The rewrite relation of the following TRS is considered.
ackin(s(X),s(Y)) | → | u21(ackin(s(X),Y),X) | (1) |
u21(ackout(X),Y) | → | u22(ackin(Y,X)) | (2) |
|
originates from |
|
||||||||
|
originates from |
|
ackin#(s(z0),s(z1)) |
u21#(ackout(z0),z1) |
u21#(ackout(z0),z1) | → | c1(ackin#(z1,z0)) | (6) |
[c(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c1(x1)] | = | 1 · x1 + 0 |
[ackin(x1, x2)] | = | 0 |
[u21(x1, x2)] | = | 2 · x1 + 0 |
[ackin#(x1, x2)] | = | 0 |
[u21#(x1, x2)] | = | 1 · x1 + 0 |
[s(x1)] | = | 0 |
[ackout(x1)] | = | 3 + 1 · x1 |
[u22(x1)] | = | 0 |
ackin#(s(z0),s(z1)) | → | c(u21#(ackin(s(z0),z1),z0),ackin#(s(z0),z1)) | (4) |
u21#(ackout(z0),z1) | → | c1(ackin#(z1,z0)) | (6) |
u21(ackout(z0),z1) | → | u22(ackin(z1,z0)) | (5) |
ackin(s(z0),s(z1)) | → | u21(ackin(s(z0),z1),z0) | (3) |
ackin#(s(z0),s(z1)) | → | c(u21#(ackin(s(z0),z1),z0),ackin#(s(z0),z1)) | (4) |
[c(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c1(x1)] | = | 1 · x1 + 0 |
[ackin(x1, x2)] | = | 0 |
[u21(x1, x2)] | = | 2 · x1 + 0 |
[ackin#(x1, x2)] | = | 3 + 1 · x2 |
[u21#(x1, x2)] | = | 1 · x1 + 0 |
[s(x1)] | = | 1 + 1 · x1 |
[ackout(x1)] | = | 3 + 1 · x1 |
[u22(x1)] | = | 0 |
ackin#(s(z0),s(z1)) | → | c(u21#(ackin(s(z0),z1),z0),ackin#(s(z0),z1)) | (4) |
u21#(ackout(z0),z1) | → | c1(ackin#(z1,z0)) | (6) |
u21(ackout(z0),z1) | → | u22(ackin(z1,z0)) | (5) |
ackin(s(z0),s(z1)) | → | u21(ackin(s(z0),z1),z0) | (3) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).