Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/Frederiksen_Glenstrup/mergelists)

The relative rewrite relation R/S is considered where R is the following TRS

merge(Cons(x,xs),Nil) Cons(x,xs) (1)
merge(Cons(x',xs'),Cons(x,xs)) merge[Ite](<=(x',x),Cons(x',xs'),Cons(x,xs)) (2)
merge(Nil,ys) ys (3)
goal(xs,ys) merge(xs,ys) (4)

and S is the following TRS.

<=(S(x),S(y)) <=(x,y) (5)
<=(0,y) True (6)
<=(S(x),0) False (7)
merge[Ite](False,xs',Cons(x,xs)) Cons(x,merge(xs',xs)) (8)
merge[Ite](True,Cons(x,xs),ys) Cons(x,merge(xs,ys)) (9)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
merge#(Cons(z0,z1),Nil) c5 (11)
originates from
merge(Cons(z0,z1),Nil) Cons(z0,z1) (10)
merge#(Cons(z0,z1),Cons(z2,z3)) c6(merge[Ite]#(<=(z0,z2),Cons(z0,z1),Cons(z2,z3)),<=#(z0,z2)) (13)
originates from
merge(Cons(z0,z1),Cons(z2,z3)) merge[Ite](<=(z0,z2),Cons(z0,z1),Cons(z2,z3)) (12)
merge#(Nil,z0) c7 (15)
originates from
merge(Nil,z0) z0 (14)
goal#(z0,z1) c8(merge#(z0,z1)) (17)
originates from
goal(z0,z1) merge(z0,z1) (16)
<=#(S(z0),S(z1)) c(<=#(z0,z1)) (19)
originates from
<=(S(z0),S(z1)) <=(z0,z1) (18)
<=#(0,z0) c1 (21)
originates from
<=(0,z0) True (20)
<=#(S(z0),0) c2 (23)
originates from
<=(S(z0),0) False (22)
merge[Ite]#(False,z0,Cons(z1,z2)) c3(merge#(z0,z2)) (25)
originates from
merge[Ite](False,z0,Cons(z1,z2)) Cons(z1,merge(z0,z2)) (24)
merge[Ite]#(True,Cons(z0,z1),z2) c4(merge#(z1,z2)) (27)
originates from
merge[Ite](True,Cons(z0,z1),z2) Cons(z0,merge(z1,z2)) (26)
Moreover, we add the following terms to the innermost strategy.
<=#(S(z0),S(z1))
<=#(0,z0)
<=#(S(z0),0)
merge[Ite]#(False,z0,Cons(z1,z2))
merge[Ite]#(True,Cons(z0,z1),z2)
merge#(Cons(z0,z1),Nil)
merge#(Cons(z0,z1),Cons(z2,z3))
merge#(Nil,z0)
goal#(z0,z1)

1.1 Usable Rules

We remove the following rules since they are not usable.
merge[Ite](False,z0,Cons(z1,z2)) Cons(z1,merge(z0,z2)) (24)
merge[Ite](True,Cons(z0,z1),z2) Cons(z0,merge(z1,z2)) (26)
merge(Cons(z0,z1),Nil) Cons(z0,z1) (10)
merge(Cons(z0,z1),Cons(z2,z3)) merge[Ite](<=(z0,z2),Cons(z0,z1),Cons(z2,z3)) (12)
merge(Nil,z0) z0 (14)
goal(z0,z1) merge(z0,z1) (16)

1.1.1 Rule Shifting

The rules
goal#(z0,z1) c8(merge#(z0,z1)) (17)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4(x1)] = 1 · x1 + 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7] = 0
[c8(x1)] = 1 · x1 + 0
[<=(x1, x2)] = 0
[<=#(x1, x2)] = 0
[merge[Ite]#(x1, x2, x3)] = 1 · x1 + 0
[merge#(x1, x2)] = 0
[goal#(x1, x2)] = 1
[S(x1)] = 1 + 1 · x1
[0] = 1
[True] = 0
[False] = 0
[Cons(x1, x2)] = 1 + 1 · x1 + 1 · x2
[Nil] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<=#(S(z0),S(z1)) c(<=#(z0,z1)) (19)
<=#(0,z0) c1 (21)
<=#(S(z0),0) c2 (23)
merge[Ite]#(False,z0,Cons(z1,z2)) c3(merge#(z0,z2)) (25)
merge[Ite]#(True,Cons(z0,z1),z2) c4(merge#(z1,z2)) (27)
merge#(Cons(z0,z1),Nil) c5 (11)
merge#(Cons(z0,z1),Cons(z2,z3)) c6(merge[Ite]#(<=(z0,z2),Cons(z0,z1),Cons(z2,z3)),<=#(z0,z2)) (13)
merge#(Nil,z0) c7 (15)
goal#(z0,z1) c8(merge#(z0,z1)) (17)
<=(0,z0) True (20)
<=(S(z0),S(z1)) <=(z0,z1) (18)
<=(S(z0),0) False (22)

1.1.1.1 Rule Shifting

The rules
merge#(Cons(z0,z1),Nil) c5 (11)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4(x1)] = 1 · x1 + 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7] = 0
[c8(x1)] = 1 · x1 + 0
[<=(x1, x2)] = 3
[<=#(x1, x2)] = 0
[merge[Ite]#(x1, x2, x3)] = 1 · x3 + 0
[merge#(x1, x2)] = 1 · x2 + 0
[goal#(x1, x2)] = 1 + 1 · x2
[S(x1)] = 3 + 1 · x1
[0] = 3
[True] = 3
[False] = 3
[Cons(x1, x2)] = 1 · x2 + 0
[Nil] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<=#(S(z0),S(z1)) c(<=#(z0,z1)) (19)
<=#(0,z0) c1 (21)
<=#(S(z0),0) c2 (23)
merge[Ite]#(False,z0,Cons(z1,z2)) c3(merge#(z0,z2)) (25)
merge[Ite]#(True,Cons(z0,z1),z2) c4(merge#(z1,z2)) (27)
merge#(Cons(z0,z1),Nil) c5 (11)
merge#(Cons(z0,z1),Cons(z2,z3)) c6(merge[Ite]#(<=(z0,z2),Cons(z0,z1),Cons(z2,z3)),<=#(z0,z2)) (13)
merge#(Nil,z0) c7 (15)
goal#(z0,z1) c8(merge#(z0,z1)) (17)

1.1.1.1.1 Rule Shifting

The rules
merge#(Cons(z0,z1),Cons(z2,z3)) c6(merge[Ite]#(<=(z0,z2),Cons(z0,z1),Cons(z2,z3)),<=#(z0,z2)) (13)
merge#(Nil,z0) c7 (15)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4(x1)] = 1 · x1 + 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7] = 0
[c8(x1)] = 1 · x1 + 0
[<=(x1, x2)] = 3
[<=#(x1, x2)] = 0
[merge[Ite]#(x1, x2, x3)] = 1 · x2 + 0 + 3 · x3
[merge#(x1, x2)] = 2 + 1 · x1 + 3 · x2
[goal#(x1, x2)] = 2 + 1 · x1 + 3 · x2
[S(x1)] = 3 + 1 · x1
[0] = 3
[True] = 3
[False] = 3
[Cons(x1, x2)] = 3 + 1 · x2
[Nil] = 3
which has the intended complexity. Here, only the following usable rules have been considered:
<=#(S(z0),S(z1)) c(<=#(z0,z1)) (19)
<=#(0,z0) c1 (21)
<=#(S(z0),0) c2 (23)
merge[Ite]#(False,z0,Cons(z1,z2)) c3(merge#(z0,z2)) (25)
merge[Ite]#(True,Cons(z0,z1),z2) c4(merge#(z1,z2)) (27)
merge#(Cons(z0,z1),Nil) c5 (11)
merge#(Cons(z0,z1),Cons(z2,z3)) c6(merge[Ite]#(<=(z0,z2),Cons(z0,z1),Cons(z2,z3)),<=#(z0,z2)) (13)
merge#(Nil,z0) c7 (15)
goal#(z0,z1) c8(merge#(z0,z1)) (17)

1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).