The rewrite relation of the following TRS is considered.
D(t) | → | 1 | (1) |
D(constant) | → | 0 | (2) |
D(+(x,y)) | → | +(D(x),D(y)) | (3) |
D(*(x,y)) | → | +(*(y,D(x)),*(x,D(y))) | (4) |
D(-(x,y)) | → | -(D(x),D(y)) | (5) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
D#(t) |
D#(constant) |
D#(+(z0,z1)) |
D#(*(z0,z1)) |
D#(-(z0,z1)) |
D(t) | → | 1 | (1) |
D(constant) | → | 0 | (2) |
D(+(z0,z1)) | → | +(D(z0),D(z1)) | (8) |
D(*(z0,z1)) | → | +(*(z1,D(z0)),*(z0,D(z1))) | (10) |
D(-(z0,z1)) | → | -(D(z0),D(z1)) | (12) |
D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
[c] | = | 0 |
[c1] | = | 0 |
[c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[D#(x1)] | = | 1 · x1 + 0 |
[t] | = | 0 |
[constant] | = | 0 |
[+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[-(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
D#(t) | → | c | (6) |
D#(constant) | → | c1 | (7) |
D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
D#(t) | → | c | (6) |
D#(constant) | → | c1 | (7) |
[c] | = | 0 |
[c1] | = | 0 |
[c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[D#(x1)] | = | 3 + 3 · x1 |
[t] | = | 1 |
[constant] | = | 1 |
[+(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[*(x1, x2)] | = | 3 + 1 · x1 + 1 · x2 |
[-(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
D#(t) | → | c | (6) |
D#(constant) | → | c1 | (7) |
D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).