Certification Problem
Input (TPDB SRS_Relative/Waldmann_19/random-148)
The relative rewrite relation R/S is considered where R is the following TRS
c(c(b(x1))) |
→ |
b(b(b(x1))) |
(1) |
c(a(c(x1))) |
→ |
b(a(a(x1))) |
(2) |
c(c(c(x1))) |
→ |
a(a(b(x1))) |
(3) |
c(b(c(x1))) |
→ |
c(b(b(x1))) |
(4) |
c(a(c(x1))) |
→ |
b(b(c(x1))) |
(5) |
c(b(c(x1))) |
→ |
c(c(b(x1))) |
(6) |
and S is the following TRS.
a(b(b(x1))) |
→ |
b(a(c(x1))) |
(7) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by AProVE @ termCOMP 2023)
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(c(c(x1))) |
→ |
b(b(b(x1))) |
(8) |
c(a(c(x1))) |
→ |
a(a(b(x1))) |
(9) |
c(c(c(x1))) |
→ |
b(a(a(x1))) |
(10) |
c(b(c(x1))) |
→ |
b(b(c(x1))) |
(11) |
c(a(c(x1))) |
→ |
c(b(b(x1))) |
(12) |
c(b(c(x1))) |
→ |
b(c(c(x1))) |
(13) |
b(b(a(x1))) |
→ |
c(a(b(x1))) |
(14) |
1.1 Closure Under Flat Contexts
Using the flat contexts
{b(☐), c(☐), a(☐)}
We obtain the transformed TRS
b(c(c(x1))) |
→ |
b(b(b(x1))) |
(8) |
c(a(c(x1))) |
→ |
c(b(b(x1))) |
(12) |
b(c(a(c(x1)))) |
→ |
b(a(a(b(x1)))) |
(15) |
c(c(a(c(x1)))) |
→ |
c(a(a(b(x1)))) |
(16) |
a(c(a(c(x1)))) |
→ |
a(a(a(b(x1)))) |
(17) |
b(c(c(c(x1)))) |
→ |
b(b(a(a(x1)))) |
(18) |
c(c(c(c(x1)))) |
→ |
c(b(a(a(x1)))) |
(19) |
a(c(c(c(x1)))) |
→ |
a(b(a(a(x1)))) |
(20) |
b(c(b(c(x1)))) |
→ |
b(b(b(c(x1)))) |
(21) |
c(c(b(c(x1)))) |
→ |
c(b(b(c(x1)))) |
(22) |
a(c(b(c(x1)))) |
→ |
a(b(b(c(x1)))) |
(23) |
b(c(b(c(x1)))) |
→ |
b(b(c(c(x1)))) |
(24) |
c(c(b(c(x1)))) |
→ |
c(b(c(c(x1)))) |
(25) |
a(c(b(c(x1)))) |
→ |
a(b(c(c(x1)))) |
(26) |
b(b(b(a(x1)))) |
→ |
b(c(a(b(x1)))) |
(27) |
c(b(b(a(x1)))) |
→ |
c(c(a(b(x1)))) |
(28) |
a(b(b(a(x1)))) |
→ |
a(c(a(b(x1)))) |
(29) |
1.1.1 Semantic Labeling
Root-labeling is applied.
We obtain the labeled TRS
bc(cc(cb(x1))) |
→ |
bb(bb(bb(x1))) |
(30) |
bc(cc(cc(x1))) |
→ |
bb(bb(bc(x1))) |
(31) |
bc(cc(ca(x1))) |
→ |
bb(bb(ba(x1))) |
(32) |
ca(ac(cb(x1))) |
→ |
cb(bb(bb(x1))) |
(33) |
ca(ac(cc(x1))) |
→ |
cb(bb(bc(x1))) |
(34) |
ca(ac(ca(x1))) |
→ |
cb(bb(ba(x1))) |
(35) |
bc(ca(ac(cb(x1)))) |
→ |
ba(aa(ab(bb(x1)))) |
(36) |
bc(ca(ac(cc(x1)))) |
→ |
ba(aa(ab(bc(x1)))) |
(37) |
bc(ca(ac(ca(x1)))) |
→ |
ba(aa(ab(ba(x1)))) |
(38) |
cc(ca(ac(cb(x1)))) |
→ |
ca(aa(ab(bb(x1)))) |
(39) |
cc(ca(ac(cc(x1)))) |
→ |
ca(aa(ab(bc(x1)))) |
(40) |
cc(ca(ac(ca(x1)))) |
→ |
ca(aa(ab(ba(x1)))) |
(41) |
ac(ca(ac(cb(x1)))) |
→ |
aa(aa(ab(bb(x1)))) |
(42) |
ac(ca(ac(cc(x1)))) |
→ |
aa(aa(ab(bc(x1)))) |
(43) |
ac(ca(ac(ca(x1)))) |
→ |
aa(aa(ab(ba(x1)))) |
(44) |
bc(cc(cc(cb(x1)))) |
→ |
bb(ba(aa(ab(x1)))) |
(45) |
bc(cc(cc(cc(x1)))) |
→ |
bb(ba(aa(ac(x1)))) |
(46) |
bc(cc(cc(ca(x1)))) |
→ |
bb(ba(aa(aa(x1)))) |
(47) |
cc(cc(cc(cb(x1)))) |
→ |
cb(ba(aa(ab(x1)))) |
(48) |
cc(cc(cc(cc(x1)))) |
→ |
cb(ba(aa(ac(x1)))) |
(49) |
cc(cc(cc(ca(x1)))) |
→ |
cb(ba(aa(aa(x1)))) |
(50) |
ac(cc(cc(cb(x1)))) |
→ |
ab(ba(aa(ab(x1)))) |
(51) |
ac(cc(cc(cc(x1)))) |
→ |
ab(ba(aa(ac(x1)))) |
(52) |
ac(cc(cc(ca(x1)))) |
→ |
ab(ba(aa(aa(x1)))) |
(53) |
bc(cb(bc(cb(x1)))) |
→ |
bb(bb(bc(cb(x1)))) |
(54) |
bc(cb(bc(cc(x1)))) |
→ |
bb(bb(bc(cc(x1)))) |
(55) |
bc(cb(bc(ca(x1)))) |
→ |
bb(bb(bc(ca(x1)))) |
(56) |
cc(cb(bc(cb(x1)))) |
→ |
cb(bb(bc(cb(x1)))) |
(57) |
cc(cb(bc(cc(x1)))) |
→ |
cb(bb(bc(cc(x1)))) |
(58) |
cc(cb(bc(ca(x1)))) |
→ |
cb(bb(bc(ca(x1)))) |
(59) |
ac(cb(bc(cb(x1)))) |
→ |
ab(bb(bc(cb(x1)))) |
(60) |
ac(cb(bc(cc(x1)))) |
→ |
ab(bb(bc(cc(x1)))) |
(61) |
ac(cb(bc(ca(x1)))) |
→ |
ab(bb(bc(ca(x1)))) |
(62) |
bc(cb(bc(cb(x1)))) |
→ |
bb(bc(cc(cb(x1)))) |
(63) |
bc(cb(bc(cc(x1)))) |
→ |
bb(bc(cc(cc(x1)))) |
(64) |
bc(cb(bc(ca(x1)))) |
→ |
bb(bc(cc(ca(x1)))) |
(65) |
cc(cb(bc(cb(x1)))) |
→ |
cb(bc(cc(cb(x1)))) |
(66) |
cc(cb(bc(cc(x1)))) |
→ |
cb(bc(cc(cc(x1)))) |
(67) |
cc(cb(bc(ca(x1)))) |
→ |
cb(bc(cc(ca(x1)))) |
(68) |
ac(cb(bc(cb(x1)))) |
→ |
ab(bc(cc(cb(x1)))) |
(69) |
ac(cb(bc(cc(x1)))) |
→ |
ab(bc(cc(cc(x1)))) |
(70) |
ac(cb(bc(ca(x1)))) |
→ |
ab(bc(cc(ca(x1)))) |
(71) |
bb(bb(ba(ab(x1)))) |
→ |
bc(ca(ab(bb(x1)))) |
(72) |
bb(bb(ba(ac(x1)))) |
→ |
bc(ca(ab(bc(x1)))) |
(73) |
bb(bb(ba(aa(x1)))) |
→ |
bc(ca(ab(ba(x1)))) |
(74) |
cb(bb(ba(ab(x1)))) |
→ |
cc(ca(ab(bb(x1)))) |
(75) |
cb(bb(ba(ac(x1)))) |
→ |
cc(ca(ab(bc(x1)))) |
(76) |
cb(bb(ba(aa(x1)))) |
→ |
cc(ca(ab(ba(x1)))) |
(77) |
ab(bb(ba(ab(x1)))) |
→ |
ac(ca(ab(bb(x1)))) |
(78) |
ab(bb(ba(ac(x1)))) |
→ |
ac(ca(ab(bc(x1)))) |
(79) |
ab(bb(ba(aa(x1)))) |
→ |
ac(ca(ab(ba(x1)))) |
(80) |
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[bc(x1)] |
= |
3 + 1 · x1
|
[cc(x1)] |
= |
4 + 2 · x1
|
[cb(x1)] |
= |
4 · x1
|
[bb(x1)] |
= |
2 · x1
|
[ca(x1)] |
= |
4 · x1
|
[ba(x1)] |
= |
1 + 2 · x1
|
[ac(x1)] |
= |
3 + 1 · x1
|
[aa(x1)] |
= |
1 + 2 · x1
|
[ab(x1)] |
= |
2 · x1
|
all of the following rules can be deleted.
bc(cc(cb(x1))) |
→ |
bb(bb(bb(x1))) |
(30) |
bc(cc(cc(x1))) |
→ |
bb(bb(bc(x1))) |
(31) |
bc(cc(ca(x1))) |
→ |
bb(bb(ba(x1))) |
(32) |
ca(ac(cb(x1))) |
→ |
cb(bb(bb(x1))) |
(33) |
ca(ac(cc(x1))) |
→ |
cb(bb(bc(x1))) |
(34) |
ca(ac(ca(x1))) |
→ |
cb(bb(ba(x1))) |
(35) |
bc(ca(ac(cb(x1)))) |
→ |
ba(aa(ab(bb(x1)))) |
(36) |
bc(ca(ac(cc(x1)))) |
→ |
ba(aa(ab(bc(x1)))) |
(37) |
bc(ca(ac(ca(x1)))) |
→ |
ba(aa(ab(ba(x1)))) |
(38) |
cc(ca(ac(cb(x1)))) |
→ |
ca(aa(ab(bb(x1)))) |
(39) |
cc(ca(ac(cc(x1)))) |
→ |
ca(aa(ab(bc(x1)))) |
(40) |
cc(ca(ac(ca(x1)))) |
→ |
ca(aa(ab(ba(x1)))) |
(41) |
ac(ca(ac(cb(x1)))) |
→ |
aa(aa(ab(bb(x1)))) |
(42) |
ac(ca(ac(cc(x1)))) |
→ |
aa(aa(ab(bc(x1)))) |
(43) |
ac(ca(ac(ca(x1)))) |
→ |
aa(aa(ab(ba(x1)))) |
(44) |
bc(cc(cc(cb(x1)))) |
→ |
bb(ba(aa(ab(x1)))) |
(45) |
bc(cc(cc(cc(x1)))) |
→ |
bb(ba(aa(ac(x1)))) |
(46) |
bc(cc(cc(ca(x1)))) |
→ |
bb(ba(aa(aa(x1)))) |
(47) |
cc(cc(cc(cb(x1)))) |
→ |
cb(ba(aa(ab(x1)))) |
(48) |
ac(cc(cc(cb(x1)))) |
→ |
ab(ba(aa(ab(x1)))) |
(51) |
ac(cc(cc(cc(x1)))) |
→ |
ab(ba(aa(ac(x1)))) |
(52) |
ac(cc(cc(ca(x1)))) |
→ |
ab(ba(aa(aa(x1)))) |
(53) |
bc(cb(bc(cb(x1)))) |
→ |
bb(bb(bc(cb(x1)))) |
(54) |
bc(cb(bc(cc(x1)))) |
→ |
bb(bb(bc(cc(x1)))) |
(55) |
bc(cb(bc(ca(x1)))) |
→ |
bb(bb(bc(ca(x1)))) |
(56) |
cc(cb(bc(cb(x1)))) |
→ |
cb(bb(bc(cb(x1)))) |
(57) |
cc(cb(bc(cc(x1)))) |
→ |
cb(bb(bc(cc(x1)))) |
(58) |
cc(cb(bc(ca(x1)))) |
→ |
cb(bb(bc(ca(x1)))) |
(59) |
ac(cb(bc(cb(x1)))) |
→ |
ab(bb(bc(cb(x1)))) |
(60) |
ac(cb(bc(cc(x1)))) |
→ |
ab(bb(bc(cc(x1)))) |
(61) |
ac(cb(bc(ca(x1)))) |
→ |
ab(bb(bc(ca(x1)))) |
(62) |
bc(cb(bc(cb(x1)))) |
→ |
bb(bc(cc(cb(x1)))) |
(63) |
bc(cb(bc(cc(x1)))) |
→ |
bb(bc(cc(cc(x1)))) |
(64) |
bc(cb(bc(ca(x1)))) |
→ |
bb(bc(cc(ca(x1)))) |
(65) |
ac(cb(bc(cb(x1)))) |
→ |
ab(bc(cc(cb(x1)))) |
(69) |
ac(cb(bc(cc(x1)))) |
→ |
ab(bc(cc(cc(x1)))) |
(70) |
ac(cb(bc(ca(x1)))) |
→ |
ab(bc(cc(ca(x1)))) |
(71) |
bb(bb(ba(ab(x1)))) |
→ |
bc(ca(ab(bb(x1)))) |
(72) |
bb(bb(ba(ac(x1)))) |
→ |
bc(ca(ab(bc(x1)))) |
(73) |
bb(bb(ba(aa(x1)))) |
→ |
bc(ca(ab(ba(x1)))) |
(74) |
cb(bb(ba(ab(x1)))) |
→ |
cc(ca(ab(bb(x1)))) |
(75) |
cb(bb(ba(ac(x1)))) |
→ |
cc(ca(ab(bc(x1)))) |
(76) |
cb(bb(ba(aa(x1)))) |
→ |
cc(ca(ab(ba(x1)))) |
(77) |
ab(bb(ba(ab(x1)))) |
→ |
ac(ca(ab(bb(x1)))) |
(78) |
ab(bb(ba(ac(x1)))) |
→ |
ac(ca(ab(bc(x1)))) |
(79) |
ab(bb(ba(aa(x1)))) |
→ |
ac(ca(ab(ba(x1)))) |
(80) |
1.1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[cc(x1)] |
= |
1 · x1 + 1 |
[cb(x1)] |
= |
1 · x1
|
[ba(x1)] |
= |
1 · x1
|
[aa(x1)] |
= |
1 · x1
|
[ac(x1)] |
= |
1 · x1
|
[ca(x1)] |
= |
1 · x1
|
[bc(x1)] |
= |
1 · x1
|
all of the following rules can be deleted.
cc(cc(cc(cc(x1)))) |
→ |
cb(ba(aa(ac(x1)))) |
(49) |
cc(cc(cc(ca(x1)))) |
→ |
cb(ba(aa(aa(x1)))) |
(50) |
1.1.1.1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
cc#(cb(bc(cb(x1)))) |
→ |
cc#(cb(x1)) |
(81) |
cc#(cb(bc(cc(x1)))) |
→ |
cc#(cc(x1)) |
(82) |
cc#(cb(bc(ca(x1)))) |
→ |
cc#(ca(x1)) |
(83) |
1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
1st
component contains the
pair
cc#(cb(bc(cc(x1)))) |
→ |
cc#(cc(x1)) |
(82) |
cc#(cb(bc(cb(x1)))) |
→ |
cc#(cb(x1)) |
(81) |
1.1.1.1.1.1.1.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
cc#(cb(bc(cc(x1)))) |
→ |
cc#(cc(x1)) |
(82) |
|
1 |
> |
1 |
cc#(cb(bc(cb(x1)))) |
→ |
cc#(cb(x1)) |
(81) |
|
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.