The rewrite relation of the following TRS is considered.
| min(X,0) | → | X | (1) |
| min(s(X),s(Y)) | → | min(X,Y) | (2) |
| quot(0,s(Y)) | → | 0 | (3) |
| quot(s(X),s(Y)) | → | s(quot(min(X,Y),s(Y))) | (4) |
| log(s(0)) | → | 0 | (5) |
| log(s(s(X))) | → | s(log(s(quot(X,s(s(0)))))) | (6) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| min#(z0,0) |
| min#(s(z0),s(z1)) |
| quot#(0,s(z0)) |
| quot#(s(z0),s(z1)) |
| log#(s(0)) |
| log#(s(s(z0))) |
| log(s(0)) | → | 0 | (5) |
| log(s(s(z0))) | → | s(log(s(quot(z0,s(s(0)))))) | (16) |
| log#(s(0)) | → | c4 | (15) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 · x2 + 0 |
| [min#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [log#(x1)] | = | 1 + 1 · x1 |
| [0] | = | 0 |
| [s(x1)] | = | 1 · x1 + 0 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
| quot#(0,s(z0)) | → | c2 | (12) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [min#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 1 |
| [log#(x1)] | = | 1 · x1 + 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [min#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 0 |
| [log#(x1)] | = | 1 · x1 + 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [min#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 2 · x2 + 0 + 2 · x1 · x2 |
| [log#(x1)] | = | 2 · x1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 + 1 · x1 |
| [min#(x1, x2)] | = | 2 · x2 + 0 |
| [quot#(x1, x2)] | = | 1 · x1 · x2 + 0 |
| [log#(x1)] | = | 2 · x1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
| min#(z0,0) | → | c | (8) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2] | = | 0 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4] | = | 0 |
| [c5(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [min(x1, x2)] | = | 1 · x1 + 0 |
| [quot(x1, x2)] | = | 1 · x1 + 0 |
| [min#(x1, x2)] | = | 2 |
| [quot#(x1, x2)] | = | 2 · x1 · x2 + 0 |
| [log#(x1)] | = | 2 · x1 + 0 + 2 · x1 · x1 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| min#(z0,0) | → | c | (8) |
| min#(s(z0),s(z1)) | → | c1(min#(z0,z1)) | (10) |
| quot#(0,s(z0)) | → | c2 | (12) |
| quot#(s(z0),s(z1)) | → | c3(quot#(min(z0,z1),s(z1)),min#(z0,z1)) | (14) |
| log#(s(0)) | → | c4 | (15) |
| log#(s(s(z0))) | → | c5(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) | (17) |
| min(z0,0) | → | z0 | (7) |
| min(s(z0),s(z1)) | → | min(z0,z1) | (9) |
| quot(s(z0),s(z1)) | → | s(quot(min(z0,z1),s(z1))) | (13) |
| quot(0,s(z0)) | → | 0 | (11) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).