The rewrite relation of the following TRS is considered.
@(Cons(x,xs),ys) | → | Cons(x,@(xs,ys)) | (1) |
@(Nil,ys) | → | ys | (2) |
game(p1,Cons(x',xs'),Cons(Capture,xs)) | → | game(Cons(x',p1),xs',xs) | (3) |
game(p1,p2,Cons(Swap,xs)) | → | game(p2,p1,xs) | (4) |
equal(Capture,Capture) | → | True | (5) |
equal(Capture,Swap) | → | False | (6) |
equal(Swap,Capture) | → | False | (7) |
equal(Swap,Swap) | → | True | (8) |
game(p1,p2,Nil) | → | @(p1,p2) | (9) |
goal(p1,p2,moves) | → | game(p1,p2,moves) | (10) |
final states:
{0, 1, 2, 3, 4}
transitions:
Cons0(0,0) | → | 0 |
Nil0 | → | 0 |
Capture0 | → | 0 |
Swap0 | → | 0 |
True0 | → | 0 |
False0 | → | 0 |
@0(0,0) | → | 1 |
game0(0,0,0) | → | 2 |
equal0(0,0) | → | 3 |
goal0(0,0,0) | → | 4 |
@1(0,0) | → | 5 |
Cons1(0,5) | → | 1 |
Cons1(0,0) | → | 6 |
game1(6,0,0) | → | 2 |
game1(0,0,0) | → | 2 |
True1 | → | 3 |
False1 | → | 3 |
@1(0,0) | → | 2 |
game1(0,0,0) | → | 4 |
Cons1(0,5) | → | 2 |
Cons1(0,5) | → | 5 |
Cons1(0,6) | → | 6 |
game1(6,0,0) | → | 4 |
game1(0,6,0) | → | 2 |
@1(6,0) | → | 2 |
@1(0,0) | → | 4 |
Cons1(0,5) | → | 4 |
@2(0,0) | → | 7 |
Cons2(0,7) | → | 2 |
@2(6,0) | → | 7 |
game1(6,6,0) | → | 2 |
game1(0,6,0) | → | 4 |
@1(0,6) | → | 2 |
@1(6,0) | → | 4 |
@1(0,6) | → | 5 |
Cons2(0,7) | → | 4 |
game1(6,6,0) | → | 4 |
@1(6,6) | → | 2 |
@1(0,6) | → | 4 |
Cons1(0,5) | → | 7 |
Cons2(0,7) | → | 7 |
@2(0,6) | → | 7 |
@2(6,6) | → | 7 |
@1(6,6) | → | 4 |
0 | → | 1 |
0 | → | 2 |
0 | → | 5 |
0 | → | 4 |
0 | → | 7 |
6 | → | 2 |
6 | → | 4 |
6 | → | 5 |
6 | → | 7 |