Certification Problem
Input (TPDB SRS_Relative/Waldmann_19/random-227)
The relative rewrite relation R/S is considered where R is the following TRS
c(b(c(x1))) |
→ |
c(a(b(x1))) |
(1) |
c(b(b(x1))) |
→ |
a(a(c(x1))) |
(2) |
a(a(b(x1))) |
→ |
b(b(c(x1))) |
(3) |
b(b(c(x1))) |
→ |
a(b(c(x1))) |
(4) |
b(b(b(x1))) |
→ |
b(a(b(x1))) |
(5) |
and S is the following TRS.
c(b(a(x1))) |
→ |
b(a(c(x1))) |
(6) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by AProVE @ termCOMP 2023)
1 Rule Removal
Using the
matrix interpretations of dimension 2 with strict dimension 1 over the integers
[c(x1)] |
= |
+ · x1
|
[b(x1)] |
= |
+ · x1
|
[a(x1)] |
= |
+ · x1
|
all of the following rules can be deleted.
c(b(b(x1))) |
→ |
a(a(c(x1))) |
(2) |
c(b(a(x1))) |
→ |
b(a(c(x1))) |
(6) |
1.1 Closure Under Flat Contexts
Using the flat contexts
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS
c(b(c(x1))) |
→ |
c(a(b(x1))) |
(1) |
b(b(b(x1))) |
→ |
b(a(b(x1))) |
(5) |
c(a(a(b(x1)))) |
→ |
c(b(b(c(x1)))) |
(7) |
b(a(a(b(x1)))) |
→ |
b(b(b(c(x1)))) |
(8) |
a(a(a(b(x1)))) |
→ |
a(b(b(c(x1)))) |
(9) |
c(b(b(c(x1)))) |
→ |
c(a(b(c(x1)))) |
(10) |
b(b(b(c(x1)))) |
→ |
b(a(b(c(x1)))) |
(11) |
a(b(b(c(x1)))) |
→ |
a(a(b(c(x1)))) |
(12) |
1.1.1 Semantic Labeling
Root-labeling is applied.
We obtain the labeled TRS
cb(bc(cc(x1))) |
→ |
ca(ab(bc(x1))) |
(13) |
cb(bc(cb(x1))) |
→ |
ca(ab(bb(x1))) |
(14) |
cb(bc(ca(x1))) |
→ |
ca(ab(ba(x1))) |
(15) |
bb(bb(bc(x1))) |
→ |
ba(ab(bc(x1))) |
(16) |
bb(bb(bb(x1))) |
→ |
ba(ab(bb(x1))) |
(17) |
bb(bb(ba(x1))) |
→ |
ba(ab(ba(x1))) |
(18) |
ca(aa(ab(bc(x1)))) |
→ |
cb(bb(bc(cc(x1)))) |
(19) |
ca(aa(ab(bb(x1)))) |
→ |
cb(bb(bc(cb(x1)))) |
(20) |
ca(aa(ab(ba(x1)))) |
→ |
cb(bb(bc(ca(x1)))) |
(21) |
ba(aa(ab(bc(x1)))) |
→ |
bb(bb(bc(cc(x1)))) |
(22) |
ba(aa(ab(bb(x1)))) |
→ |
bb(bb(bc(cb(x1)))) |
(23) |
ba(aa(ab(ba(x1)))) |
→ |
bb(bb(bc(ca(x1)))) |
(24) |
aa(aa(ab(bc(x1)))) |
→ |
ab(bb(bc(cc(x1)))) |
(25) |
aa(aa(ab(bb(x1)))) |
→ |
ab(bb(bc(cb(x1)))) |
(26) |
aa(aa(ab(ba(x1)))) |
→ |
ab(bb(bc(ca(x1)))) |
(27) |
cb(bb(bc(cc(x1)))) |
→ |
ca(ab(bc(cc(x1)))) |
(28) |
cb(bb(bc(cb(x1)))) |
→ |
ca(ab(bc(cb(x1)))) |
(29) |
cb(bb(bc(ca(x1)))) |
→ |
ca(ab(bc(ca(x1)))) |
(30) |
bb(bb(bc(cc(x1)))) |
→ |
ba(ab(bc(cc(x1)))) |
(31) |
bb(bb(bc(cb(x1)))) |
→ |
ba(ab(bc(cb(x1)))) |
(32) |
bb(bb(bc(ca(x1)))) |
→ |
ba(ab(bc(ca(x1)))) |
(33) |
ab(bb(bc(cc(x1)))) |
→ |
aa(ab(bc(cc(x1)))) |
(34) |
ab(bb(bc(cb(x1)))) |
→ |
aa(ab(bc(cb(x1)))) |
(35) |
ab(bb(bc(ca(x1)))) |
→ |
aa(ab(bc(ca(x1)))) |
(36) |
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[cb(x1)] |
= |
1 · x1 + 1 |
[bc(x1)] |
= |
1 · x1
|
[cc(x1)] |
= |
1 · x1
|
[ca(x1)] |
= |
1 · x1 + 1 |
[ab(x1)] |
= |
1 · x1
|
[bb(x1)] |
= |
1 · x1 + 1 |
[ba(x1)] |
= |
1 · x1 + 1 |
[aa(x1)] |
= |
1 · x1 + 1 |
all of the following rules can be deleted.
bb(bb(bc(x1))) |
→ |
ba(ab(bc(x1))) |
(16) |
bb(bb(bb(x1))) |
→ |
ba(ab(bb(x1))) |
(17) |
bb(bb(ba(x1))) |
→ |
ba(ab(ba(x1))) |
(18) |
aa(aa(ab(bc(x1)))) |
→ |
ab(bb(bc(cc(x1)))) |
(25) |
aa(aa(ab(bb(x1)))) |
→ |
ab(bb(bc(cb(x1)))) |
(26) |
aa(aa(ab(ba(x1)))) |
→ |
ab(bb(bc(ca(x1)))) |
(27) |
cb(bb(bc(cc(x1)))) |
→ |
ca(ab(bc(cc(x1)))) |
(28) |
cb(bb(bc(cb(x1)))) |
→ |
ca(ab(bc(cb(x1)))) |
(29) |
cb(bb(bc(ca(x1)))) |
→ |
ca(ab(bc(ca(x1)))) |
(30) |
bb(bb(bc(cc(x1)))) |
→ |
ba(ab(bc(cc(x1)))) |
(31) |
bb(bb(bc(cb(x1)))) |
→ |
ba(ab(bc(cb(x1)))) |
(32) |
bb(bb(bc(ca(x1)))) |
→ |
ba(ab(bc(ca(x1)))) |
(33) |
1.1.1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
cb#(bc(cc(x1))) |
→ |
ca#(ab(bc(x1))) |
(37) |
cb#(bc(cc(x1))) |
→ |
ab#(bc(x1)) |
(38) |
cb#(bc(cb(x1))) |
→ |
ca#(ab(bb(x1))) |
(39) |
cb#(bc(cb(x1))) |
→ |
ab#(bb(x1)) |
(40) |
cb#(bc(ca(x1))) |
→ |
ca#(ab(ba(x1))) |
(41) |
cb#(bc(ca(x1))) |
→ |
ab#(ba(x1)) |
(42) |
cb#(bc(ca(x1))) |
→ |
ba#(x1) |
(43) |
ca#(aa(ab(bc(x1)))) |
→ |
cb#(bb(bc(cc(x1)))) |
(44) |
ca#(aa(ab(bb(x1)))) |
→ |
cb#(bb(bc(cb(x1)))) |
(45) |
ca#(aa(ab(bb(x1)))) |
→ |
cb#(x1) |
(46) |
ca#(aa(ab(ba(x1)))) |
→ |
cb#(bb(bc(ca(x1)))) |
(47) |
ca#(aa(ab(ba(x1)))) |
→ |
ca#(x1) |
(48) |
ba#(aa(ab(bb(x1)))) |
→ |
cb#(x1) |
(49) |
ba#(aa(ab(ba(x1)))) |
→ |
ca#(x1) |
(50) |
ab#(bb(bc(cc(x1)))) |
→ |
ab#(bc(cc(x1))) |
(51) |
ab#(bb(bc(cb(x1)))) |
→ |
ab#(bc(cb(x1))) |
(52) |
ab#(bb(bc(ca(x1)))) |
→ |
ab#(bc(ca(x1))) |
(53) |
1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.