The rewrite relation of the following TRS is considered.
dx(X) | → | one | (1) |
dx(a) | → | zero | (2) |
dx(plus(ALPHA,BETA)) | → | plus(dx(ALPHA),dx(BETA)) | (3) |
dx(times(ALPHA,BETA)) | → | plus(times(BETA,dx(ALPHA)),times(ALPHA,dx(BETA))) | (4) |
dx(minus(ALPHA,BETA)) | → | minus(dx(ALPHA),dx(BETA)) | (5) |
dx(neg(ALPHA)) | → | neg(dx(ALPHA)) | (6) |
dx(div(ALPHA,BETA)) | → | minus(div(dx(ALPHA),BETA),times(ALPHA,div(dx(BETA),exp(BETA,two)))) | (7) |
dx(ln(ALPHA)) | → | div(dx(ALPHA),ALPHA) | (8) |
dx(exp(ALPHA,BETA)) | → | plus(times(BETA,times(exp(ALPHA,minus(BETA,one)),dx(ALPHA))),times(exp(ALPHA,BETA),times(ln(ALPHA),dx(BETA)))) | (9) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
dx#(z0) |
dx#(a) |
dx#(plus(z0,z1)) |
dx#(times(z0,z1)) |
dx#(minus(z0,z1)) |
dx#(neg(z0)) |
dx#(div(z0,z1)) |
dx#(ln(z0)) |
dx#(exp(z0,z1)) |
dx(z0) | → | one | (10) |
dx(a) | → | zero | (2) |
dx(plus(z0,z1)) | → | plus(dx(z0),dx(z1)) | (13) |
dx(times(z0,z1)) | → | plus(times(z1,dx(z0)),times(z0,dx(z1))) | (15) |
dx(minus(z0,z1)) | → | minus(dx(z0),dx(z1)) | (17) |
dx(neg(z0)) | → | neg(dx(z0)) | (19) |
dx(div(z0,z1)) | → | minus(div(dx(z0),z1),times(z0,div(dx(z1),exp(z1,two)))) | (21) |
dx(ln(z0)) | → | div(dx(z0),z0) | (23) |
dx(exp(z0,z1)) | → | plus(times(z1,times(exp(z0,minus(z1,one)),dx(z0))),times(exp(z0,z1),times(ln(z0),dx(z1)))) | (25) |
dx#(a) | → | c1 | (12) |
dx#(times(z0,z1)) | → | c3(dx#(z0),dx#(z1)) | (16) |
dx#(minus(z0,z1)) | → | c4(dx#(z0),dx#(z1)) | (18) |
dx#(neg(z0)) | → | c5(dx#(z0)) | (20) |
dx#(div(z0,z1)) | → | c6(dx#(z0),dx#(z1)) | (22) |
dx#(ln(z0)) | → | c7(dx#(z0)) | (24) |
dx#(exp(z0,z1)) | → | c8(dx#(z0),dx#(z1)) | (26) |
[c] | = | 0 |
[c1] | = | 0 |
[c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c7(x1)] | = | 1 · x1 + 0 |
[c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[dx#(x1)] | = | 3 · x1 + 0 |
[a] | = | 1 |
[plus(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[times(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[minus(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[neg(x1)] | = | 3 + 1 · x1 |
[div(x1, x2)] | = | 3 + 1 · x1 + 1 · x2 |
[ln(x1)] | = | 3 + 1 · x1 |
[exp(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
dx#(z0) | → | c | (11) |
dx#(a) | → | c1 | (12) |
dx#(plus(z0,z1)) | → | c2(dx#(z0),dx#(z1)) | (14) |
dx#(times(z0,z1)) | → | c3(dx#(z0),dx#(z1)) | (16) |
dx#(minus(z0,z1)) | → | c4(dx#(z0),dx#(z1)) | (18) |
dx#(neg(z0)) | → | c5(dx#(z0)) | (20) |
dx#(div(z0,z1)) | → | c6(dx#(z0),dx#(z1)) | (22) |
dx#(ln(z0)) | → | c7(dx#(z0)) | (24) |
dx#(exp(z0,z1)) | → | c8(dx#(z0),dx#(z1)) | (26) |
dx#(z0) | → | c | (11) |
[c] | = | 0 |
[c1] | = | 0 |
[c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c7(x1)] | = | 1 · x1 + 0 |
[c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[dx#(x1)] | = | 1 + 1 · x1 |
[a] | = | 0 |
[plus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[times(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[minus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[neg(x1)] | = | 1 · x1 + 0 |
[div(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[ln(x1)] | = | 1 · x1 + 0 |
[exp(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
dx#(z0) | → | c | (11) |
dx#(a) | → | c1 | (12) |
dx#(plus(z0,z1)) | → | c2(dx#(z0),dx#(z1)) | (14) |
dx#(times(z0,z1)) | → | c3(dx#(z0),dx#(z1)) | (16) |
dx#(minus(z0,z1)) | → | c4(dx#(z0),dx#(z1)) | (18) |
dx#(neg(z0)) | → | c5(dx#(z0)) | (20) |
dx#(div(z0,z1)) | → | c6(dx#(z0),dx#(z1)) | (22) |
dx#(ln(z0)) | → | c7(dx#(z0)) | (24) |
dx#(exp(z0,z1)) | → | c8(dx#(z0),dx#(z1)) | (26) |
dx#(plus(z0,z1)) | → | c2(dx#(z0),dx#(z1)) | (14) |
[c] | = | 0 |
[c1] | = | 0 |
[c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c7(x1)] | = | 1 · x1 + 0 |
[c8(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[dx#(x1)] | = | 1 · x1 + 0 |
[a] | = | 0 |
[plus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[times(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[minus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[neg(x1)] | = | 1 · x1 + 0 |
[div(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[ln(x1)] | = | 1 · x1 + 0 |
[exp(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
dx#(z0) | → | c | (11) |
dx#(a) | → | c1 | (12) |
dx#(plus(z0,z1)) | → | c2(dx#(z0),dx#(z1)) | (14) |
dx#(times(z0,z1)) | → | c3(dx#(z0),dx#(z1)) | (16) |
dx#(minus(z0,z1)) | → | c4(dx#(z0),dx#(z1)) | (18) |
dx#(neg(z0)) | → | c5(dx#(z0)) | (20) |
dx#(div(z0,z1)) | → | c6(dx#(z0),dx#(z1)) | (22) |
dx#(ln(z0)) | → | c7(dx#(z0)) | (24) |
dx#(exp(z0,z1)) | → | c8(dx#(z0),dx#(z1)) | (26) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).