The rewrite relation of the following conditional TRS is considered.
ssp'(xs,0) | → | nil | |
ssp'(cons(y',ws),v) | → | cons(y',ys') | | sub(v,y') ≈ w, ssp'(ws,w) ≈ ys' |
ssp'(cons(x',xs'),v) | → | cons(y',ys') | | get(xs') ≈ tp2(y',zs), sub(v,y') ≈ w, ssp'(cons(x',zs),w) ≈ ys' |
sub(z,0) | → | z | |
sub(s(v),s(w)) | → | z | | sub(v,w) ≈ z |
get(cons(y,ys)) | → | tp2(y,ys) | |
get(cons(x',xs')) | → | tp2(y,cons(x',zs)) | | get(xs') ≈ tp2(y,zs) |
ssp'(xs,0) | → | nil | |
ssp'(cons(y',ws),v) | → | cons(y',ssp'(ws,sub(v,y'))) | |
ssp'(cons(x',xs'),v) | → | cons(y',ssp'(cons(x',zs),sub(v,y'))) | | get(xs') ≈ tp2(y',zs) |
sub(z,0) | → | z | |
sub(s(v),s(w)) | → | sub(v,w) | |
get(cons(y,ys)) | → | tp2(y,ys) | |
get(cons(x',xs')) | → | tp2(y,cons(x',zs)) | | get(xs') ≈ tp2(y,zs) |
ssp'(cons(x',z),0) | →* | cons(x',ssp'(z,sub(0,x'))) |
ssp'(cons(x',z),0) | →* | nil |