The relative rewrite relation R/S is considered where R is the following TRS
3(5(3(x1))) | → | 1(0(3(4(4(3(1(4(5(4(x1)))))))))) | (1) |
5(0(0(x1))) | → | 5(0(3(2(1(2(3(4(0(0(x1)))))))))) | (2) |
0(1(0(4(x1)))) | → | 4(2(1(2(3(4(4(3(0(4(x1)))))))))) | (3) |
4(5(0(4(x1)))) | → | 4(0(4(0(4(0(3(4(4(4(x1)))))))))) | (4) |
5(5(5(5(x1)))) | → | 5(2(0(0(3(2(1(4(4(3(x1)))))))))) | (5) |
5(5(5(5(x1)))) | → | 5(4(0(0(1(1(1(4(3(5(x1)))))))))) | (6) |
1(5(3(1(3(x1))))) | → | 1(3(4(4(2(0(2(3(1(2(x1)))))))))) | (7) |
2(3(5(5(0(x1))))) | → | 4(0(1(4(2(1(2(0(1(0(x1)))))))))) | (8) |
2(5(5(5(5(x1))))) | → | 2(0(5(1(2(0(3(2(1(5(x1)))))))))) | (9) |
4(1(0(0(0(x1))))) | → | 4(1(4(1(0(5(1(2(4(2(x1)))))))))) | (10) |
4(1(5(5(3(x1))))) | → | 2(1(2(3(0(3(2(5(1(2(x1)))))))))) | (11) |
4(3(1(5(5(x1))))) | → | 4(0(3(1(2(3(2(1(1(5(x1)))))))))) | (12) |
5(0(2(4(2(x1))))) | → | 5(2(1(2(3(0(0(3(4(2(x1)))))))))) | (13) |
5(3(1(5(1(x1))))) | → | 3(2(1(1(0(3(0(1(5(1(x1)))))))))) | (14) |
5(5(3(0(2(x1))))) | → | 3(2(3(4(5(2(1(2(0(0(x1)))))))))) | (15) |
5(5(5(5(4(x1))))) | → | 3(4(5(4(0(0(4(0(3(4(x1)))))))))) | (16) |
0(1(5(1(0(4(x1)))))) | → | 3(2(0(4(0(1(4(3(0(4(x1)))))))))) | (17) |
0(1(5(1(5(0(x1)))))) | → | 4(4(4(2(5(5(0(1(4(0(x1)))))))))) | (18) |
0(1(5(3(0(1(x1)))))) | → | 4(4(5(1(1(1(4(0(3(1(x1)))))))))) | (19) |
0(3(1(3(0(5(x1)))))) | → | 4(4(3(3(4(4(0(5(2(3(x1)))))))))) | (20) |
1(5(5(5(5(3(x1)))))) | → | 1(2(5(1(4(0(0(2(5(4(x1)))))))))) | (21) |
2(0(5(3(4(1(x1)))))) | → | 2(3(4(0(3(3(0(1(2(1(x1)))))))))) | (22) |
2(4(0(1(3(5(x1)))))) | → | 2(3(2(0(2(0(3(1(4(3(x1)))))))))) | (23) |
2(5(4(5(5(5(x1)))))) | → | 2(4(2(1(2(4(4(4(0(5(x1)))))))))) | (24) |
3(5(3(1(5(5(x1)))))) | → | 3(2(4(4(1(1(4(0(2(4(x1)))))))))) | (25) |
4(1(3(1(5(0(x1)))))) | → | 0(2(2(2(1(1(2(3(1(4(x1)))))))))) | (26) |
4(3(5(0(4(2(x1)))))) | → | 4(3(4(3(4(1(3(1(4(2(x1)))))))))) | (27) |
5(0(5(0(4(2(x1)))))) | → | 5(4(4(4(4(0(4(4(3(0(x1)))))))))) | (28) |
5(5(1(5(3(0(x1)))))) | → | 2(2(0(1(4(3(0(3(3(4(x1)))))))))) | (29) |
5(5(3(2(3(5(x1)))))) | → | 1(4(2(4(1(2(2(4(1(5(x1)))))))))) | (30) |
5(5(5(1(3(1(x1)))))) | → | 5(1(2(4(4(4(1(3(3(4(x1)))))))))) | (31) |
1(0(4(5(3(5(0(x1))))))) | → | 1(0(2(1(2(5(2(0(5(2(x1)))))))))) | (32) |
1(5(1(3(5(5(5(x1))))))) | → | 5(1(2(3(0(2(2(0(5(5(x1)))))))))) | (33) |
3(0(1(5(1(3(0(x1))))))) | → | 3(0(0(3(1(2(1(5(4(2(x1)))))))))) | (34) |
3(2(4(1(5(5(1(x1))))))) | → | 0(5(0(3(4(1(0(3(5(1(x1)))))))))) | (35) |
3(5(5(5(1(4(1(x1))))))) | → | 1(4(4(0(0(1(0(1(3(1(x1)))))))))) | (36) |
4(0(5(5(5(5(4(x1))))))) | → | 2(1(4(3(5(4(0(1(5(4(x1)))))))))) | (37) |
4(1(5(0(0(1(3(x1))))))) | → | 0(2(1(1(1(1(4(5(1(3(x1)))))))))) | (38) |
4(1(5(0(0(1(5(x1))))))) | → | 4(3(0(5(3(5(2(1(4(5(x1)))))))))) | (39) |
4(2(3(5(0(5(0(x1))))))) | → | 4(4(4(0(0(1(5(2(3(4(x1)))))))))) | (40) |
4(2(5(5(0(2(2(x1))))))) | → | 4(2(1(0(0(1(4(5(1(2(x1)))))))))) | (41) |
4(5(5(3(5(5(3(x1))))))) | → | 0(1(4(0(1(3(2(4(1(4(x1)))))))))) | (42) |
4(5(5(5(0(4(3(x1))))))) | → | 0(3(3(3(2(0(2(3(2(3(x1)))))))))) | (43) |
5(0(5(5(3(5(4(x1))))))) | → | 5(3(5(5(0(1(1(2(3(4(x1)))))))))) | (44) |
5(2(5(5(0(0(3(x1))))))) | → | 1(4(4(3(1(0(1(3(0(3(x1)))))))))) | (45) |
5(3(5(5(5(3(0(x1))))))) | → | 5(4(3(4(5(2(5(5(5(0(x1)))))))))) | (46) |
5(4(5(3(2(5(3(x1))))))) | → | 5(4(3(1(1(4(2(0(3(5(x1)))))))))) | (47) |
5(5(0(5(5(0(1(x1))))))) | → | 2(3(4(5(4(2(1(2(5(1(x1)))))))))) | (48) |
5(5(0(5(5(5(3(x1))))))) | → | 5(0(4(4(0(1(2(3(3(3(x1)))))))))) | (49) |
5(5(2(5(3(5(0(x1))))))) | → | 5(2(0(4(0(3(2(3(3(0(x1)))))))))) | (50) |
5(5(5(3(0(4(2(x1))))))) | → | 5(5(2(1(5(4(3(4(4(2(x1)))))))))) | (51) |
and S is the following TRS.
2(5(3(0(5(0(1(x1))))))) | → | 4(0(4(1(4(0(5(4(2(1(x1)))))))))) | (52) |
2(0(0(2(4(x1))))) | → | 4(4(0(4(3(1(2(4(0(4(x1)))))))))) | (53) |
5(3(0(1(x1)))) | → | 3(4(4(1(4(4(3(2(0(3(x1)))))))))) | (54) |
2(5(5(5(0(x1))))) | → | 2(5(0(2(3(0(3(0(5(0(x1)))))))))) | (55) |
0(0(2(x1))) | → | 1(0(3(4(3(1(2(0(0(2(x1)))))))))) | (56) |
4(0(1(x1))) | → | 4(4(1(1(4(0(3(4(0(1(x1)))))))))) | (57) |
5(5(5(1(0(x1))))) | → | 3(3(5(2(4(4(1(2(1(2(x1)))))))))) | (58) |
5(5(0(x1))) | → | 0(2(0(3(1(1(1(2(2(2(x1)))))))))) | (59) |
0(0(0(x1))) | → | 1(2(3(4(4(2(3(3(2(2(x1)))))))))) | (60) |
{3(☐), 5(☐), 1(☐), 0(☐), 4(☐), 2(☐)}
We obtain the transformed TRSThere are 210 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 1260 ruless (increase limit for explicit display).
[50(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 + 1 · x1 |
[52(x1)] | = | 1 + 1 · x1 |
[20(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 + 1 · x1 |
[33(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 + 1 · x1 |
[13(x1)] | = | 1 + 1 · x1 |
[25(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
There are 1064 ruless (increase limit for explicit display).
[50(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 + 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[04(x1)] | = | 1 + 1 · x1 |
[41(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 + 1 · x1 |
[24(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 + 1 · x1 |
[25(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 + 1 · x1 |
[31(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 + 1 · x1 |
[44(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 + 1 · x1 |
[55(x1)] | = | 1 + 1 · x1 |
[54(x1)] | = | 1 + 1 · x1 |
[11(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 + 1 · x1 |
41(10(00(00(00(x1))))) | → | 41(14(41(10(05(51(12(24(42(20(x1)))))))))) | (278) |
41(10(00(00(02(x1))))) | → | 41(14(41(10(05(51(12(24(42(22(x1)))))))))) | (280) |
41(10(00(00(01(x1))))) | → | 41(14(41(10(05(51(12(24(42(21(x1)))))))))) | (281) |
41(10(00(00(04(x1))))) | → | 41(14(41(10(05(51(12(24(42(24(x1)))))))))) | (282) |
50(02(24(42(25(x1))))) | → | 52(21(12(23(30(00(03(34(42(25(x1)))))))))) | (289) |
50(02(24(42(20(x1))))) | → | 52(21(12(23(30(00(03(34(42(20(x1)))))))))) | (290) |
50(02(24(42(23(x1))))) | → | 52(21(12(23(30(00(03(34(42(23(x1)))))))))) | (291) |
50(02(24(42(22(x1))))) | → | 52(21(12(23(30(00(03(34(42(22(x1)))))))))) | (292) |
50(02(24(42(21(x1))))) | → | 52(21(12(23(30(00(03(34(42(21(x1)))))))))) | (293) |
50(02(24(42(24(x1))))) | → | 52(21(12(23(30(00(03(34(42(24(x1)))))))))) | (294) |
43(35(50(04(42(25(x1)))))) | → | 43(34(43(34(41(13(31(14(42(25(x1)))))))))) | (325) |
43(35(50(04(42(20(x1)))))) | → | 43(34(43(34(41(13(31(14(42(20(x1)))))))))) | (326) |
43(35(50(04(42(23(x1)))))) | → | 43(34(43(34(41(13(31(14(42(23(x1)))))))))) | (327) |
43(35(50(04(42(22(x1)))))) | → | 43(34(43(34(41(13(31(14(42(22(x1)))))))))) | (328) |
43(35(50(04(42(21(x1)))))) | → | 43(34(43(34(41(13(31(14(42(21(x1)))))))))) | (329) |
43(35(50(04(42(24(x1)))))) | → | 43(34(43(34(41(13(31(14(42(24(x1)))))))))) | (330) |
10(04(45(53(35(50(05(x1))))))) | → | 10(02(21(12(25(52(20(05(52(25(x1)))))))))) | (343) |
10(04(45(53(35(50(00(x1))))))) | → | 10(02(21(12(25(52(20(05(52(20(x1)))))))))) | (344) |
10(04(45(53(35(50(03(x1))))))) | → | 10(02(21(12(25(52(20(05(52(23(x1)))))))))) | (345) |
10(04(45(53(35(50(02(x1))))))) | → | 10(02(21(12(25(52(20(05(52(22(x1)))))))))) | (346) |
10(04(45(53(35(50(01(x1))))))) | → | 10(02(21(12(25(52(20(05(52(21(x1)))))))))) | (347) |
10(04(45(53(35(50(04(x1))))))) | → | 10(02(21(12(25(52(20(05(52(24(x1)))))))))) | (348) |
42(23(35(50(05(50(00(x1))))))) | → | 44(44(40(00(01(15(52(23(34(40(x1)))))))))) | (362) |
42(23(35(50(05(50(01(x1))))))) | → | 44(44(40(00(01(15(52(23(34(41(x1)))))))))) | (365) |
42(23(35(50(05(50(04(x1))))))) | → | 44(44(40(00(01(15(52(23(34(44(x1)))))))))) | (366) |
55(55(53(30(04(42(25(x1))))))) | → | 55(52(21(15(54(43(34(44(42(25(x1)))))))))) | (403) |
55(55(53(30(04(42(20(x1))))))) | → | 55(52(21(15(54(43(34(44(42(20(x1)))))))))) | (404) |
55(55(53(30(04(42(23(x1))))))) | → | 55(52(21(15(54(43(34(44(42(23(x1)))))))))) | (405) |
55(55(53(30(04(42(22(x1))))))) | → | 55(52(21(15(54(43(34(44(42(22(x1)))))))))) | (406) |
55(55(53(30(04(42(21(x1))))))) | → | 55(52(21(15(54(43(34(44(42(21(x1)))))))))) | (407) |
55(55(53(30(04(42(24(x1))))))) | → | 55(52(21(15(54(43(34(44(42(24(x1)))))))))) | (408) |
30(03(31(13(30(05(51(x1))))))) | → | 34(44(43(33(34(44(40(05(52(23(31(x1))))))))))) | (773) |
30(03(31(13(30(05(54(x1))))))) | → | 34(44(43(33(34(44(40(05(52(23(34(x1))))))))))) | (774) |
10(03(31(13(30(05(51(x1))))))) | → | 14(44(43(33(34(44(40(05(52(23(31(x1))))))))))) | (785) |
10(03(31(13(30(05(54(x1))))))) | → | 14(44(43(33(34(44(40(05(52(23(34(x1))))))))))) | (786) |
00(03(31(13(30(05(51(x1))))))) | → | 04(44(43(33(34(44(40(05(52(23(31(x1))))))))))) | (791) |
00(03(31(13(30(05(54(x1))))))) | → | 04(44(43(33(34(44(40(05(52(23(34(x1))))))))))) | (792) |
40(03(31(13(30(05(51(x1))))))) | → | 44(44(43(33(34(44(40(05(52(23(31(x1))))))))))) | (797) |
40(03(31(13(30(05(54(x1))))))) | → | 44(44(43(33(34(44(40(05(52(23(34(x1))))))))))) | (798) |
20(03(31(13(30(05(51(x1))))))) | → | 24(44(43(33(34(44(40(05(52(23(31(x1))))))))))) | (803) |
20(03(31(13(30(05(54(x1))))))) | → | 24(44(43(33(34(44(40(05(52(23(34(x1))))))))))) | (804) |
42(20(00(02(24(45(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(45(x1))))))))))) | (1309) |
42(20(00(02(24(40(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(40(x1))))))))))) | (1310) |
42(20(00(02(24(43(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(43(x1))))))))))) | (1311) |
42(20(00(02(24(42(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(42(x1))))))))))) | (1312) |
42(20(00(02(24(41(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(41(x1))))))))))) | (1313) |
42(20(00(02(24(44(x1)))))) | → | 44(44(40(04(43(31(12(24(40(04(44(x1))))))))))) | (1314) |
30(00(00(00(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(20(x1))))))))))) | (1466) |
30(00(00(02(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(22(x1))))))))))) | (1468) |
30(00(00(01(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(21(x1))))))))))) | (1469) |
30(00(00(04(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(24(x1))))))))))) | (1470) |
10(00(00(00(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(20(x1))))))))))) | (1478) |
10(00(00(02(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(22(x1))))))))))) | (1480) |
10(00(00(01(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(21(x1))))))))))) | (1481) |
10(00(00(04(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(24(x1))))))))))) | (1482) |
00(00(00(00(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(20(x1))))))))))) | (1484) |
00(00(00(02(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(22(x1))))))))))) | (1486) |
00(00(00(01(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(21(x1))))))))))) | (1487) |
00(00(00(04(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(24(x1))))))))))) | (1488) |
40(00(00(00(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(20(x1))))))))))) | (1490) |
40(00(00(02(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(22(x1))))))))))) | (1492) |
40(00(00(01(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(21(x1))))))))))) | (1493) |
40(00(00(04(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(24(x1))))))))))) | (1494) |
20(00(00(00(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(20(x1))))))))))) | (1496) |
20(00(00(02(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(22(x1))))))))))) | (1498) |
20(00(00(01(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(21(x1))))))))))) | (1499) |
20(00(00(04(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(24(x1))))))))))) | (1500) |
[50(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 + 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[04(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 + 1 · x1 |
[24(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 + 1 · x1 |
[44(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 + 1 · x1 |
[52(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 + 1 · x1 |
[11(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 + 1 · x1 |
[20(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 + 1 · x1 |
41(10(00(00(05(x1))))) | → | 41(14(41(10(05(51(12(24(42(25(x1)))))))))) | (277) |
41(10(00(00(03(x1))))) | → | 41(14(41(10(05(51(12(24(42(23(x1)))))))))) | (279) |
42(23(35(50(05(50(02(x1))))))) | → | 44(44(40(00(01(15(52(23(34(42(x1)))))))))) | (364) |
30(01(10(04(45(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(45(x1))))))))))) | (445) |
30(01(10(04(40(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(40(x1))))))))))) | (446) |
30(01(10(04(43(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(43(x1))))))))))) | (447) |
30(01(10(04(42(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(42(x1))))))))))) | (448) |
30(01(10(04(41(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(41(x1))))))))))) | (449) |
30(01(10(04(44(x1))))) | → | 34(42(21(12(23(34(44(43(30(04(44(x1))))))))))) | (450) |
00(01(10(04(45(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(45(x1))))))))))) | (463) |
00(01(10(04(40(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(40(x1))))))))))) | (464) |
00(01(10(04(43(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(43(x1))))))))))) | (465) |
00(01(10(04(42(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(42(x1))))))))))) | (466) |
00(01(10(04(41(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(41(x1))))))))))) | (467) |
00(01(10(04(44(x1))))) | → | 04(42(21(12(23(34(44(43(30(04(44(x1))))))))))) | (468) |
10(01(15(51(10(04(45(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(45(x1))))))))))) | (673) |
10(01(15(51(10(04(40(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(40(x1))))))))))) | (674) |
10(01(15(51(10(04(43(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(43(x1))))))))))) | (675) |
10(01(15(51(10(04(42(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(42(x1))))))))))) | (676) |
10(01(15(51(10(04(41(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(41(x1))))))))))) | (677) |
10(01(15(51(10(04(44(x1))))))) | → | 13(32(20(04(40(01(14(43(30(04(44(x1))))))))))) | (678) |
32(20(00(02(24(45(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(45(x1))))))))))) | (1285) |
32(20(00(02(24(40(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(40(x1))))))))))) | (1286) |
32(20(00(02(24(43(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(43(x1))))))))))) | (1287) |
32(20(00(02(24(42(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(42(x1))))))))))) | (1288) |
32(20(00(02(24(41(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(41(x1))))))))))) | (1289) |
32(20(00(02(24(44(x1)))))) | → | 34(44(40(04(43(31(12(24(40(04(44(x1))))))))))) | (1290) |
12(20(00(02(24(45(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(45(x1))))))))))) | (1297) |
12(20(00(02(24(40(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(40(x1))))))))))) | (1298) |
12(20(00(02(24(43(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(43(x1))))))))))) | (1299) |
12(20(00(02(24(42(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(42(x1))))))))))) | (1300) |
12(20(00(02(24(41(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(41(x1))))))))))) | (1301) |
12(20(00(02(24(44(x1)))))) | → | 14(44(40(04(43(31(12(24(40(04(44(x1))))))))))) | (1302) |
02(20(00(02(24(45(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(45(x1))))))))))) | (1303) |
02(20(00(02(24(40(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(40(x1))))))))))) | (1304) |
02(20(00(02(24(43(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(43(x1))))))))))) | (1305) |
02(20(00(02(24(42(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(42(x1))))))))))) | (1306) |
02(20(00(02(24(41(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(41(x1))))))))))) | (1307) |
02(20(00(02(24(44(x1)))))) | → | 04(44(40(04(43(31(12(24(40(04(44(x1))))))))))) | (1308) |
22(20(00(02(24(45(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(45(x1))))))))))) | (1315) |
22(20(00(02(24(40(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(40(x1))))))))))) | (1316) |
22(20(00(02(24(43(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(43(x1))))))))))) | (1317) |
22(20(00(02(24(42(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(42(x1))))))))))) | (1318) |
22(20(00(02(24(41(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(41(x1))))))))))) | (1319) |
22(20(00(02(24(44(x1)))))) | → | 24(44(40(04(43(31(12(24(40(04(44(x1))))))))))) | (1320) |
30(00(02(25(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(25(x1))))))))))) | (1357) |
30(00(02(20(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(20(x1))))))))))) | (1358) |
30(00(02(23(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(23(x1))))))))))) | (1359) |
30(00(02(22(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(22(x1))))))))))) | (1360) |
30(00(02(21(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(21(x1))))))))))) | (1361) |
30(00(02(24(x1)))) | → | 31(10(03(34(43(31(12(20(00(02(24(x1))))))))))) | (1362) |
30(00(00(05(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(25(x1))))))))))) | (1465) |
30(00(00(03(x1)))) | → | 31(12(23(34(44(42(23(33(32(22(23(x1))))))))))) | (1467) |
10(00(00(05(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(25(x1))))))))))) | (1477) |
10(00(00(03(x1)))) | → | 11(12(23(34(44(42(23(33(32(22(23(x1))))))))))) | (1479) |
00(00(00(05(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(25(x1))))))))))) | (1483) |
00(00(00(03(x1)))) | → | 01(12(23(34(44(42(23(33(32(22(23(x1))))))))))) | (1485) |
40(00(00(05(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(25(x1))))))))))) | (1489) |
40(00(00(03(x1)))) | → | 41(12(23(34(44(42(23(33(32(22(23(x1))))))))))) | (1491) |
20(00(00(05(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(25(x1))))))))))) | (1495) |
20(00(00(03(x1)))) | → | 21(12(23(34(44(42(23(33(32(22(23(x1))))))))))) | (1497) |
[50(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 + 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[04(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 + 1 · x1 |
[35(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 + 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
42(23(35(50(05(50(05(x1))))))) | → | 44(44(40(00(01(15(52(23(34(45(x1)))))))))) | (361) |
42(23(35(50(05(50(03(x1))))))) | → | 44(44(40(00(01(15(52(23(34(43(x1)))))))))) | (363) |
53(35(55(55(53(30(05(x1))))))) | → | 54(43(34(45(52(25(55(55(50(05(x1)))))))))) | (379) |
53(35(55(55(53(30(00(x1))))))) | → | 54(43(34(45(52(25(55(55(50(00(x1)))))))))) | (380) |
53(35(55(55(53(30(03(x1))))))) | → | 54(43(34(45(52(25(55(55(50(03(x1)))))))))) | (381) |
53(35(55(55(53(30(02(x1))))))) | → | 54(43(34(45(52(25(55(55(50(02(x1)))))))))) | (382) |
53(35(55(55(53(30(01(x1))))))) | → | 54(43(34(45(52(25(55(55(50(01(x1)))))))))) | (383) |
53(35(55(55(53(30(04(x1))))))) | → | 54(43(34(45(52(25(55(55(50(04(x1)))))))))) | (384) |
[50(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 + 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 + 1 · x1 |
[45(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
50(05(55(53(35(54(45(x1))))))) | → | 53(35(55(50(01(11(12(23(34(45(x1)))))))))) | (373) |
50(05(55(53(35(54(40(x1))))))) | → | 53(35(55(50(01(11(12(23(34(40(x1)))))))))) | (374) |
50(05(55(53(35(54(43(x1))))))) | → | 53(35(55(50(01(11(12(23(34(43(x1)))))))))) | (375) |
50(05(55(53(35(54(42(x1))))))) | → | 53(35(55(50(01(11(12(23(34(42(x1)))))))))) | (376) |
50(05(55(53(35(54(41(x1))))))) | → | 53(35(55(50(01(11(12(23(34(41(x1)))))))))) | (377) |
50(05(55(53(35(54(44(x1))))))) | → | 53(35(55(50(01(11(12(23(34(44(x1)))))))))) | (378) |
[50(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[04(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 + 1 · x1 |
[15(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
10(01(10(04(45(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(45(x1))))))))))) | (457) |
10(01(10(04(40(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(40(x1))))))))))) | (458) |
10(01(10(04(43(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(43(x1))))))))))) | (459) |
10(01(10(04(42(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(42(x1))))))))))) | (460) |
10(01(10(04(41(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(41(x1))))))))))) | (461) |
10(01(10(04(44(x1))))) | → | 14(42(21(12(23(34(44(43(30(04(44(x1))))))))))) | (462) |
40(01(10(04(45(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(45(x1))))))))))) | (469) |
40(01(10(04(40(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(40(x1))))))))))) | (470) |
40(01(10(04(43(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(43(x1))))))))))) | (471) |
40(01(10(04(42(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(42(x1))))))))))) | (472) |
40(01(10(04(41(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(41(x1))))))))))) | (473) |
40(01(10(04(44(x1))))) | → | 44(42(21(12(23(34(44(43(30(04(44(x1))))))))))) | (474) |
[50(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[04(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
20(01(10(04(45(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(45(x1))))))))))) | (475) |
20(01(10(04(40(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(40(x1))))))))))) | (476) |
20(01(10(04(43(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(43(x1))))))))))) | (477) |
20(01(10(04(42(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(42(x1))))))))))) | (478) |
20(01(10(04(41(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(41(x1))))))))))) | (479) |
20(01(10(04(44(x1))))) | → | 24(42(21(12(23(34(44(43(30(04(44(x1))))))))))) | (480) |
[50(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[05(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
00(00(02(25(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(25(x1))))))))))) | (1375) |
00(00(02(20(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(20(x1))))))))))) | (1376) |
00(00(02(23(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(23(x1))))))))))) | (1377) |
00(00(02(22(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(22(x1))))))))))) | (1378) |
00(00(02(21(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(21(x1))))))))))) | (1379) |
00(00(02(24(x1)))) | → | 01(10(03(34(43(31(12(20(00(02(24(x1))))))))))) | (1380) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[05(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[04(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
50(00(05(x1))) | → | 50(03(32(21(12(23(34(40(00(05(x1)))))))))) | (241) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[04(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
50(00(04(x1))) | → | 50(03(32(21(12(23(34(40(00(04(x1)))))))))) | (246) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
50(00(02(x1))) | → | 50(03(32(21(12(23(34(40(00(02(x1)))))))))) | (244) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
50(00(01(x1))) | → | 50(03(32(21(12(23(34(40(00(01(x1)))))))))) | (245) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
10(00(02(22(x1)))) | → | 11(10(03(34(43(31(12(20(00(02(22(x1))))))))))) | (1372) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
10(00(02(23(x1)))) | → | 11(10(03(34(43(31(12(20(00(02(23(x1))))))))))) | (1371) |
[50(x1)] | = |
|
||||||||||||
[00(x1)] | = |
|
||||||||||||
[03(x1)] | = |
|
||||||||||||
[32(x1)] | = |
|
||||||||||||
[21(x1)] | = |
|
||||||||||||
[12(x1)] | = |
|
||||||||||||
[23(x1)] | = |
|
||||||||||||
[34(x1)] | = |
|
||||||||||||
[40(x1)] | = |
|
||||||||||||
[01(x1)] | = |
|
||||||||||||
[15(x1)] | = |
|
||||||||||||
[44(x1)] | = |
|
||||||||||||
[41(x1)] | = |
|
||||||||||||
[11(x1)] | = |
|
||||||||||||
[14(x1)] | = |
|
||||||||||||
[10(x1)] | = |
|
||||||||||||
[13(x1)] | = |
|
||||||||||||
[02(x1)] | = |
|
||||||||||||
[25(x1)] | = |
|
||||||||||||
[43(x1)] | = |
|
||||||||||||
[31(x1)] | = |
|
||||||||||||
[20(x1)] | = |
|
||||||||||||
[24(x1)] | = |
|
||||||||||||
[22(x1)] | = |
|
50(00(00(x1))) | → | 50(03(32(21(12(23(34(40(00(00(x1)))))))))) | (242) |
50(00(03(x1))) | → | 50(03(32(21(12(23(34(40(00(03(x1)))))))))) | (243) |
There are no rules in the TRS. Hence, it is terminating.