Certification Problem

Input (COPS 972)

We consider the TRS containing the following rules:

0(x) 1(x) (1)
0(0(x)) 0(x) (2)
3(4(5(x))) 4(3(5(x))) (3)
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 1(1(1(0(1(1(0(0(0(0(0(1(1(0(1(1(1(0(0(1(0(1(1(0(1(1(1(1(0(0(0(1(1(1(1(0(0(1(0(0(0(1(1(0(1(0(0(0(0(1(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (4)
0(0(1(1(1(1(0(0(0(0(0(0(0(0(1(1(0(0(1(1(0(1(1(0(1(0(0(0(1(0(0(0(1(1(0(1(0(1(1(1(0(1(1(1(0(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (5)

The underlying signature is as follows:

{0/1, 1/1, 3/1, 4/1, 5/1, 2/1}

Property / Task

Prove or disprove confluence.

Answer / Result

No.

Proof (by csi @ CoCo 2021)

1 Persistent Decomposition (Many-Sorted)

Non-confluence is proven, because a system induced by the sorts in the following many-sorted sort attachment is not confluent.
0 : 2 → 2
1 : 2 → 2
3 : 0 → 0
4 : 0 → 0
5 : 1 → 0
2 : 2 → 2
The subsystem is

(1.1)

0(x) 1(x) (1)
0(0(x)) 0(x) (2)
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 1(1(1(0(1(1(0(0(0(0(0(1(1(0(1(1(1(0(0(1(0(1(1(0(1(1(1(1(0(0(0(1(1(1(1(0(0(1(0(0(0(1(1(0(1(0(0(0(0(1(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (4)
0(0(1(1(1(1(0(0(0(0(0(0(0(0(1(1(0(0(1(1(0(1(1(0(1(0(0(0(1(0(0(0(1(1(0(1(0(1(1(1(0(1(1(1(0(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (5)

1.1 Non-Joinable Fork

The system is not confluent due to the following forking derivations.

t0 = 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...)))))))))))))))))))))))))))))))))))))))))))))))))))
2(1(1(1(0(1(1(0(0(0(0(0(1(1(0(1(1(1(0(0(1(0(1(1(0(1(1(1(1(0(0(0(1(1(1(1(0(0(1(0(0(0(1(1(0(1(0(0(0(0(1(...display limit reached...)))))))))))))))))))))))))))))))))))))))))))))))))))
= t1

t0 = 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...)))))))))))))))))))))))))))))))))))))))))))))))))))
1(1(1(0(1(1(0(0(0(0(0(1(1(0(1(1(1(0(0(1(0(1(1(0(1(1(1(1(0(0(0(1(1(1(1(0(0(1(0(0(0(1(1(0(1(0(0(0(0(1(0(...display limit reached...)))))))))))))))))))))))))))))))))))))))))))))))))))
= t1

The two resulting terms cannot be joined for the following reason: