Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/Frederiksen_Others/gexgcd)

The relative rewrite relation R/S is considered where R is the following TRS

m2(S(0),b,res,True) False (1)
m2(S(S(x)),b,res,True) True (2)
m2(0,b,res,True) False (3)
m3(S(0),b,res,t) False (4)
m3(S(S(x)),b,res,t) True (5)
m3(0,b,res,t) False (6)
l8(res,y,res',True,mtmp,t) res (7)
l5(x,y,res,tmp,mtmp,True) 0 (8)
help1(S(0)) False (9)
help1(S(S(x))) True (10)
e4(a,b,res,False) False (11)
e4(a,b,res,True) True (12)
e2(a,b,res,False) False (13)
l15(x,y,res,tmp,False,t) l16(x,y,gcd(y,0),tmp,False,t) (14)
l15(x,y,res,tmp,True,t) l16(x,y,gcd(y,S(0)),tmp,True,t) (15)
l13(x,y,res,tmp,False,t) l16(x,y,gcd(0,y),tmp,False,t) (16)
l13(x,y,res,tmp,True,t) l16(x,y,gcd(S(0),y),tmp,True,t) (17)
m4(S(x'),S(x),res,t) m5(S(x'),S(x),monus(x',x),t) (18)
m2(a,b,res,False) m4(a,b,res,False) (19)
l8(x,y,res,False,mtmp,t) l10(x,y,res,False,mtmp,t) (20)
l5(x,y,res,tmp,mtmp,False) l7(x,y,res,tmp,mtmp,False) (21)
l2(x,y,res,tmp,mtmp,False) l3(x,y,res,tmp,mtmp,False) (22)
l2(x,y,res,tmp,mtmp,True) res (23)
l11(x,y,res,tmp,mtmp,False) l14(x,y,res,tmp,mtmp,False) (24)
l11(x,y,res,tmp,mtmp,True) l12(x,y,res,tmp,mtmp,True) (25)
help1(0) False (26)
e2(a,b,res,True) e3(a,b,res,True) (27)
bool2Nat(False) 0 (28)
bool2Nat(True) S(0) (29)
m1(a,x,res,t) m2(a,x,res,False) (30)
l9(res,y,res',tmp,mtmp,t) res (31)
l6(x,y,res,tmp,mtmp,t) 0 (32)
l4(x',x,res,tmp,mtmp,t) l5(x',x,res,tmp,mtmp,False) (33)
l1(x,y,res,tmp,mtmp,t) l2(x,y,res,tmp,mtmp,False) (34)
e7(a,b,res,t) False (35)
e6(a,b,res,t) False (36)
e5(a,b,res,t) True (37)
monus(a,b) m1(a,b,False,False) (38)
m5(a,b,res,t) res (39)
l7(x,y,res,tmp,mtmp,t) l8(x,y,res,equal0(x,y),mtmp,t) (40)
l3(x,y,res,tmp,mtmp,t) l4(x,y,0,tmp,mtmp,t) (41)
l16(x,y,res,tmp,mtmp,t) res (42)
l14(x,y,res,tmp,mtmp,t) l15(x,y,res,tmp,monus(x,y),t) (43)
l12(x,y,res,tmp,mtmp,t) l13(x,y,res,tmp,monus(x,y),t) (44)
l10(x,y,res,tmp,mtmp,t) l11(x,y,res,tmp,mtmp,<(x,y)) (45)
gcd(x,y) l1(x,y,0,False,False,False) (46)
equal0(a,b) e1(a,b,False,False) (47)
e8(a,b,res,t) res (48)
e3(a,b,res,t) e4(a,b,res,<(b,a)) (49)
e1(a,b,res,t) e2(a,b,res,<(a,b)) (50)

and S is the following TRS.

<(S(x),S(y)) <(x,y) (51)
<(0,S(y)) True (52)
<(x,0) False (53)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
m2#(S(0),z0,z1,True) c3 (55)
originates from
m2(S(0),z0,z1,True) False (54)
m2#(S(S(z0)),z1,z2,True) c4 (57)
originates from
m2(S(S(z0)),z1,z2,True) True (56)
m2#(0,z0,z1,True) c5 (59)
originates from
m2(0,z0,z1,True) False (58)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
originates from
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
m3#(S(0),z0,z1,z2) c7 (63)
originates from
m3(S(0),z0,z1,z2) False (62)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
originates from
m3(S(S(z0)),z1,z2,z3) True (64)
m3#(0,z0,z1,z2) c9 (67)
originates from
m3(0,z0,z1,z2) False (66)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
originates from
l8(z0,z1,z2,True,z3,z4) z0 (68)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
originates from
l8(z0,z1,z2,False,z3,z4) l10(z0,z1,z2,False,z3,z4) (70)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
originates from
l5(z0,z1,z2,z3,z4,True) 0 (72)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
originates from
l5(z0,z1,z2,z3,z4,False) l7(z0,z1,z2,z3,z4,False) (74)
help1#(S(0)) c14 (76)
originates from
help1(S(0)) False (9)
help1#(S(S(z0))) c15 (78)
originates from
help1(S(S(z0))) True (77)
help1#(0) c16 (79)
originates from
help1(0) False (26)
e4#(z0,z1,z2,False) c17 (81)
originates from
e4(z0,z1,z2,False) False (80)
e4#(z0,z1,z2,True) c18 (83)
originates from
e4(z0,z1,z2,True) True (82)
e2#(z0,z1,z2,False) c19 (85)
originates from
e2(z0,z1,z2,False) False (84)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
originates from
e2(z0,z1,z2,True) e3(z0,z1,z2,True) (86)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
originates from
l15(z0,z1,z2,z3,False,z4) l16(z0,z1,gcd(z1,0),z3,False,z4) (88)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
originates from
l15(z0,z1,z2,z3,True,z4) l16(z0,z1,gcd(z1,S(0)),z3,True,z4) (90)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
originates from
l13(z0,z1,z2,z3,False,z4) l16(z0,z1,gcd(0,z1),z3,False,z4) (92)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
originates from
l13(z0,z1,z2,z3,True,z4) l16(z0,z1,gcd(S(0),z1),z3,True,z4) (94)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
originates from
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
originates from
l2(z0,z1,z2,z3,z4,False) l3(z0,z1,z2,z3,z4,False) (98)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
originates from
l2(z0,z1,z2,z3,z4,True) z2 (100)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
originates from
l11(z0,z1,z2,z3,z4,False) l14(z0,z1,z2,z3,z4,False) (102)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
originates from
l11(z0,z1,z2,z3,z4,True) l12(z0,z1,z2,z3,z4,True) (104)
bool2Nat#(False) c30 (106)
originates from
bool2Nat(False) 0 (28)
bool2Nat#(True) c31 (107)
originates from
bool2Nat(True) S(0) (29)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
originates from
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
originates from
l9(z0,z1,z2,z3,z4,z5) z0 (110)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
originates from
l6(z0,z1,z2,z3,z4,z5) 0 (112)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
originates from
l4(z0,z1,z2,z3,z4,z5) l5(z0,z1,z2,z3,z4,False) (114)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
originates from
l1(z0,z1,z2,z3,z4,z5) l2(z0,z1,z2,z3,z4,False) (116)
e7#(z0,z1,z2,z3) c37 (119)
originates from
e7(z0,z1,z2,z3) False (118)
e6#(z0,z1,z2,z3) c38 (121)
originates from
e6(z0,z1,z2,z3) False (120)
e5#(z0,z1,z2,z3) c39 (123)
originates from
e5(z0,z1,z2,z3) True (122)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
originates from
monus(z0,z1) m1(z0,z1,False,False) (124)
m5#(z0,z1,z2,z3) c41 (127)
originates from
m5(z0,z1,z2,z3) z2 (126)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
originates from
l7(z0,z1,z2,z3,z4,z5) l8(z0,z1,z2,equal0(z0,z1),z4,z5) (128)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
originates from
l3(z0,z1,z2,z3,z4,z5) l4(z0,z1,0,z3,z4,z5) (130)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
originates from
l16(z0,z1,z2,z3,z4,z5) z2 (132)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
originates from
l14(z0,z1,z2,z3,z4,z5) l15(z0,z1,z2,z3,monus(z0,z1),z5) (134)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
originates from
l12(z0,z1,z2,z3,z4,z5) l13(z0,z1,z2,z3,monus(z0,z1),z5) (136)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
originates from
l10(z0,z1,z2,z3,z4,z5) l11(z0,z1,z2,z3,z4,<(z0,z1)) (138)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
originates from
gcd(z0,z1) l1(z0,z1,0,False,False,False) (140)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
originates from
equal0(z0,z1) e1(z0,z1,False,False) (142)
e8#(z0,z1,z2,z3) c50 (145)
originates from
e8(z0,z1,z2,z3) z2 (144)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
originates from
e3(z0,z1,z2,z3) e4(z0,z1,z2,<(z1,z0)) (146)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
originates from
e1(z0,z1,z2,z3) e2(z0,z1,z2,<(z0,z1)) (148)
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
originates from
<(S(z0),S(z1)) <(z0,z1) (150)
<#(0,S(z0)) c1 (153)
originates from
<(0,S(z0)) True (152)
<#(z0,0) c2 (155)
originates from
<(z0,0) False (154)
Moreover, we add the following terms to the innermost strategy.
<#(S(z0),S(z1))
<#(0,S(z0))
<#(z0,0)
m2#(S(0),z0,z1,True)
m2#(S(S(z0)),z1,z2,True)
m2#(0,z0,z1,True)
m2#(z0,z1,z2,False)
m3#(S(0),z0,z1,z2)
m3#(S(S(z0)),z1,z2,z3)
m3#(0,z0,z1,z2)
l8#(z0,z1,z2,True,z3,z4)
l8#(z0,z1,z2,False,z3,z4)
l5#(z0,z1,z2,z3,z4,True)
l5#(z0,z1,z2,z3,z4,False)
help1#(S(0))
help1#(S(S(z0)))
help1#(0)
e4#(z0,z1,z2,False)
e4#(z0,z1,z2,True)
e2#(z0,z1,z2,False)
e2#(z0,z1,z2,True)
l15#(z0,z1,z2,z3,False,z4)
l15#(z0,z1,z2,z3,True,z4)
l13#(z0,z1,z2,z3,False,z4)
l13#(z0,z1,z2,z3,True,z4)
m4#(S(z0),S(z1),z2,z3)
l2#(z0,z1,z2,z3,z4,False)
l2#(z0,z1,z2,z3,z4,True)
l11#(z0,z1,z2,z3,z4,False)
l11#(z0,z1,z2,z3,z4,True)
bool2Nat#(False)
bool2Nat#(True)
m1#(z0,z1,z2,z3)
l9#(z0,z1,z2,z3,z4,z5)
l6#(z0,z1,z2,z3,z4,z5)
l4#(z0,z1,z2,z3,z4,z5)
l1#(z0,z1,z2,z3,z4,z5)
e7#(z0,z1,z2,z3)
e6#(z0,z1,z2,z3)
e5#(z0,z1,z2,z3)
monus#(z0,z1)
m5#(z0,z1,z2,z3)
l7#(z0,z1,z2,z3,z4,z5)
l3#(z0,z1,z2,z3,z4,z5)
l16#(z0,z1,z2,z3,z4,z5)
l14#(z0,z1,z2,z3,z4,z5)
l12#(z0,z1,z2,z3,z4,z5)
l10#(z0,z1,z2,z3,z4,z5)
gcd#(z0,z1)
equal0#(z0,z1)
e8#(z0,z1,z2,z3)
e3#(z0,z1,z2,z3)
e1#(z0,z1,z2,z3)

1.1 Usable Rules

We remove the following rules since they are not usable.
m2(S(0),z0,z1,True) False (54)
m2(S(S(z0)),z1,z2,True) True (56)
m2(0,z0,z1,True) False (58)
m3(S(0),z0,z1,z2) False (62)
m3(S(S(z0)),z1,z2,z3) True (64)
m3(0,z0,z1,z2) False (66)
l5(z0,z1,z2,z3,z4,True) 0 (72)
help1(S(0)) False (9)
help1(S(S(z0))) True (77)
help1(0) False (26)
l2(z0,z1,z2,z3,z4,True) z2 (100)
bool2Nat(False) 0 (28)
bool2Nat(True) S(0) (29)
l9(z0,z1,z2,z3,z4,z5) z0 (110)
l6(z0,z1,z2,z3,z4,z5) 0 (112)
e7(z0,z1,z2,z3) False (118)
e6(z0,z1,z2,z3) False (120)
e5(z0,z1,z2,z3) True (122)
e8(z0,z1,z2,z3) z2 (144)

1.1.1 Rule Shifting

The rules
e6#(z0,z1,z2,z3) c38 (121)
e8#(z0,z1,z2,z3) c50 (145)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 · x1 + 0 + 2 · x2
[l1(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 3 · x3
[l2(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 3 · x3
[l3(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 2 · x3
[l4(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 3 · x3
[l5(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 2 · x3
[l7(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 2 · x3
[l8(x1,...,x6)] = 1 · x1 + 0 + 2 · x2 + 1 · x3
[equal0(x1, x2)] = 2
[e1(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e2(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e4(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[l10(x1,...,x6)] = 2 · x2 + 0 + 1 · x3
[l11(x1,...,x6)] = 2 · x2 + 0 + 3 · x6
[l14(x1,...,x6)] = 2 + 1 · x2 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x2 + 3 · x5
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[m2(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[m4(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[m5(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x4
[l16(x1,...,x6)] = 1 · x3 + 0
[l12(x1,...,x6)] = 1 + 2 · x2
[l13(x1,...,x6)] = 1 + 2 · x2 + 1 · x5
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 2 · x3 + 0
[l5#(x1,...,x6)] = 3 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 0
[l13#(x1,...,x6)] = 0
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 2 · x3 + 0
[l11#(x1,...,x6)] = 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 3 · x3 + 0
[l1#(x1,...,x6)] = 3 · x3 + 0
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 1
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 0
[l7#(x1,...,x6)] = 2 · x3 + 0
[l3#(x1,...,x6)] = 2 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 0
[l12#(x1,...,x6)] = 0
[l10#(x1,...,x6)] = 2 · x3 + 0
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 1
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 2
[0] = 0
[True] = 3
[False] = 3
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)

1.1.1.1 Rule Shifting

The rules
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m2(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m4(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m3#(x1,...,x4)] = 1 + 1 · x1
[l8#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 1 + 1 · x1
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[m4#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 1 + 1 · x1
[m1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l9#(x1,...,x6)] = 1
[l6#(x1,...,x6)] = 1
[l4#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l7#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0 + 1 · x5 + 1 · x6
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l10#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 0
[0] = 0
[True] = 0
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1 Rule Shifting

The rules
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x3
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 + 1 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 + 1 · x3
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 + 1 · x3
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1 Rule Shifting

The rules
e7#(z0,z1,z2,z3) c37 (119)
e5#(z0,z1,z2,z3) c39 (123)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 1
[m1(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m2(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m4(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[m4#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 1
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 1
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x4
[l7#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0 + 1 · x5 + 1 · x6
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l10#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 0
[0] = 0
[True] = 0
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)

1.1.1.1.1.1.1 Rule Shifting

The rules
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 1
[m1(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m2(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m4(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4
[m4#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x4
[l7#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[l10#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)

1.1.1.1.1.1.1.1 Rule Shifting

The rules
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 · x3 + 0
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x4 + 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 0
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x2 + 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 · x3 + 0
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x4 + 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 0
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 · x3 + 0
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m2(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m4(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4
[m4#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l7#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[l10#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m2(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m4(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[m4#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4
[l7#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5
[l10#(x1,...,x6)] = 1 · x3 + 0 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 · x3 + 0
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 1
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 0
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
m5#(z0,z1,z2,z3) c41 (127)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m2(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m4(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m5(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x2 + 0 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13#(x1,...,x6)] = 1 · x2 + 0 + 1 · x3 + 1 · x4 + 1 · x5
[m4#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[l2#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 1 · x1 + 0
[m5#(x1,...,x4)] = 1 + 1 · x3 + 1 · x4
[l7#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0
[l14#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l10#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 1 + 1 · x1
[0] = 0
[True] = 1
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 · x3 + 0
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1
[e2#(x1,...,x4)] = 1
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 1
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1
[e1#(x1,...,x4)] = 1
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 + 1 · x1 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x3 + 0
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 · x3 + 0
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 1
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x3
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 + 1 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l10#(x1,...,x6)] = 1 + 1 · x3
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0 + 1 · x2
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x3
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5 + 1 · x6
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 + 1 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l12#(x1,...,x6)] = 1 + 1 · x3
[l10#(x1,...,x6)] = 1 + 1 · x3
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m2(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m4(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[m5(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[l5#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 1 · x3 + 0
[e2#(x1,...,x4)] = 1 · x3 + 0
[l15#(x1,...,x6)] = 1 · x2 + 0 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13#(x1,...,x6)] = 1 · x2 + 0 + 1 · x3 + 1 · x4 + 1 · x5
[m4#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[l2#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x1 + 0 + 1 · x3 + 1 · x4
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l1#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 1 · x1 + 0
[m5#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[l7#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l16#(x1,...,x6)] = 1 · x4 + 0
[l14#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l10#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[gcd#(x1, x2)] = 1 · x1 + 0 + 1 · x2
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1 · x3 + 0
[e1#(x1,...,x4)] = 1 · x3 + 0 + 1 · x4
[S(x1)] = 1 + 1 · x1
[0] = 0
[True] = 1
[False] = 0
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 + 1 · x1
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 1
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 1
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 · x1 + 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x3
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x3
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 + 1 · x3
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 · x1 + 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 1
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 1
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 1
[e1#(x1,...,x4)] = 1
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 1 + 1 · x1 + 1 · x2
[l1(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l2(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l3(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l4(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l5(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l7(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l8(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x5 + 1 · x6
[equal0(x1, x2)] = 1 · x1 + 0
[e1(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e2(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[<(x1, x2)] = 1 · x1 + 0
[e3(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4
[e4(x1,...,x4)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l10(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l11(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5
[l14(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l15(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l16(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l12(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[l13(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4 + 1 · x5 + 1 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 · x3 + 0
[l5#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 1
[l15#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[l13#(x1,...,x6)] = 1 · x3 + 0 + 1 · x5
[m4#(x1,...,x4)] = 0
[l2#(x1,...,x6)] = 1 · x3 + 0 + 1 · x6
[l11#(x1,...,x6)] = 1 · x3 + 0
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x3
[l1#(x1,...,x6)] = 1 + 1 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 0
[m5#(x1,...,x4)] = 1 · x1 + 0 + 1 · x2 + 1 · x3
[l7#(x1,...,x6)] = 1 + 1 · x3
[l3#(x1,...,x6)] = 1 + 1 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 · x3 + 0
[l12#(x1,...,x6)] = 1 · x3 + 0
[l10#(x1,...,x6)] = 1 · x3 + 0
[gcd#(x1, x2)] = 1
[equal0#(x1, x2)] = 1
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 1
[S(x1)] = 0
[0] = 0
[True] = 1
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 3
[l1(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l2(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l3(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l4(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l5(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l7(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l8(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x5 + 3 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e2(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e4(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[l10(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l11(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5
[l14(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l15(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x3 + 0
[l16(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l12(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l13(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x1 + 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x1 + 2 · x2 + 2 · x3
[l5#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 2 · x3
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 2 · x2 + 0 + 2 · x3 + 3 · x5
[l13#(x1,...,x6)] = 2 · x2 + 0 + 2 · x3 + 3 · x5
[m4#(x1,...,x4)] = 1 · x1 + 0
[l2#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 3 · x3
[l11#(x1,...,x6)] = 1 + 1 · x1 + 2 · x2 + 2 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 + 1 · x1
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 3 · x3
[l1#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 3 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 1 + 1 · x1
[m5#(x1,...,x4)] = 0
[l7#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 2 · x3
[l3#(x1,...,x6)] = 1 + 2 · x1 + 2 · x2 + 3 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 + 1 · x1 + 2 · x2 + 2 · x3
[l12#(x1,...,x6)] = 1 + 1 · x1 + 2 · x2 + 2 · x3
[l10#(x1,...,x6)] = 1 + 1 · x1 + 2 · x2 + 2 · x3
[gcd#(x1, x2)] = 1 + 2 · x1 + 2 · x2
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 1 + 1 · x1
[0] = 0
[True] = 1
[False] = 2
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 3
[l1(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l2(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l3(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l4(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l5(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l7(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l8(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x5 + 3 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e2(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e4(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[l10(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l11(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5
[l14(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l15(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x3 + 0
[l16(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l12(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l13(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 · x1 + 0
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l5#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 2 · x3 + 1 · x6
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x2 + 0 + 2 · x3 + 3 · x5
[l13#(x1,...,x6)] = 1 · x2 + 0 + 2 · x3 + 3 · x5
[m4#(x1,...,x4)] = 1 · x1 + 0
[l2#(x1,...,x6)] = 1 · x1 + 0 + 1 · x2 + 3 · x3 + 1 · x6
[l11#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 · x1 + 0
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 3 · x3
[l1#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 3 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 1 + 1 · x1
[m5#(x1,...,x4)] = 0
[l7#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l3#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 1 · x3
[l16#(x1,...,x6)] = 2 · x5 + 0
[l14#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l12#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l10#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[gcd#(x1, x2)] = 1 + 1 · x1 + 1 · x2
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 2 + 1 · x1
[0] = 0
[True] = 3
[False] = 1
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Shifting

The rules
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c(x1)] = 1 · x1 + 0
[c1] = 0
[c2] = 0
[c3] = 0
[c4] = 0
[c5] = 0
[c6(x1)] = 1 · x1 + 0
[c7] = 0
[c8] = 0
[c9] = 0
[c10] = 0
[c11(x1)] = 1 · x1 + 0
[c12] = 0
[c13(x1)] = 1 · x1 + 0
[c14] = 0
[c15] = 0
[c16] = 0
[c17] = 0
[c18] = 0
[c19] = 0
[c20(x1)] = 1 · x1 + 0
[c21(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c22(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c23(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c24(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c25(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c26(x1)] = 1 · x1 + 0
[c27] = 0
[c28(x1)] = 1 · x1 + 0
[c29(x1)] = 1 · x1 + 0
[c30] = 0
[c31] = 0
[c32(x1)] = 1 · x1 + 0
[c33] = 0
[c34] = 0
[c35(x1)] = 1 · x1 + 0
[c36(x1)] = 1 · x1 + 0
[c37] = 0
[c38] = 0
[c39] = 0
[c40(x1)] = 1 · x1 + 0
[c41] = 0
[c42(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c43(x1)] = 1 · x1 + 0
[c44] = 0
[c45(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c46(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c47(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c48(x1)] = 1 · x1 + 0
[c49(x1)] = 1 · x1 + 0
[c50] = 0
[c51(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c52(x1, x2)] = 1 · x1 + 0 + 1 · x2
[gcd(x1, x2)] = 3
[l1(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l2(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l3(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l4(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l5(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l7(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l8(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x5 + 3 · x6
[equal0(x1, x2)] = 0
[e1(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e2(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[<(x1, x2)] = 0
[e3(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4
[e4(x1,...,x4)] = 3 + 3 · x1 + 3 · x2 + 3 · x3
[l10(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l11(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5
[l14(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l15(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x6
[monus(x1, x2)] = 0
[m1(x1,...,x4)] = 0
[m2(x1,...,x4)] = 0
[m4(x1,...,x4)] = 0
[m5(x1,...,x4)] = 1 · x3 + 0
[l16(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l12(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x5 + 3 · x6
[l13(x1,...,x6)] = 3 + 3 · x1 + 3 · x2 + 3 · x3 + 3 · x4 + 3 · x6
[<#(x1, x2)] = 0
[m2#(x1,...,x4)] = 1 + 1 · x1
[m3#(x1,...,x4)] = 0
[l8#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l5#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 3 · x3
[help1#(x1)] = 0
[e4#(x1,...,x4)] = 0
[e2#(x1,...,x4)] = 0
[l15#(x1,...,x6)] = 1 · x2 + 0 + 2 · x3 + 2 · x5
[l13#(x1,...,x6)] = 1 · x2 + 0 + 2 · x3 + 2 · x5
[m4#(x1,...,x4)] = 1 · x1 + 0
[l2#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l11#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[bool2Nat#(x1)] = 0
[m1#(x1,...,x4)] = 1 + 1 · x1
[l9#(x1,...,x6)] = 0
[l6#(x1,...,x6)] = 0
[l4#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 3 · x3
[l1#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 3 · x3
[e7#(x1,...,x4)] = 0
[e6#(x1,...,x4)] = 0
[e5#(x1,...,x4)] = 0
[monus#(x1, x2)] = 1 + 1 · x1
[m5#(x1,...,x4)] = 0
[l7#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l3#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l16#(x1,...,x6)] = 0
[l14#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l12#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[l10#(x1,...,x6)] = 1 + 1 · x1 + 1 · x2 + 2 · x3
[gcd#(x1, x2)] = 1 + 1 · x1 + 1 · x2
[equal0#(x1, x2)] = 0
[e8#(x1,...,x4)] = 0
[e3#(x1,...,x4)] = 0
[e1#(x1,...,x4)] = 0
[S(x1)] = 2 + 1 · x1
[0] = 0
[True] = 2
[False] = 2
which has the intended complexity. Here, only the following usable rules have been considered:
<#(S(z0),S(z1)) c(<#(z0,z1)) (151)
<#(0,S(z0)) c1 (153)
<#(z0,0) c2 (155)
m2#(S(0),z0,z1,True) c3 (55)
m2#(S(S(z0)),z1,z2,True) c4 (57)
m2#(0,z0,z1,True) c5 (59)
m2#(z0,z1,z2,False) c6(m4#(z0,z1,z2,False)) (61)
m3#(S(0),z0,z1,z2) c7 (63)
m3#(S(S(z0)),z1,z2,z3) c8 (65)
m3#(0,z0,z1,z2) c9 (67)
l8#(z0,z1,z2,True,z3,z4) c10 (69)
l8#(z0,z1,z2,False,z3,z4) c11(l10#(z0,z1,z2,False,z3,z4)) (71)
l5#(z0,z1,z2,z3,z4,True) c12 (73)
l5#(z0,z1,z2,z3,z4,False) c13(l7#(z0,z1,z2,z3,z4,False)) (75)
help1#(S(0)) c14 (76)
help1#(S(S(z0))) c15 (78)
help1#(0) c16 (79)
e4#(z0,z1,z2,False) c17 (81)
e4#(z0,z1,z2,True) c18 (83)
e2#(z0,z1,z2,False) c19 (85)
e2#(z0,z1,z2,True) c20(e3#(z0,z1,z2,True)) (87)
l15#(z0,z1,z2,z3,False,z4) c21(l16#(z0,z1,gcd(z1,0),z3,False,z4),gcd#(z1,0)) (89)
l15#(z0,z1,z2,z3,True,z4) c22(l16#(z0,z1,gcd(z1,S(0)),z3,True,z4),gcd#(z1,S(0))) (91)
l13#(z0,z1,z2,z3,False,z4) c23(l16#(z0,z1,gcd(0,z1),z3,False,z4),gcd#(0,z1)) (93)
l13#(z0,z1,z2,z3,True,z4) c24(l16#(z0,z1,gcd(S(0),z1),z3,True,z4),gcd#(S(0),z1)) (95)
m4#(S(z0),S(z1),z2,z3) c25(m5#(S(z0),S(z1),monus(z0,z1),z3),monus#(z0,z1)) (97)
l2#(z0,z1,z2,z3,z4,False) c26(l3#(z0,z1,z2,z3,z4,False)) (99)
l2#(z0,z1,z2,z3,z4,True) c27 (101)
l11#(z0,z1,z2,z3,z4,False) c28(l14#(z0,z1,z2,z3,z4,False)) (103)
l11#(z0,z1,z2,z3,z4,True) c29(l12#(z0,z1,z2,z3,z4,True)) (105)
bool2Nat#(False) c30 (106)
bool2Nat#(True) c31 (107)
m1#(z0,z1,z2,z3) c32(m2#(z0,z1,z2,False)) (109)
l9#(z0,z1,z2,z3,z4,z5) c33 (111)
l6#(z0,z1,z2,z3,z4,z5) c34 (113)
l4#(z0,z1,z2,z3,z4,z5) c35(l5#(z0,z1,z2,z3,z4,False)) (115)
l1#(z0,z1,z2,z3,z4,z5) c36(l2#(z0,z1,z2,z3,z4,False)) (117)
e7#(z0,z1,z2,z3) c37 (119)
e6#(z0,z1,z2,z3) c38 (121)
e5#(z0,z1,z2,z3) c39 (123)
monus#(z0,z1) c40(m1#(z0,z1,False,False)) (125)
m5#(z0,z1,z2,z3) c41 (127)
l7#(z0,z1,z2,z3,z4,z5) c42(l8#(z0,z1,z2,equal0(z0,z1),z4,z5),equal0#(z0,z1)) (129)
l3#(z0,z1,z2,z3,z4,z5) c43(l4#(z0,z1,0,z3,z4,z5)) (131)
l16#(z0,z1,z2,z3,z4,z5) c44 (133)
l14#(z0,z1,z2,z3,z4,z5) c45(l15#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (135)
l12#(z0,z1,z2,z3,z4,z5) c46(l13#(z0,z1,z2,z3,monus(z0,z1),z5),monus#(z0,z1)) (137)
l10#(z0,z1,z2,z3,z4,z5) c47(l11#(z0,z1,z2,z3,z4,<(z0,z1)),<#(z0,z1)) (139)
gcd#(z0,z1) c48(l1#(z0,z1,0,False,False,False)) (141)
equal0#(z0,z1) c49(e1#(z0,z1,False,False)) (143)
e8#(z0,z1,z2,z3) c50 (145)
e3#(z0,z1,z2,z3) c51(e4#(z0,z1,z2,<(z1,z0)),<#(z1,z0)) (147)
e1#(z0,z1,z2,z3) c52(e2#(z0,z1,z2,<(z0,z1)),<#(z0,z1)) (149)
m1(z0,z1,z2,z3) m2(z0,z1,z2,False) (108)
m4(S(z0),S(z1),z2,z3) m5(S(z0),S(z1),monus(z0,z1),z3) (96)
m5(z0,z1,z2,z3) z2 (126)
m2(z0,z1,z2,False) m4(z0,z1,z2,False) (60)
monus(z0,z1) m1(z0,z1,False,False) (124)

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).