Certification Problem

Input (COPS 1157)

We consider the TRS containing the following rules:

a(b(x)) b(c(x)) (1)
a(c(x)) c(a(x)) (2)
b(b(x)) a(c(x)) (3)
c(b(x)) b(c(x)) (4)
c(b(x)) c(c(x)) (5)
c(c(x)) c(b(x)) (6)
P(x) Q(Q(p(x))) (7)
p(p(x)) q(q(x)) (8)
p(Q(Q(x))) Q(Q(p(x))) (9)
Q(p(q(x))) q(p(Q(x))) (10)
q(q(p(x))) p(q(q(x))) (11)
q(Q(x)) x (12)
Q(q(x)) x (13)
p(P(x)) x (14)
P(p(x)) x (15)

The underlying signature is as follows:

{a/1, b/1, c/1, P/1, Q/1, p/1, q/1}

Property / Task

Prove or disprove confluence.

Answer / Result

No.

Proof (by csi @ CoCo 2021)

1 Persistent Decomposition (Many-Sorted)

Non-confluence is proven, because a system induced by the sorts in the following many-sorted sort attachment is not confluent.
a : 1 → 1
b : 1 → 1
c : 1 → 1
P : 0 → 0
Q : 0 → 0
p : 0 → 0
q : 0 → 0
The subsystem is

(1.1)

a(b(x)) b(c(x)) (1)
a(c(x)) c(a(x)) (2)
b(b(x)) a(c(x)) (3)
c(b(x)) b(c(x)) (4)
c(b(x)) c(c(x)) (5)
c(c(x)) c(b(x)) (6)

1.1 Non-Joinable Fork

The system is not confluent due to the following forking derivations.

t0 = a(b(b(x1845)))
a(a(c(x1845)))
a(c(a(x1845)))
c(a(a(x1845)))
= t3

t0 = a(b(b(x1845)))
b(c(b(x1845)))
b(b(c(x1845)))
a(c(c(x1845)))
c(a(c(x1845)))
c(c(a(x1845)))
c(b(a(x1845)))
b(c(a(x1845)))
= t7

The two resulting terms cannot be joined for the following reason: