Certification Problem

Input (COPS 493)

The rewrite relation of the following conditional TRS is considered.

eq(0,0) true
eq(s(x),0) false
eq(0,s(y)) false
eq(s(x),s(y)) eq(x,y)
lte(0,y) true
lte(s(x),0) false
lte(s(x),s(y)) lte(x,y)
m(0,s(y)) 0
m(x,0) x
m(s(x),s(y)) m(x,y)
mod(0,y) 0
mod(s(x),0) 0
mod(s(x),s(y)) mod(m(x,y),s(y)) | lte(y,x) ≈ true
mod(s(x),s(y)) s(x) | lte(y,x) ≈ false
filter(n,r,nil) nil
filter(n,r,cons(x,xs)) cons(x,filter(n,r,xs)) | mod(x,n) ≈ r', eq(r,r') ≈ true
filter(n,r,cons(x,xs)) filter(n,r,xs) | mod(x,n) ≈ r', eq(r,r') ≈ false

Property / Task

Prove or disprove confluence.

Answer / Result

Yes.

Proof (by ConCon @ CoCo 2020)

1 Inlining of Conditions

Inlining of conditions results in the following transformed CTRS having the same multistep rewrite relation.
eq(0,0) true
eq(s(x),0) false
eq(0,s(y)) false
eq(s(x),s(y)) eq(x,y)
lte(0,y) true
lte(s(x),0) false
lte(s(x),s(y)) lte(x,y)
m(0,s(y)) 0
m(x,0) x
m(s(x),s(y)) m(x,y)
mod(0,y) 0
mod(s(x),0) 0
mod(s(x),s(y)) mod(m(x,y),s(y)) | lte(y,x) ≈ true
mod(s(x),s(y)) s(x) | lte(y,x) ≈ false
filter(n,r,nil) nil
filter(n,r,cons(x,xs)) cons(x,filter(n,r,xs)) | eq(r,mod(x,n)) ≈ true
filter(n,r,cons(x,xs)) filter(n,r,xs) | eq(r,mod(x,n)) ≈ false

1.1 Almost-orthogonal modulo infeasibility

The given (extended) properly oriented, right-stable, oriented 3-CTRS is almost-orthogonal modulo infeasibility, since all its conditional critical pairs are infeasible.