Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/AG01/#3.6)

The rewrite relation of the following TRS is considered.

le(0,y) true (1)
le(s(x),0) false (2)
le(s(x),s(y)) le(x,y) (3)
pred(s(x)) x (4)
minus(x,0) x (5)
minus(x,s(y)) pred(minus(x,y)) (6)
gcd(0,y) y (7)
gcd(s(x),0) s(x) (8)
gcd(s(x),s(y)) if_gcd(le(y,x),s(x),s(y)) (9)
if_gcd(true,s(x),s(y)) gcd(minus(x,y),s(y)) (10)
if_gcd(false,s(x),s(y)) gcd(minus(y,x),s(x)) (11)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n2).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
le#(0,z0) c (13)
originates from
le(0,z0) true (12)
le#(s(z0),0) c1 (15)
originates from
le(s(z0),0) false (14)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
originates from
le(s(z0),s(z1)) le(z0,z1) (16)
pred#(s(z0)) c3 (19)
originates from
pred(s(z0)) z0 (18)
minus#(z0,0) c4 (21)
originates from
minus(z0,0) z0 (20)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
originates from
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
gcd#(0,z0) c6 (25)
originates from
gcd(0,z0) z0 (24)
gcd#(s(z0),0) c7 (27)
originates from
gcd(s(z0),0) s(z0) (26)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
originates from
gcd(s(z0),s(z1)) if_gcd(le(z1,z0),s(z0),s(z1)) (28)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
originates from
if_gcd(true,s(z0),s(z1)) gcd(minus(z0,z1),s(z1)) (30)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
originates from
if_gcd(false,s(z0),s(z1)) gcd(minus(z1,z0),s(z0)) (32)
Moreover, we add the following terms to the innermost strategy.
le#(0,z0)
le#(s(z0),0)
le#(s(z0),s(z1))
pred#(s(z0))
minus#(z0,0)
minus#(z0,s(z1))
gcd#(0,z0)
gcd#(s(z0),0)
gcd#(s(z0),s(z1))
if_gcd#(true,s(z0),s(z1))
if_gcd#(false,s(z0),s(z1))

1.1 Usable Rules

We remove the following rules since they are not usable.
gcd(0,z0) z0 (24)
gcd(s(z0),0) s(z0) (26)
gcd(s(z0),s(z1)) if_gcd(le(z1,z0),s(z0),s(z1)) (28)
if_gcd(true,s(z0),s(z1)) gcd(minus(z0,z1),s(z1)) (30)
if_gcd(false,s(z0),s(z1)) gcd(minus(z1,z0),s(z0)) (32)

1.1.1 Rule Shifting

The rules
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 1 + 1 · x2
[le#(x1, x2)] = 0
[pred#(x1)] = 0
[minus#(x1, x2)] = 0
[gcd#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[if_gcd#(x1, x2, x3)] = 1 · x2 + 0 + 1 · x3
[0] = 1
[s(x1)] = 1 + 1 · x1
[true] = 1
[false] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1 Rule Shifting

The rules
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 0
[le#(x1, x2)] = 1
[pred#(x1)] = 0
[minus#(x1, x2)] = 0
[gcd#(x1, x2)] = 1 + 1 · x1 + 1 · x2
[if_gcd#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[0] = 1
[s(x1)] = 1 + 1 · x1
[true] = 0
[false] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
le(s(z0),s(z1)) le(z0,z1) (16)
le(s(z0),0) false (14)
le(0,z0) true (12)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1 Rule Shifting

The rules
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 0
[le#(x1, x2)] = 0
[pred#(x1)] = 0
[minus#(x1, x2)] = 0
[gcd#(x1, x2)] = 1 + 1 · x1 + 1 · x2
[if_gcd#(x1, x2, x3)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[0] = 1
[s(x1)] = 1 + 1 · x1
[true] = 0
[false] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
le(s(z0),s(z1)) le(z0,z1) (16)
le(s(z0),0) false (14)
le(0,z0) true (12)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1.1 Rule Shifting

The rules
minus#(z0,0) c4 (21)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 3
[le#(x1, x2)] = 0
[pred#(x1)] = 0
[minus#(x1, x2)] = 1
[gcd#(x1, x2)] = 1 + 2 · x1 + 2 · x2
[if_gcd#(x1, x2, x3)] = 2 · x2 + 0 + 2 · x3
[0] = 3
[s(x1)] = 2 + 1 · x1
[true] = 3
[false] = 3
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1.1.1 Rule Shifting

The rules
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 0
[le#(x1, x2)] = 2 + 1 · x2
[pred#(x1)] = 0
[minus#(x1, x2)] = 0
[gcd#(x1, x2)] = 2 + 1 · x1 + 1 · x2 · x2 + 1 · x1 · x1
[if_gcd#(x1, x2, x3)] = 2 + 1 · x3 · x3 + 1 · x2 · x2
[0] = 0
[s(x1)] = 2 + 1 · x1
[true] = 0
[false] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1.1.1.1 Rule Shifting

The rules
pred#(s(z0)) c3 (19)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 0
[le#(x1, x2)] = 0
[pred#(x1)] = 1
[minus#(x1, x2)] = 1 · x2 + 0
[gcd#(x1, x2)] = 2 · x1 · x2 + 0
[if_gcd#(x1, x2, x3)] = 2 · x2 · x3 + 0
[0] = 0
[s(x1)] = 1 + 1 · x1
[true] = 0
[false] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2(x1)] = 1 · x1 + 0
[c3] = 0
[c4] = 0
[c5(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c6] = 0
[c7] = 0
[c8(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c9(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c10(x1, x2)] = 1 · x1 + 0 + 1 · x2
[minus(x1, x2)] = 1 · x1 + 0
[pred(x1)] = 1 · x1 + 0
[le(x1, x2)] = 1
[le#(x1, x2)] = 0
[pred#(x1)] = 0
[minus#(x1, x2)] = 2 · x2 + 0
[gcd#(x1, x2)] = 2 · x1 + 0 + 2 · x2 + 1 · x1 · x2
[if_gcd#(x1, x2, x3)] = 1 · x2 + 0 + 1 · x3 + 1 · x2 · x3 + 1 · x1 · x3 + 1 · x2 · x1
[0] = 0
[s(x1)] = 2 + 1 · x1
[true] = 1
[false] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
le#(0,z0) c (13)
le#(s(z0),0) c1 (15)
le#(s(z0),s(z1)) c2(le#(z0,z1)) (17)
pred#(s(z0)) c3 (19)
minus#(z0,0) c4 (21)
minus#(z0,s(z1)) c5(pred#(minus(z0,z1)),minus#(z0,z1)) (23)
gcd#(0,z0) c6 (25)
gcd#(s(z0),0) c7 (27)
gcd#(s(z0),s(z1)) c8(if_gcd#(le(z1,z0),s(z0),s(z1)),le#(z1,z0)) (29)
if_gcd#(true,s(z0),s(z1)) c9(gcd#(minus(z0,z1),s(z1)),minus#(z0,z1)) (31)
if_gcd#(false,s(z0),s(z1)) c10(gcd#(minus(z1,z0),s(z0)),minus#(z1,z0)) (33)
minus(z0,s(z1)) pred(minus(z0,z1)) (22)
le(s(z0),s(z1)) le(z0,z1) (16)
le(s(z0),0) false (14)
le(0,z0) true (12)
minus(z0,0) z0 (20)
pred(s(z0)) z0 (18)

1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).