The rewrite relation of the following TRS is considered.
| le(0,y) | → | true | (1) |
| le(s(x),0) | → | false | (2) |
| le(s(x),s(y)) | → | le(x,y) | (3) |
| minus(0,y) | → | 0 | (4) |
| minus(s(x),y) | → | if_minus(le(s(x),y),s(x),y) | (5) |
| if_minus(true,s(x),y) | → | 0 | (6) |
| if_minus(false,s(x),y) | → | s(minus(x,y)) | (7) |
| quot(0,s(y)) | → | 0 | (8) |
| quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (9) |
| log(s(0)) | → | 0 | (10) |
| log(s(s(x))) | → | s(log(s(quot(x,s(s(0)))))) | (11) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| le#(0,z0) |
| le#(s(z0),0) |
| le#(s(z0),s(z1)) |
| minus#(0,z0) |
| minus#(s(z0),z1) |
| if_minus#(true,s(z0),z1) |
| if_minus#(false,s(z0),z1) |
| quot#(0,s(z0)) |
| quot#(s(z0),s(z1)) |
| log#(s(0)) |
| log#(s(s(z0))) |
| log(s(0)) | → | 0 | (10) |
| log(s(s(z0))) | → | s(log(s(quot(z0,s(s(0)))))) | (31) |
| log#(s(0)) | → | c9 | (30) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 1 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x2 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 + 1 · x2 + 1 · x3 |
| [quot(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [if_minus#(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot#(x1, x2)] | = | 1 · x2 + 0 |
| [log#(x1)] | = | 1 |
| [0] | = | 0 |
| [s(x1)] | = | 0 |
| [false] | = | 1 |
| [true] | = | 1 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| quot#(0,s(z0)) | → | c7 | (27) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 1 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [if_minus#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2)] | = | 1 |
| [log#(x1)] | = | 1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 1 |
| [true] | = | 1 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 1 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [if_minus#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2)] | = | 0 |
| [log#(x1)] | = | 1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 1 |
| [true] | = | 1 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [if_minus#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2)] | = | 2 · x1 + 0 + 1 · x1 · x2 |
| [log#(x1)] | = | 2 · x1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| [false] | = | 0 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| minus#(0,z0) | → | c3 | (19) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 1 |
| [if_minus#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2)] | = | 2 · x1 · x2 + 0 |
| [log#(x1)] | = | 2 · x1 + 0 + 2 · x1 · x1 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| [false] | = | 0 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 1 · x2 + 0 |
| [minus#(x1, x2)] | = | 1 · x2 + 0 + 1 · x1 · x2 |
| [if_minus#(x1, x2, x3)] | = | 1 · x2 · x3 + 0 |
| [quot#(x1, x2)] | = | 1 · x2 · x1 · x1 + 0 |
| [log#(x1)] | = | 1 · x1 · x1 · x1 + 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 0 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus#(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot#(x1, x2)] | = | 1 · x1 · x2 + 0 + 1 · x2 · x1 · x1 |
| [log#(x1)] | = | 1 · x1 + 0 + 1 · x1 · x1 · x1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 0 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| le#(0,z0) | → | c | (13) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 1 |
| [minus#(x1, x2)] | = | 1 + 1 · x1 |
| [if_minus#(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot#(x1, x2)] | = | 1 · x2 · x1 · x1 + 0 |
| [log#(x1)] | = | 1 · x1 · x1 + 0 + 1 · x1 · x1 · x1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 0 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [c7] | = | 0 |
| [c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c9] | = | 0 |
| [c10(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [le(x1, x2)] | = | 1 · x2 + 0 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [if_minus(x1, x2, x3)] | = | 1 · x2 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [le#(x1, x2)] | = | 0 |
| [minus#(x1, x2)] | = | 1 + 1 · x2 + 1 · x1 · x2 |
| [if_minus#(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 · x3 |
| [quot#(x1, x2)] | = | 1 · x2 · x1 · x1 + 0 |
| [log#(x1)] | = | 1 · x1 · x1 + 0 + 1 · x1 · x1 · x1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [false] | = | 1 |
| [true] | = | 0 |
| le#(0,z0) | → | c | (13) |
| le#(s(z0),0) | → | c1 | (15) |
| le#(s(z0),s(z1)) | → | c2(le#(z0,z1)) | (17) |
| minus#(0,z0) | → | c3 | (19) |
| minus#(s(z0),z1) | → | c4(if_minus#(le(s(z0),z1),s(z0),z1),le#(s(z0),z1)) | (21) |
| if_minus#(true,s(z0),z1) | → | c5 | (23) |
| if_minus#(false,s(z0),z1) | → | c6(minus#(z0,z1)) | (25) |
| quot#(0,s(z0)) | → | c7 | (27) |
| quot#(s(z0),s(z1)) | → | c8(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (29) |
| log#(s(0)) | → | c9 | (30) |
| log#(s(s(z0))) | → | c10(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (32) |
| minus(s(z0),z1) | → | if_minus(le(s(z0),z1),s(z0),z1) | (20) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (28) |
| le(s(z0),s(z1)) | → | le(z0,z1) | (16) |
| if_minus(false,s(z0),z1) | → | s(minus(z0,z1)) | (24) |
| le(s(z0),0) | → | false | (14) |
| le(0,z0) | → | true | (12) |
| if_minus(true,s(z0),z1) | → | 0 | (22) |
| minus(0,z0) | → | 0 | (18) |
| quot(0,s(z0)) | → | 0 | (26) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).