The rewrite relation of the following TRS is considered.
|
originates from |
|
|
originates from |
|
D#(+(z0,z1)) |
→ |
c2(D#(z0),D#(z1)) |
(13) |
|
originates from |
D(+(z0,z1)) |
→ |
+(D(z0),D(z1)) |
(12) |
|
D#(*(z0,z1)) |
→ |
c3(D#(z0),D#(z1)) |
(15) |
|
originates from |
D(*(z0,z1)) |
→ |
+(*(z1,D(z0)),*(z0,D(z1))) |
(14) |
|
D#(-(z0,z1)) |
→ |
c4(D#(z0),D#(z1)) |
(17) |
|
originates from |
D(-(z0,z1)) |
→ |
-(D(z0),D(z1)) |
(16) |
|
D#(minus(z0)) |
→ |
c5(D#(z0)) |
(19) |
|
originates from |
D(minus(z0)) |
→ |
minus(D(z0)) |
(18) |
|
D#(div(z0,z1)) |
→ |
c6(D#(z0),D#(z1)) |
(21) |
|
originates from |
D(div(z0,z1)) |
→ |
-(div(D(z0),z1),div(*(z0,D(z1)),pow(z1,2))) |
(20) |
|
D#(ln(z0)) |
→ |
c7(D#(z0)) |
(23) |
|
originates from |
D(ln(z0)) |
→ |
div(D(z0),z0) |
(22) |
|
D#(pow(z0,z1)) |
→ |
c8(D#(z0),D#(z1)) |
(25) |
|
originates from |
D(pow(z0,z1)) |
→ |
+(*(*(z1,pow(z0,-(z1,1))),D(z0)),*(*(pow(z0,z1),ln(z0)),D(z1))) |
(24) |
|
Moreover, we add the following terms to the innermost strategy.
D(t) |
→ |
1 |
(1) |
D(constant) |
→ |
0 |
(2) |
D(+(z0,z1)) |
→ |
+(D(z0),D(z1)) |
(12) |
D(*(z0,z1)) |
→ |
+(*(z1,D(z0)),*(z0,D(z1))) |
(14) |
D(-(z0,z1)) |
→ |
-(D(z0),D(z1)) |
(16) |
D(minus(z0)) |
→ |
minus(D(z0)) |
(18) |
D(div(z0,z1)) |
→ |
-(div(D(z0),z1),div(*(z0,D(z1)),pow(z1,2))) |
(20) |
D(ln(z0)) |
→ |
div(D(z0),z0) |
(22) |
D(pow(z0,z1)) |
→ |
+(*(*(z1,pow(z0,-(z1,1))),D(z0)),*(*(pow(z0,z1),ln(z0)),D(z1))) |
(24) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).