We consider the TRS containing the following rules:
a(b(x)) | → | b(c(x)) | (1) |
a(c(x)) | → | c(a(x)) | (2) |
b(b(x)) | → | a(c(x)) | (3) |
c(b(x)) | → | b(c(x)) | (4) |
c(b(x)) | → | c(c(x)) | (5) |
c(c(x)) | → | c(b(x)) | (6) |
0(1(2(x))) | → | 2(0(1(x))) | (7) |
2(2(2(2(2(2(2(1(1(1(1(2(x)))))))))))) | → | 2(1(2(2(0(1(2(1(1(0(1(0(x)))))))))))) | (8) |
The underlying signature is as follows:
{a/1, b/1, c/1, 0/1, 1/1, 2/1}a | : | 1 → 1 |
b | : | 1 → 1 |
c | : | 1 → 1 |
0 | : | 0 → 0 |
1 | : | 0 → 0 |
2 | : | 0 → 0 |
0(1(2(x))) | → | 2(0(1(x))) | (7) |
2(2(2(2(2(2(2(1(1(1(1(2(x)))))))))))) | → | 2(1(2(2(0(1(2(1(1(0(1(0(x)))))))))))) | (8) |
t0 | = | 0(1(2(2(2(2(2(2(2(1(1(1(1(2(x270)))))))))))))) |
→ | 0(1(2(1(2(2(0(1(2(1(1(0(1(0(x270)))))))))))))) | |
→ | 0(1(2(1(2(2(2(0(1(1(1(0(1(0(x270)))))))))))))) | |
→ | 2(0(1(1(2(2(2(0(1(1(1(0(1(0(x270)))))))))))))) | |
= | t3 |
t0 | = | 0(1(2(2(2(2(2(2(2(1(1(1(1(2(x270)))))))))))))) |
→ | 2(0(1(2(2(2(2(2(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(0(1(2(2(2(2(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(2(0(1(2(2(2(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(2(2(0(1(2(2(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(2(2(2(0(1(2(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(2(2(2(2(0(1(2(1(1(1(1(2(x270)))))))))))))) | |
→ | 2(2(2(2(2(2(2(0(1(1(1(1(1(2(x270)))))))))))))) | |
= | t7 |