x) + 1_No)) * (- x)))) == 1_No + ((1_No + 1_No) * ((- x) * Y))
by SURREALR:66;
then
(sqrt (Y * Y)) * (sqrt (Y * Y)) == 1_No + ((1_No + 1_No) * ((- x) * Y))
by A22, SURREALO:4;
then
( y + ((sqrt (Y * Y)) * (sqrt (Y * Y))) == (- 1_No) + (1_No + ((1_No + 1_No) * ((- x) * Y))) & (- 1_No) + (1_No + ((1_No + 1_No) * ((- x) * Y))) = (1_No - 1_No) + ((1_No + 1_No) * ((- x) * Y)) & (1_No - 1_No) + ((1_No + 1_No) * ((- x) * Y)) == 0_No + ((1_No + 1_No) * ((- x) * Y)) )
by A23, A10, SURREALR:66, SURREALR:37;
then
y + ((sqrt (Y * Y)) * (sqrt (Y * Y))) == (1_No + 1_No) * ((- x) * Y)
by SURREALO:4;
then
( (y + ((sqrt (Y * Y)) * (sqrt (Y * Y)))) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") == ((1_No + 1_No) * ((- x) * Y)) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") & ((1_No + 1_No) * ((- x) * Y)) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") == ((1_No + 1_No) * ((- x) * Y)) * (((1_No + 1_No) ") * (Y ")) )
by A17, SURREALR:54;
then A24:
(y + ((sqrt (Y * Y)) * (sqrt (Y * Y)))) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") == ((1_No + 1_No) * ((- x) * Y)) * (((1_No + 1_No) ") * (Y "))
by SURREALO:4;
( ((1_No + 1_No) * ((- x) * Y)) * (((1_No + 1_No) ") * (Y ")) == ((- x) * ((1_No + 1_No) * Y)) * (((1_No + 1_No) ") * (Y ")) & ((- x) * ((1_No + 1_No) * Y)) * (((1_No + 1_No) ") * (Y ")) == (- x) * (((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y "))) )
by SURREALR:69, SURREALR:54;
then A25:
((1_No + 1_No) * ((- x) * Y)) * (((1_No + 1_No) ") * (Y ")) == (- x) * (((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")))
by SURREALO:4;
( ((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")) == (((1_No + 1_No) * Y) * ((1_No + 1_No) ")) * (Y ") & (((1_No + 1_No) * Y) * ((1_No + 1_No) ")) * (Y ") == (Y * ((1_No + 1_No) * ((1_No + 1_No) "))) * (Y ") )
by SURREALR:69, SURREALR:54;
then
( ((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")) == (Y * ((1_No + 1_No) * ((1_No + 1_No) "))) * (Y ") & (Y * ((1_No + 1_No) * ((1_No + 1_No) "))) * (Y ") == ((1_No + 1_No) * ((1_No + 1_No) ")) * (Y * (Y ")) )
by SURREALR:69, SURREALO:4;
then
( ((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")) == ((1_No + 1_No) * ((1_No + 1_No) ")) * (Y * (Y ")) & ((1_No + 1_No) * ((1_No + 1_No) ")) * (Y * (Y ")) == ((1_No + 1_No) * ((1_No + 1_No) ")) * 1_No )
by A16, SURREALR:54, SURREALO:4;
then
((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")) == (1_No + 1_No) * ((1_No + 1_No) ")
by SURREALO:4;
then
((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y ")) == 1_No
by A16, SURREALO:4;
then
(- x) * (((1_No + 1_No) * Y) * (((1_No + 1_No) ") * (Y "))) == (- x) * 1_No
by SURREALR:54;
then
((1_No + 1_No) * ((- x) * Y)) * (((1_No + 1_No) ") * (Y ")) == (- x) * 1_No
by A25, SURREALO:4;
then
(y + ((sqrt (Y * Y)) * (sqrt (Y * Y)))) * (((sqrt (Y * Y)) + (sqrt (Y * Y))) ") == - x
by A24, SURREALO:4;
hence
( sqrt y < - x & y = [{},{0_No,(((sqrt ((x * x) + 1_No)) - x) * ((sqrt ((x * x) + 1_No)) - x))}] )
by A14, A13, SURREALO:4;
verum
end;