Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/Frederiksen_Others/boolprog)

The rewrite relation of the following TRS is considered.

f4(S(x''),S(x'),x3,x4,S(x)) f2(S(x''),x',x3,x4,x) (1)
f4(S(x'),0,x3,x4,S(x)) f3(x',0,x3,x4,x) (2)
f2(x1,x2,S(x''),S(x'),S(x)) f5(x1,x2,S(x''),x',x) (3)
f2(x1,x2,S(x'),0,S(x)) f3(x1,x2,x',0,x) (4)
f4(S(x'),S(x),x3,x4,0) 0 (5)
f4(S(x),0,x3,x4,0) 0 (6)
f2(x1,x2,S(x'),S(x),0) 0 (7)
f2(x1,x2,S(x),0,0) 0 (8)
f0(x1,S(x'),x3,S(x),x5) f1(x',S(x'),x,S(x),S(x)) (9)
f0(x1,S(x),x3,0,x5) 0 (10)
f6(x1,x2,x3,x4,S(x)) f0(x1,x2,x4,x3,x) (11)
f5(x1,x2,x3,x4,S(x)) f6(x2,x1,x3,x4,x) (12)
f3(x1,x2,x3,x4,S(x)) f4(x1,x2,x4,x3,x) (13)
f1(x1,x2,x3,x4,S(x)) f2(x2,x1,x3,x4,x) (14)
f6(x1,x2,x3,x4,0) 0 (15)
f5(x1,x2,x3,x4,0) 0 (16)
f4(0,x2,x3,x4,x5) 0 (17)
f3(x1,x2,x3,x4,0) 0 (18)
f2(x1,x2,0,x4,x5) 0 (19)
f1(x1,x2,x3,x4,0) 0 (20)
f0(x1,0,x3,x4,x5) 0 (21)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
originates from
f4(S(z0),S(z1),z2,z3,S(z4)) f2(S(z0),z1,z2,z3,z4) (22)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
originates from
f4(S(z0),0,z1,z2,S(z3)) f3(z0,0,z1,z2,z3) (24)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
originates from
f4(S(z0),S(z1),z2,z3,0) 0 (26)
f4#(S(z0),0,z1,z2,0) c3 (29)
originates from
f4(S(z0),0,z1,z2,0) 0 (28)
f4#(0,z0,z1,z2,z3) c4 (31)
originates from
f4(0,z0,z1,z2,z3) 0 (30)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
originates from
f2(z0,z1,S(z2),S(z3),S(z4)) f5(z0,z1,S(z2),z3,z4) (32)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
originates from
f2(z0,z1,S(z2),0,S(z3)) f3(z0,z1,z2,0,z3) (34)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
originates from
f2(z0,z1,S(z2),S(z3),0) 0 (36)
f2#(z0,z1,S(z2),0,0) c8 (39)
originates from
f2(z0,z1,S(z2),0,0) 0 (38)
f2#(z0,z1,0,z2,z3) c9 (41)
originates from
f2(z0,z1,0,z2,z3) 0 (40)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
originates from
f0(z0,S(z1),z2,S(z3),z4) f1(z1,S(z1),z3,S(z3),S(z3)) (42)
f0#(z0,S(z1),z2,0,z3) c11 (45)
originates from
f0(z0,S(z1),z2,0,z3) 0 (44)
f0#(z0,0,z1,z2,z3) c12 (47)
originates from
f0(z0,0,z1,z2,z3) 0 (46)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
originates from
f6(z0,z1,z2,z3,S(z4)) f0(z0,z1,z3,z2,z4) (48)
f6#(z0,z1,z2,z3,0) c14 (51)
originates from
f6(z0,z1,z2,z3,0) 0 (50)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
originates from
f5(z0,z1,z2,z3,S(z4)) f6(z1,z0,z2,z3,z4) (52)
f5#(z0,z1,z2,z3,0) c16 (55)
originates from
f5(z0,z1,z2,z3,0) 0 (54)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
originates from
f3(z0,z1,z2,z3,S(z4)) f4(z0,z1,z3,z2,z4) (56)
f3#(z0,z1,z2,z3,0) c18 (59)
originates from
f3(z0,z1,z2,z3,0) 0 (58)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
originates from
f1(z0,z1,z2,z3,S(z4)) f2(z1,z0,z2,z3,z4) (60)
f1#(z0,z1,z2,z3,0) c20 (63)
originates from
f1(z0,z1,z2,z3,0) 0 (62)
Moreover, we add the following terms to the innermost strategy.
f4#(S(z0),S(z1),z2,z3,S(z4))
f4#(S(z0),0,z1,z2,S(z3))
f4#(S(z0),S(z1),z2,z3,0)
f4#(S(z0),0,z1,z2,0)
f4#(0,z0,z1,z2,z3)
f2#(z0,z1,S(z2),S(z3),S(z4))
f2#(z0,z1,S(z2),0,S(z3))
f2#(z0,z1,S(z2),S(z3),0)
f2#(z0,z1,S(z2),0,0)
f2#(z0,z1,0,z2,z3)
f0#(z0,S(z1),z2,S(z3),z4)
f0#(z0,S(z1),z2,0,z3)
f0#(z0,0,z1,z2,z3)
f6#(z0,z1,z2,z3,S(z4))
f6#(z0,z1,z2,z3,0)
f5#(z0,z1,z2,z3,S(z4))
f5#(z0,z1,z2,z3,0)
f3#(z0,z1,z2,z3,S(z4))
f3#(z0,z1,z2,z3,0)
f1#(z0,z1,z2,z3,S(z4))
f1#(z0,z1,z2,z3,0)

1.1 Usable Rules

We remove the following rules since they are not usable.
f4(S(z0),S(z1),z2,z3,S(z4)) f2(S(z0),z1,z2,z3,z4) (22)
f4(S(z0),0,z1,z2,S(z3)) f3(z0,0,z1,z2,z3) (24)
f4(S(z0),S(z1),z2,z3,0) 0 (26)
f4(S(z0),0,z1,z2,0) 0 (28)
f4(0,z0,z1,z2,z3) 0 (30)
f2(z0,z1,S(z2),S(z3),S(z4)) f5(z0,z1,S(z2),z3,z4) (32)
f2(z0,z1,S(z2),0,S(z3)) f3(z0,z1,z2,0,z3) (34)
f2(z0,z1,S(z2),S(z3),0) 0 (36)
f2(z0,z1,S(z2),0,0) 0 (38)
f2(z0,z1,0,z2,z3) 0 (40)
f0(z0,S(z1),z2,S(z3),z4) f1(z1,S(z1),z3,S(z3),S(z3)) (42)
f0(z0,S(z1),z2,0,z3) 0 (44)
f0(z0,0,z1,z2,z3) 0 (46)
f6(z0,z1,z2,z3,S(z4)) f0(z0,z1,z3,z2,z4) (48)
f6(z0,z1,z2,z3,0) 0 (50)
f5(z0,z1,z2,z3,S(z4)) f6(z1,z0,z2,z3,z4) (52)
f5(z0,z1,z2,z3,0) 0 (54)
f3(z0,z1,z2,z3,S(z4)) f4(z0,z1,z3,z2,z4) (56)
f3(z0,z1,z2,z3,0) 0 (58)
f1(z0,z1,z2,z3,S(z4)) f2(z1,z0,z2,z3,z4) (60)
f1(z0,z1,z2,z3,0) 0 (62)

1.1.1 Rule Shifting

The rules
f0#(z0,S(z1),z2,0,z3) c11 (45)
f1#(z0,z1,z2,z3,0) c20 (63)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 0
[f2#(x1,...,x5)] = 0
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 · x3 + 0
[f3#(x1,...,x5)] = 0
[f1#(x1,...,x5)] = 1 · x2 + 0 + 1 · x4 + 1 · x5
[S(x1)] = 0
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1 Rule Shifting

The rules
f0#(z0,0,z1,z2,z3) c12 (47)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 0
[f2#(x1,...,x5)] = 1 · x1 + 0
[f0#(x1,...,x5)] = 1 · x2 + 0 + 1 · x4
[f6#(x1,...,x5)] = 1 · x2 + 0 + 1 · x3
[f5#(x1,...,x5)] = 1 · x1 + 0 + 1 · x3
[f3#(x1,...,x5)] = 0
[f1#(x1,...,x5)] = 1 · x2 + 0 + 1 · x4 + 1 · x5
[S(x1)] = 0
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1 Rule Shifting

The rules
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,0) c18 (59)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1
[f2#(x1,...,x5)] = 1
[f0#(x1,...,x5)] = 1 + 1 · x4
[f6#(x1,...,x5)] = 1 + 1 · x3
[f5#(x1,...,x5)] = 1 + 1 · x3
[f3#(x1,...,x5)] = 1
[f1#(x1,...,x5)] = 1 + 1 · x2 + 1 · x4 + 1 · x5
[S(x1)] = 0
[0] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1 Rule Shifting

The rules
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 · x1 + 0
[f2#(x1,...,x5)] = 1 · x1 + 0
[f0#(x1,...,x5)] = 1 · x2 + 0
[f6#(x1,...,x5)] = 1 · x2 + 0
[f5#(x1,...,x5)] = 1 · x1 + 0
[f3#(x1,...,x5)] = 1 · x1 + 0
[f1#(x1,...,x5)] = 1 · x2 + 0
[S(x1)] = 1 + 1 · x1
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1 Rule Shifting

The rules
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 · x3 + 0 + 1 · x4
[f2#(x1,...,x5)] = 1 · x3 + 0
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 · x3 + 0
[f3#(x1,...,x5)] = 1 · x3 + 0 + 1 · x4
[f1#(x1,...,x5)] = 1 · x3 + 0
[S(x1)] = 1 + 1 · x1
[0] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1 Rule Shifting

The rules
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 · x3 + 0 + 1 · x4
[f2#(x1,...,x5)] = 1 · x3 + 0
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 · x3 + 0
[f3#(x1,...,x5)] = 1 · x3 + 0 + 1 · x4
[f1#(x1,...,x5)] = 1 + 1 · x3
[S(x1)] = 1 + 1 · x1
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f2#(x1,...,x5)] = 1 · x3 + 0
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 · x3 + 0
[f3#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f1#(x1,...,x5)] = 1 · x3 + 0
[S(x1)] = 1 + 1 · x1
[0] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f2#(x1,...,x5)] = 1 + 1 · x3
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 + 1 · x3
[f5#(x1,...,x5)] = 1 + 1 · x3
[f3#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f1#(x1,...,x5)] = 1 + 1 · x3
[S(x1)] = 1 + 1 · x1
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[f2#(x1,...,x5)] = 1 · x1 + 0 + 1 · x3
[f0#(x1,...,x5)] = 1 · x2 + 0 + 1 · x4
[f6#(x1,...,x5)] = 1 · x2 + 0 + 1 · x3
[f5#(x1,...,x5)] = 1 · x1 + 0 + 1 · x3
[f3#(x1,...,x5)] = 1 + 1 · x1 + 1 · x3 + 1 · x4
[f1#(x1,...,x5)] = 1 + 1 · x2 + 1 · x3
[S(x1)] = 1 + 1 · x1
[0] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f2#(x1,...,x5)] = 1 + 1 · x3
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 + 1 · x3
[f3#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f1#(x1,...,x5)] = 1 + 1 · x3
[S(x1)] = 1 + 1 · x1
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1(x1)] = 1 · x1 + 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5(x1)] = 1 · x1 + 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10(x1)] = 1 · x1 + 0
[c11] = 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15(x1)] = 1 · x1 + 0
[c16] = 0
[c17(x1)] = 1 · x1 + 0
[c18] = 0
[c19(x1)] = 1 · x1 + 0
[c20] = 0
[f4#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f2#(x1,...,x5)] = 1 + 1 · x3
[f0#(x1,...,x5)] = 1 · x4 + 0
[f6#(x1,...,x5)] = 1 · x3 + 0
[f5#(x1,...,x5)] = 1 · x3 + 0
[f3#(x1,...,x5)] = 1 + 1 · x3 + 1 · x4
[f1#(x1,...,x5)] = 1 + 1 · x3
[S(x1)] = 1 + 1 · x1
[0] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
f4#(S(z0),S(z1),z2,z3,S(z4)) c(f2#(S(z0),z1,z2,z3,z4)) (23)
f4#(S(z0),0,z1,z2,S(z3)) c1(f3#(z0,0,z1,z2,z3)) (25)
f4#(S(z0),S(z1),z2,z3,0) c2 (27)
f4#(S(z0),0,z1,z2,0) c3 (29)
f4#(0,z0,z1,z2,z3) c4 (31)
f2#(z0,z1,S(z2),S(z3),S(z4)) c5(f5#(z0,z1,S(z2),z3,z4)) (33)
f2#(z0,z1,S(z2),0,S(z3)) c6(f3#(z0,z1,z2,0,z3)) (35)
f2#(z0,z1,S(z2),S(z3),0) c7 (37)
f2#(z0,z1,S(z2),0,0) c8 (39)
f2#(z0,z1,0,z2,z3) c9 (41)
f0#(z0,S(z1),z2,S(z3),z4) c10(f1#(z1,S(z1),z3,S(z3),S(z3))) (43)
f0#(z0,S(z1),z2,0,z3) c11 (45)
f0#(z0,0,z1,z2,z3) c12 (47)
f6#(z0,z1,z2,z3,S(z4)) c13(f0#(z0,z1,z3,z2,z4)) (49)
f6#(z0,z1,z2,z3,0) c14 (51)
f5#(z0,z1,z2,z3,S(z4)) c15(f6#(z1,z0,z2,z3,z4)) (53)
f5#(z0,z1,z2,z3,0) c16 (55)
f3#(z0,z1,z2,z3,S(z4)) c17(f4#(z0,z1,z3,z2,z4)) (57)
f3#(z0,z1,z2,z3,0) c18 (59)
f1#(z0,z1,z2,z3,S(z4)) c19(f2#(z1,z0,z2,z3,z4)) (61)
f1#(z0,z1,z2,z3,0) c20 (63)

1.1.1.1.1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).