The rewrite relation of the following TRS is considered.
+(0,y) | → | y | (1) |
+(s(x),y) | → | s(+(x,y)) | (2) |
+(p(x),y) | → | p(+(x,y)) | (3) |
minus(0) | → | 0 | (4) |
minus(s(x)) | → | p(minus(x)) | (5) |
minus(p(x)) | → | s(minus(x)) | (6) |
*(0,y) | → | 0 | (7) |
*(s(x),y) | → | +(*(x,y),y) | (8) |
*(p(x),y) | → | +(*(x,y),minus(y)) | (9) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
+#(0,z0) |
+#(s(z0),z1) |
+#(p(z0),z1) |
minus#(0) |
minus#(s(z0)) |
minus#(p(z0)) |
*#(0,z0) |
*#(s(z0),z1) |
*#(p(z0),z1) |
minus#(0) | → | c3 | (16) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
[c] | = | 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2(x1)] | = | 1 · x1 + 0 |
[c3] | = | 0 |
[c4(x1)] | = | 1 · x1 + 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6] | = | 0 |
[c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
[+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[minus(x1)] | = | 1 + 1 · x1 |
[*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[+#(x1, x2)] | = | 0 |
[minus#(x1)] | = | 1 |
[*#(x1, x2)] | = | 1 + 1 · x1 |
[0] | = | 1 |
[s(x1)] | = | 1 + 1 · x1 |
[p(x1)] | = | 1 + 1 · x1 |
+#(0,z0) | → | c | (11) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
minus#(0) | → | c3 | (16) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
+#(0,z0) | → | c | (11) |
[c] | = | 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2(x1)] | = | 1 · x1 + 0 |
[c3] | = | 0 |
[c4(x1)] | = | 1 · x1 + 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6] | = | 0 |
[c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
[+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[minus(x1)] | = | 1 + 1 · x1 |
[*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[+#(x1, x2)] | = | 1 |
[minus#(x1)] | = | 0 |
[*#(x1, x2)] | = | 1 · x1 + 0 |
[0] | = | 1 |
[s(x1)] | = | 1 + 1 · x1 |
[p(x1)] | = | 1 + 1 · x1 |
+#(0,z0) | → | c | (11) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
minus#(0) | → | c3 | (16) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
[c] | = | 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2(x1)] | = | 1 · x1 + 0 |
[c3] | = | 0 |
[c4(x1)] | = | 1 · x1 + 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6] | = | 0 |
[c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
[+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[minus(x1)] | = | 1 + 1 · x1 |
[*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[+#(x1, x2)] | = | 0 |
[minus#(x1)] | = | 0 |
[*#(x1, x2)] | = | 1 · x1 + 0 |
[0] | = | 1 |
[s(x1)] | = | 1 + 1 · x1 |
[p(x1)] | = | 1 + 1 · x1 |
+#(0,z0) | → | c | (11) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
minus#(0) | → | c3 | (16) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
[c] | = | 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2(x1)] | = | 1 · x1 + 0 |
[c3] | = | 0 |
[c4(x1)] | = | 1 · x1 + 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6] | = | 0 |
[c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
[+(x1, x2)] | = | 1 |
[minus(x1)] | = | 0 |
[*(x1, x2)] | = | 1 · x2 · x2 + 0 |
[+#(x1, x2)] | = | 0 |
[minus#(x1)] | = | 1 · x1 + 0 |
[*#(x1, x2)] | = | 1 · x1 · x2 + 0 |
[0] | = | 0 |
[s(x1)] | = | 1 + 1 · x1 |
[p(x1)] | = | 2 + 1 · x1 |
+#(0,z0) | → | c | (11) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
minus#(0) | → | c3 | (16) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
[c] | = | 0 |
[c1(x1)] | = | 1 · x1 + 0 |
[c2(x1)] | = | 1 · x1 + 0 |
[c3] | = | 0 |
[c4(x1)] | = | 1 · x1 + 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6] | = | 0 |
[c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
[+(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[minus(x1)] | = | 1 · x1 + 0 |
[*(x1, x2)] | = | 1 · x1 · x2 + 0 |
[+#(x1, x2)] | = | 1 · x1 + 0 |
[minus#(x1)] | = | 0 |
[*#(x1, x2)] | = | 1 · x2 · x1 · x1 + 0 |
[0] | = | 0 |
[s(x1)] | = | 1 + 1 · x1 |
[p(x1)] | = | 1 + 1 · x1 |
+#(0,z0) | → | c | (11) |
+#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
+#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
minus#(0) | → | c3 | (16) |
minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
*#(0,z0) | → | c6 | (22) |
*#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
*#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
+(s(z0),z1) | → | s(+(z0,z1)) | (12) |
*(p(z0),z1) | → | +(*(z0,z1),minus(z1)) | (25) |
minus(0) | → | 0 | (4) |
*(s(z0),z1) | → | +(*(z0,z1),z1) | (23) |
minus(p(z0)) | → | s(minus(z0)) | (19) |
*(0,z0) | → | 0 | (21) |
minus(s(z0)) | → | p(minus(z0)) | (17) |
+(p(z0),z1) | → | p(+(z0,z1)) | (14) |
+(0,z0) | → | z0 | (10) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).