The rewrite relation of the following TRS is considered.
f4(S(x''),S(x'),x3,x4,S(x)) | → | f2(S(x''),x',x3,x4,x) | (1) |
f4(S(x'),0,x3,x4,S(x)) | → | f3(x',0,x3,x4,x) | (2) |
f2(x1,x2,S(x''),S(x'),S(x)) | → | f5(x1,x2,S(x''),x',x) | (3) |
f2(x1,x2,S(x'),0,S(x)) | → | f3(x1,x2,x',0,x) | (4) |
f4(S(x'),S(x),x3,x4,0) | → | 0 | (5) |
f4(S(x),0,x3,x4,0) | → | 0 | (6) |
f2(x1,x2,S(x'),S(x),0) | → | 0 | (7) |
f2(x1,x2,S(x),0,0) | → | 0 | (8) |
f0(x1,S(x'),x3,S(x),x5) | → | f1(x',S(x'),x,S(x),S(x)) | (9) |
f0(x1,S(x),x3,0,x5) | → | 0 | (10) |
f6(x1,x2,x3,x4,S(x)) | → | f0(x1,x2,x4,x3,x) | (11) |
f5(x1,x2,x3,x4,S(x)) | → | f6(x2,x1,x3,x4,x) | (12) |
f3(x1,x2,x3,x4,S(x)) | → | f4(x1,x2,x4,x3,x) | (13) |
f1(x1,x2,x3,x4,S(x)) | → | f2(x2,x1,x3,x4,x) | (14) |
f6(x1,x2,x3,x4,0) | → | 0 | (15) |
f5(x1,x2,x3,x4,0) | → | 0 | (16) |
f4(0,x2,x3,x4,x5) | → | 0 | (17) |
f3(x1,x2,x3,x4,0) | → | 0 | (18) |
f2(x1,x2,0,x4,x5) | → | 0 | (19) |
f1(x1,x2,x3,x4,0) | → | 0 | (20) |
f0(x1,0,x3,x4,x5) | → | 0 | (21) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
f4#(S(z0),S(z1),z2,z3,S(z4)) |
f4#(S(z0),0,z1,z2,S(z3)) |
f4#(S(z0),S(z1),z2,z3,0) |
f4#(S(z0),0,z1,z2,0) |
f4#(0,z0,z1,z2,z3) |
f2#(z0,z1,S(z2),S(z3),S(z4)) |
f2#(z0,z1,S(z2),0,S(z3)) |
f2#(z0,z1,S(z2),S(z3),0) |
f2#(z0,z1,S(z2),0,0) |
f2#(z0,z1,0,z2,z3) |
f0#(z0,S(z1),z2,S(z3),z4) |
f0#(z0,S(z1),z2,0,z3) |
f0#(z0,0,z1,z2,z3) |
f6#(z0,z1,z2,z3,S(z4)) |
f6#(z0,z1,z2,z3,0) |
f5#(z0,z1,z2,z3,S(z4)) |
f5#(z0,z1,z2,z3,0) |
f3#(z0,z1,z2,z3,S(z4)) |
f3#(z0,z1,z2,z3,0) |
f1#(z0,z1,z2,z3,S(z4)) |
f1#(z0,z1,z2,z3,0) |
f4(S(z0),S(z1),z2,z3,S(z4)) | → | f2(S(z0),z1,z2,z3,z4) | (22) |
f4(S(z0),0,z1,z2,S(z3)) | → | f3(z0,0,z1,z2,z3) | (24) |
f4(S(z0),S(z1),z2,z3,0) | → | 0 | (26) |
f4(S(z0),0,z1,z2,0) | → | 0 | (28) |
f4(0,z0,z1,z2,z3) | → | 0 | (30) |
f2(z0,z1,S(z2),S(z3),S(z4)) | → | f5(z0,z1,S(z2),z3,z4) | (32) |
f2(z0,z1,S(z2),0,S(z3)) | → | f3(z0,z1,z2,0,z3) | (34) |
f2(z0,z1,S(z2),S(z3),0) | → | 0 | (36) |
f2(z0,z1,S(z2),0,0) | → | 0 | (38) |
f2(z0,z1,0,z2,z3) | → | 0 | (40) |
f0(z0,S(z1),z2,S(z3),z4) | → | f1(z1,S(z1),z3,S(z3),S(z3)) | (42) |
f0(z0,S(z1),z2,0,z3) | → | 0 | (44) |
f0(z0,0,z1,z2,z3) | → | 0 | (46) |
f6(z0,z1,z2,z3,S(z4)) | → | f0(z0,z1,z3,z2,z4) | (48) |
f6(z0,z1,z2,z3,0) | → | 0 | (50) |
f5(z0,z1,z2,z3,S(z4)) | → | f6(z1,z0,z2,z3,z4) | (52) |
f5(z0,z1,z2,z3,0) | → | 0 | (54) |
f3(z0,z1,z2,z3,S(z4)) | → | f4(z0,z1,z3,z2,z4) | (56) |
f3(z0,z1,z2,z3,0) | → | 0 | (58) |
f1(z0,z1,z2,z3,S(z4)) | → | f2(z1,z0,z2,z3,z4) | (60) |
f1(z0,z1,z2,z3,0) | → | 0 | (62) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 0 |
[f2#(x1,...,x5)] | = | 0 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 · x3 + 0 |
[f3#(x1,...,x5)] | = | 0 |
[f1#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x4 + 1 · x5 |
[S(x1)] | = | 0 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 0 |
[f2#(x1,...,x5)] | = | 1 · x1 + 0 |
[f0#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x4 |
[f6#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x3 |
[f5#(x1,...,x5)] | = | 1 · x1 + 0 + 1 · x3 |
[f3#(x1,...,x5)] | = | 0 |
[f1#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x4 + 1 · x5 |
[S(x1)] | = | 0 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 |
[f2#(x1,...,x5)] | = | 1 |
[f0#(x1,...,x5)] | = | 1 + 1 · x4 |
[f6#(x1,...,x5)] | = | 1 + 1 · x3 |
[f5#(x1,...,x5)] | = | 1 + 1 · x3 |
[f3#(x1,...,x5)] | = | 1 |
[f1#(x1,...,x5)] | = | 1 + 1 · x2 + 1 · x4 + 1 · x5 |
[S(x1)] | = | 0 |
[0] | = | 0 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 · x1 + 0 |
[f2#(x1,...,x5)] | = | 1 · x1 + 0 |
[f0#(x1,...,x5)] | = | 1 · x2 + 0 |
[f6#(x1,...,x5)] | = | 1 · x2 + 0 |
[f5#(x1,...,x5)] | = | 1 · x1 + 0 |
[f3#(x1,...,x5)] | = | 1 · x1 + 0 |
[f1#(x1,...,x5)] | = | 1 · x2 + 0 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 · x3 + 0 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 · x3 + 0 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 · x3 + 0 |
[f3#(x1,...,x5)] | = | 1 · x3 + 0 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 · x3 + 0 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 0 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 · x3 + 0 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 · x3 + 0 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 · x3 + 0 |
[f3#(x1,...,x5)] | = | 1 · x3 + 0 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 + 1 · x3 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 · x3 + 0 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 · x3 + 0 |
[f3#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 · x3 + 0 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 0 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 + 1 · x3 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 + 1 · x3 |
[f5#(x1,...,x5)] | = | 1 + 1 · x3 |
[f3#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 + 1 · x3 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 · x1 + 0 + 1 · x3 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 · x1 + 0 + 1 · x3 |
[f0#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x4 |
[f6#(x1,...,x5)] | = | 1 · x2 + 0 + 1 · x3 |
[f5#(x1,...,x5)] | = | 1 · x1 + 0 + 1 · x3 |
[f3#(x1,...,x5)] | = | 1 + 1 · x1 + 1 · x3 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 + 1 · x2 + 1 · x3 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 0 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 + 1 · x3 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 + 1 · x3 |
[f3#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 + 1 · x3 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
[c(x1)] | = | 1 · x1 + 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2] | = | 0 |
[c3] | = | 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[c7] | = | 0 |
[c8] | = | 0 |
[c9] | = | 0 |
[c10(x1)] | = | 1 · x1 + 0 |
[c11] | = | 0 |
[c12] | = | 0 |
[c13(x1)] | = | 1 · x1 + 0 |
[c14] | = | 0 |
[c15(x1)] | = | 1 · x1 + 0 |
[c16] | = | 0 |
[c17(x1)] | = | 1 · x1 + 0 |
[c18] | = | 0 |
[c19(x1)] | = | 1 · x1 + 0 |
[c20] | = | 0 |
[f4#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f2#(x1,...,x5)] | = | 1 + 1 · x3 |
[f0#(x1,...,x5)] | = | 1 · x4 + 0 |
[f6#(x1,...,x5)] | = | 1 · x3 + 0 |
[f5#(x1,...,x5)] | = | 1 · x3 + 0 |
[f3#(x1,...,x5)] | = | 1 + 1 · x3 + 1 · x4 |
[f1#(x1,...,x5)] | = | 1 + 1 · x3 |
[S(x1)] | = | 1 + 1 · x1 |
[0] | = | 1 |
f4#(S(z0),S(z1),z2,z3,S(z4)) | → | c(f2#(S(z0),z1,z2,z3,z4)) | (23) |
f4#(S(z0),0,z1,z2,S(z3)) | → | c1(f3#(z0,0,z1,z2,z3)) | (25) |
f4#(S(z0),S(z1),z2,z3,0) | → | c2 | (27) |
f4#(S(z0),0,z1,z2,0) | → | c3 | (29) |
f4#(0,z0,z1,z2,z3) | → | c4 | (31) |
f2#(z0,z1,S(z2),S(z3),S(z4)) | → | c5(f5#(z0,z1,S(z2),z3,z4)) | (33) |
f2#(z0,z1,S(z2),0,S(z3)) | → | c6(f3#(z0,z1,z2,0,z3)) | (35) |
f2#(z0,z1,S(z2),S(z3),0) | → | c7 | (37) |
f2#(z0,z1,S(z2),0,0) | → | c8 | (39) |
f2#(z0,z1,0,z2,z3) | → | c9 | (41) |
f0#(z0,S(z1),z2,S(z3),z4) | → | c10(f1#(z1,S(z1),z3,S(z3),S(z3))) | (43) |
f0#(z0,S(z1),z2,0,z3) | → | c11 | (45) |
f0#(z0,0,z1,z2,z3) | → | c12 | (47) |
f6#(z0,z1,z2,z3,S(z4)) | → | c13(f0#(z0,z1,z3,z2,z4)) | (49) |
f6#(z0,z1,z2,z3,0) | → | c14 | (51) |
f5#(z0,z1,z2,z3,S(z4)) | → | c15(f6#(z1,z0,z2,z3,z4)) | (53) |
f5#(z0,z1,z2,z3,0) | → | c16 | (55) |
f3#(z0,z1,z2,z3,S(z4)) | → | c17(f4#(z0,z1,z3,z2,z4)) | (57) |
f3#(z0,z1,z2,z3,0) | → | c18 | (59) |
f1#(z0,z1,z2,z3,S(z4)) | → | c19(f2#(z1,z0,z2,z3,z4)) | (61) |
f1#(z0,z1,z2,z3,0) | → | c20 | (63) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).