Certification Problem

Input (TPDB SRS_Relative/Waldmann_19/random-10)

The rewrite relation of the following TRS is considered.

a(c(b(x1))) c(c(c(x1))) (1)
b(c(c(x1))) a(a(b(x1))) (2)
c(a(c(x1))) b(a(b(x1))) (3)
b(c(a(x1))) a(b(c(x1))) (4)
c(c(c(x1))) c(c(b(x1))) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Closure Under Flat Contexts

Using the flat contexts

{c(), b(), a()}

We obtain the transformed TRS
c(a(c(b(x1)))) c(c(c(c(x1)))) (6)
c(b(c(c(x1)))) c(a(a(b(x1)))) (7)
c(c(a(c(x1)))) c(b(a(b(x1)))) (8)
c(b(c(a(x1)))) c(a(b(c(x1)))) (9)
c(c(c(c(x1)))) c(c(c(b(x1)))) (10)
b(a(c(b(x1)))) b(c(c(c(x1)))) (11)
b(b(c(c(x1)))) b(a(a(b(x1)))) (12)
b(c(a(c(x1)))) b(b(a(b(x1)))) (13)
b(b(c(a(x1)))) b(a(b(c(x1)))) (14)
b(c(c(c(x1)))) b(c(c(b(x1)))) (15)
a(a(c(b(x1)))) a(c(c(c(x1)))) (16)
a(b(c(c(x1)))) a(a(a(b(x1)))) (17)
a(c(a(c(x1)))) a(b(a(b(x1)))) (18)
a(b(c(a(x1)))) a(a(b(c(x1)))) (19)
a(c(c(c(x1)))) a(c(c(b(x1)))) (20)

1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):

[c(x1)] = 3x1 + 0
[b(x1)] = 3x1 + 1
[a(x1)] = 3x1 + 2

We obtain the labeled TRS
a2(a0(c1(b2(x1)))) a0(c0(c0(c2(x1)))) (21)
a2(a0(c1(b0(x1)))) a0(c0(c0(c0(x1)))) (22)
a2(a0(c1(b1(x1)))) a0(c0(c0(c1(x1)))) (23)
c2(a0(c1(b2(x1)))) c0(c0(c0(c2(x1)))) (24)
c2(a0(c1(b0(x1)))) c0(c0(c0(c0(x1)))) (25)
c2(a0(c1(b1(x1)))) c0(c0(c0(c1(x1)))) (26)
b2(a0(c1(b2(x1)))) b0(c0(c0(c2(x1)))) (27)
b2(a0(c1(b0(x1)))) b0(c0(c0(c0(x1)))) (28)
b2(a0(c1(b1(x1)))) b0(c0(c0(c1(x1)))) (29)
a1(b0(c0(c2(x1)))) a2(a2(a1(b2(x1)))) (30)
a1(b0(c0(c0(x1)))) a2(a2(a1(b0(x1)))) (31)
a1(b0(c0(c1(x1)))) a2(a2(a1(b1(x1)))) (32)
c1(b0(c0(c2(x1)))) c2(a2(a1(b2(x1)))) (33)
c1(b0(c0(c0(x1)))) c2(a2(a1(b0(x1)))) (34)
c1(b0(c0(c1(x1)))) c2(a2(a1(b1(x1)))) (35)
b1(b0(c0(c2(x1)))) b2(a2(a1(b2(x1)))) (36)
b1(b0(c0(c0(x1)))) b2(a2(a1(b0(x1)))) (37)
b1(b0(c0(c1(x1)))) b2(a2(a1(b1(x1)))) (38)
a0(c2(a0(c2(x1)))) a1(b2(a1(b2(x1)))) (39)
a0(c2(a0(c0(x1)))) a1(b2(a1(b0(x1)))) (40)
a0(c2(a0(c1(x1)))) a1(b2(a1(b1(x1)))) (41)
c0(c2(a0(c2(x1)))) c1(b2(a1(b2(x1)))) (42)
c0(c2(a0(c0(x1)))) c1(b2(a1(b0(x1)))) (43)
c0(c2(a0(c1(x1)))) c1(b2(a1(b1(x1)))) (44)
b0(c2(a0(c2(x1)))) b1(b2(a1(b2(x1)))) (45)
b0(c2(a0(c0(x1)))) b1(b2(a1(b0(x1)))) (46)
b0(c2(a0(c1(x1)))) b1(b2(a1(b1(x1)))) (47)
a1(b0(c2(a2(x1)))) a2(a1(b0(c2(x1)))) (48)
a1(b0(c2(a0(x1)))) a2(a1(b0(c0(x1)))) (49)
a1(b0(c2(a1(x1)))) a2(a1(b0(c1(x1)))) (50)
c1(b0(c2(a2(x1)))) c2(a1(b0(c2(x1)))) (51)
c1(b0(c2(a0(x1)))) c2(a1(b0(c0(x1)))) (52)
c1(b0(c2(a1(x1)))) c2(a1(b0(c1(x1)))) (53)
b1(b0(c2(a2(x1)))) b2(a1(b0(c2(x1)))) (54)
b1(b0(c2(a0(x1)))) b2(a1(b0(c0(x1)))) (55)
b1(b0(c2(a1(x1)))) b2(a1(b0(c1(x1)))) (56)
a0(c0(c0(c2(x1)))) a0(c0(c1(b2(x1)))) (57)
a0(c0(c0(c0(x1)))) a0(c0(c1(b0(x1)))) (58)
a0(c0(c0(c1(x1)))) a0(c0(c1(b1(x1)))) (59)
c0(c0(c0(c2(x1)))) c0(c0(c1(b2(x1)))) (60)
c0(c0(c0(c0(x1)))) c0(c0(c1(b0(x1)))) (61)
c0(c0(c0(c1(x1)))) c0(c0(c1(b1(x1)))) (62)
b0(c0(c0(c2(x1)))) b0(c0(c1(b2(x1)))) (63)
b0(c0(c0(c0(x1)))) b0(c0(c1(b0(x1)))) (64)
b0(c0(c0(c1(x1)))) b0(c0(c1(b1(x1)))) (65)

1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
0
[c1(x1)] = x1 +
0
[c2(x1)] = x1 +
0
[b0(x1)] = x1 +
0
[b1(x1)] = x1 +
0
[b2(x1)] = x1 +
0
[a0(x1)] = x1 +
1
[a1(x1)] = x1 +
0
[a2(x1)] = x1 +
0
all of the following rules can be deleted.
c2(a0(c1(b2(x1)))) c0(c0(c0(c2(x1)))) (24)
c2(a0(c1(b0(x1)))) c0(c0(c0(c0(x1)))) (25)
c2(a0(c1(b1(x1)))) c0(c0(c0(c1(x1)))) (26)
b2(a0(c1(b2(x1)))) b0(c0(c0(c2(x1)))) (27)
b2(a0(c1(b0(x1)))) b0(c0(c0(c0(x1)))) (28)
b2(a0(c1(b1(x1)))) b0(c0(c0(c1(x1)))) (29)
a0(c2(a0(c2(x1)))) a1(b2(a1(b2(x1)))) (39)
a0(c2(a0(c0(x1)))) a1(b2(a1(b0(x1)))) (40)
a0(c2(a0(c1(x1)))) a1(b2(a1(b1(x1)))) (41)
c0(c2(a0(c2(x1)))) c1(b2(a1(b2(x1)))) (42)
c0(c2(a0(c0(x1)))) c1(b2(a1(b0(x1)))) (43)
c0(c2(a0(c1(x1)))) c1(b2(a1(b1(x1)))) (44)
b0(c2(a0(c2(x1)))) b1(b2(a1(b2(x1)))) (45)
b0(c2(a0(c0(x1)))) b1(b2(a1(b0(x1)))) (46)
b0(c2(a0(c1(x1)))) b1(b2(a1(b1(x1)))) (47)
a1(b0(c2(a0(x1)))) a2(a1(b0(c0(x1)))) (49)
c1(b0(c2(a0(x1)))) c2(a1(b0(c0(x1)))) (52)
b1(b0(c2(a0(x1)))) b2(a1(b0(c0(x1)))) (55)

1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
b2(c1(a0(a2(x1)))) c2(c0(c0(a0(x1)))) (66)
b0(c1(a0(a2(x1)))) c0(c0(c0(a0(x1)))) (67)
b1(c1(a0(a2(x1)))) c1(c0(c0(a0(x1)))) (68)
c2(c0(b0(a1(x1)))) b2(a1(a2(a2(x1)))) (69)
c0(c0(b0(a1(x1)))) b0(a1(a2(a2(x1)))) (70)
c1(c0(b0(a1(x1)))) b1(a1(a2(a2(x1)))) (71)
c2(c0(b0(c1(x1)))) b2(a1(a2(c2(x1)))) (72)
c0(c0(b0(c1(x1)))) b0(a1(a2(c2(x1)))) (73)
c1(c0(b0(c1(x1)))) b1(a1(a2(c2(x1)))) (74)
c2(c0(b0(b1(x1)))) b2(a1(a2(b2(x1)))) (75)
c0(c0(b0(b1(x1)))) b0(a1(a2(b2(x1)))) (76)
c1(c0(b0(b1(x1)))) b1(a1(a2(b2(x1)))) (77)
a2(c2(b0(a1(x1)))) c2(b0(a1(a2(x1)))) (78)
a1(c2(b0(a1(x1)))) c1(b0(a1(a2(x1)))) (79)
a2(c2(b0(c1(x1)))) c2(b0(a1(c2(x1)))) (80)
a1(c2(b0(c1(x1)))) c1(b0(a1(c2(x1)))) (81)
a2(c2(b0(b1(x1)))) c2(b0(a1(b2(x1)))) (82)
a1(c2(b0(b1(x1)))) c1(b0(a1(b2(x1)))) (83)
c2(c0(c0(a0(x1)))) b2(c1(c0(a0(x1)))) (84)
c0(c0(c0(a0(x1)))) b0(c1(c0(a0(x1)))) (85)
c1(c0(c0(a0(x1)))) b1(c1(c0(a0(x1)))) (86)
c2(c0(c0(c0(x1)))) b2(c1(c0(c0(x1)))) (87)
c0(c0(c0(c0(x1)))) b0(c1(c0(c0(x1)))) (88)
c1(c0(c0(c0(x1)))) b1(c1(c0(c0(x1)))) (89)
c2(c0(c0(b0(x1)))) b2(c1(c0(b0(x1)))) (90)
c0(c0(c0(b0(x1)))) b0(c1(c0(b0(x1)))) (91)
c1(c0(c0(b0(x1)))) b1(c1(c0(b0(x1)))) (92)

1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c0#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (93)
c0#(c0(c0(c0(x1)))) b0#(c1(c0(c0(x1)))) (94)
c0#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (95)
c0#(c0(c0(b0(x1)))) b0#(c1(c0(b0(x1)))) (96)
c0#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (97)
c0#(c0(c0(a0(x1)))) b0#(c1(c0(a0(x1)))) (98)
c0#(c0(b0(c1(x1)))) c2#(x1) (99)
c0#(c0(b0(c1(x1)))) b0#(a1(a2(c2(x1)))) (100)
c0#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (101)
c0#(c0(b0(c1(x1)))) a2#(c2(x1)) (102)
c0#(c0(b0(b1(x1)))) b0#(a1(a2(b2(x1)))) (103)
c0#(c0(b0(b1(x1)))) b2#(x1) (104)
c0#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (105)
c0#(c0(b0(b1(x1)))) a2#(b2(x1)) (106)
c0#(c0(b0(a1(x1)))) b0#(a1(a2(a2(x1)))) (107)
c0#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (108)
c0#(c0(b0(a1(x1)))) a2#(x1) (109)
c0#(c0(b0(a1(x1)))) a2#(a2(x1)) (110)
c1#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (111)
c1#(c0(c0(c0(x1)))) b1#(c1(c0(c0(x1)))) (112)
c1#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (113)
c1#(c0(c0(b0(x1)))) b1#(c1(c0(b0(x1)))) (114)
c1#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (115)
c1#(c0(c0(a0(x1)))) b1#(c1(c0(a0(x1)))) (116)
c1#(c0(b0(c1(x1)))) c2#(x1) (117)
c1#(c0(b0(c1(x1)))) b1#(a1(a2(c2(x1)))) (118)
c1#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (119)
c1#(c0(b0(c1(x1)))) a2#(c2(x1)) (120)
c1#(c0(b0(b1(x1)))) b1#(a1(a2(b2(x1)))) (121)
c1#(c0(b0(b1(x1)))) b2#(x1) (122)
c1#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (123)
c1#(c0(b0(b1(x1)))) a2#(b2(x1)) (124)
c1#(c0(b0(a1(x1)))) b1#(a1(a2(a2(x1)))) (125)
c1#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (126)
c1#(c0(b0(a1(x1)))) a2#(x1) (127)
c1#(c0(b0(a1(x1)))) a2#(a2(x1)) (128)
c2#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (129)
c2#(c0(c0(c0(x1)))) b2#(c1(c0(c0(x1)))) (130)
c2#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (131)
c2#(c0(c0(b0(x1)))) b2#(c1(c0(b0(x1)))) (132)
c2#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (133)
c2#(c0(c0(a0(x1)))) b2#(c1(c0(a0(x1)))) (134)
c2#(c0(b0(c1(x1)))) c2#(x1) (135)
c2#(c0(b0(c1(x1)))) b2#(a1(a2(c2(x1)))) (136)
c2#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (137)
c2#(c0(b0(c1(x1)))) a2#(c2(x1)) (138)
c2#(c0(b0(b1(x1)))) b2#(x1) (139)
c2#(c0(b0(b1(x1)))) b2#(a1(a2(b2(x1)))) (140)
c2#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (141)
c2#(c0(b0(b1(x1)))) a2#(b2(x1)) (142)
c2#(c0(b0(a1(x1)))) b2#(a1(a2(a2(x1)))) (143)
c2#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (144)
c2#(c0(b0(a1(x1)))) a2#(x1) (145)
c2#(c0(b0(a1(x1)))) a2#(a2(x1)) (146)
b0#(c1(a0(a2(x1)))) c0#(c0(c0(a0(x1)))) (147)
b0#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (148)
b0#(c1(a0(a2(x1)))) c0#(a0(x1)) (149)
b1#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (150)
b1#(c1(a0(a2(x1)))) c0#(a0(x1)) (151)
b1#(c1(a0(a2(x1)))) c1#(c0(c0(a0(x1)))) (152)
b2#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (153)
b2#(c1(a0(a2(x1)))) c0#(a0(x1)) (154)
b2#(c1(a0(a2(x1)))) c2#(c0(c0(a0(x1)))) (155)
a1#(c2(b0(c1(x1)))) c1#(b0(a1(c2(x1)))) (156)
a1#(c2(b0(c1(x1)))) c2#(x1) (157)
a1#(c2(b0(c1(x1)))) b0#(a1(c2(x1))) (158)
a1#(c2(b0(c1(x1)))) a1#(c2(x1)) (159)
a1#(c2(b0(b1(x1)))) c1#(b0(a1(b2(x1)))) (160)
a1#(c2(b0(b1(x1)))) b0#(a1(b2(x1))) (161)
a1#(c2(b0(b1(x1)))) b2#(x1) (162)
a1#(c2(b0(b1(x1)))) a1#(b2(x1)) (163)
a1#(c2(b0(a1(x1)))) c1#(b0(a1(a2(x1)))) (164)
a1#(c2(b0(a1(x1)))) b0#(a1(a2(x1))) (165)
a1#(c2(b0(a1(x1)))) a1#(a2(x1)) (166)
a1#(c2(b0(a1(x1)))) a2#(x1) (167)
a2#(c2(b0(c1(x1)))) c2#(x1) (168)
a2#(c2(b0(c1(x1)))) c2#(b0(a1(c2(x1)))) (169)
a2#(c2(b0(c1(x1)))) b0#(a1(c2(x1))) (170)
a2#(c2(b0(c1(x1)))) a1#(c2(x1)) (171)
a2#(c2(b0(b1(x1)))) c2#(b0(a1(b2(x1)))) (172)
a2#(c2(b0(b1(x1)))) b0#(a1(b2(x1))) (173)
a2#(c2(b0(b1(x1)))) b2#(x1) (174)
a2#(c2(b0(b1(x1)))) a1#(b2(x1)) (175)
a2#(c2(b0(a1(x1)))) c2#(b0(a1(a2(x1)))) (176)
a2#(c2(b0(a1(x1)))) b0#(a1(a2(x1))) (177)
a2#(c2(b0(a1(x1)))) a1#(a2(x1)) (178)
a2#(c2(b0(a1(x1)))) a2#(x1) (179)

1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
2
[c1(x1)] = x1 +
2
[c2(x1)] = x1 +
2
[b0(x1)] = x1 +
2
[b1(x1)] = x1 +
2
[b2(x1)] = x1 +
2
[a0(x1)] = x1 +
0
[a1(x1)] = x1 +
2
[a2(x1)] = x1 +
2
[c0#(x1)] = x1 +
1
[c1#(x1)] = x1 +
1
[c2#(x1)] = x1 +
1
[b0#(x1)] = x1 +
1
[b1#(x1)] = x1 +
1
[b2#(x1)] = x1 +
1
[a1#(x1)] = x1 +
2
[a2#(x1)] = x1 +
2
together with the usable rules
b2(c1(a0(a2(x1)))) c2(c0(c0(a0(x1)))) (66)
b0(c1(a0(a2(x1)))) c0(c0(c0(a0(x1)))) (67)
b1(c1(a0(a2(x1)))) c1(c0(c0(a0(x1)))) (68)
c2(c0(b0(a1(x1)))) b2(a1(a2(a2(x1)))) (69)
c0(c0(b0(a1(x1)))) b0(a1(a2(a2(x1)))) (70)
c1(c0(b0(a1(x1)))) b1(a1(a2(a2(x1)))) (71)
c2(c0(b0(c1(x1)))) b2(a1(a2(c2(x1)))) (72)
c0(c0(b0(c1(x1)))) b0(a1(a2(c2(x1)))) (73)
c1(c0(b0(c1(x1)))) b1(a1(a2(c2(x1)))) (74)
c2(c0(b0(b1(x1)))) b2(a1(a2(b2(x1)))) (75)
c0(c0(b0(b1(x1)))) b0(a1(a2(b2(x1)))) (76)
c1(c0(b0(b1(x1)))) b1(a1(a2(b2(x1)))) (77)
a2(c2(b0(a1(x1)))) c2(b0(a1(a2(x1)))) (78)
a1(c2(b0(a1(x1)))) c1(b0(a1(a2(x1)))) (79)
a2(c2(b0(c1(x1)))) c2(b0(a1(c2(x1)))) (80)
a1(c2(b0(c1(x1)))) c1(b0(a1(c2(x1)))) (81)
a2(c2(b0(b1(x1)))) c2(b0(a1(b2(x1)))) (82)
a1(c2(b0(b1(x1)))) c1(b0(a1(b2(x1)))) (83)
c2(c0(c0(a0(x1)))) b2(c1(c0(a0(x1)))) (84)
c0(c0(c0(a0(x1)))) b0(c1(c0(a0(x1)))) (85)
c1(c0(c0(a0(x1)))) b1(c1(c0(a0(x1)))) (86)
c2(c0(c0(c0(x1)))) b2(c1(c0(c0(x1)))) (87)
c0(c0(c0(c0(x1)))) b0(c1(c0(c0(x1)))) (88)
c1(c0(c0(c0(x1)))) b1(c1(c0(c0(x1)))) (89)
c2(c0(c0(b0(x1)))) b2(c1(c0(b0(x1)))) (90)
c0(c0(c0(b0(x1)))) b0(c1(c0(b0(x1)))) (91)
c1(c0(c0(b0(x1)))) b1(c1(c0(b0(x1)))) (92)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
c0#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (93)
c0#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (95)
c0#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (97)
c0#(c0(b0(c1(x1)))) c2#(x1) (99)
c0#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (101)
c0#(c0(b0(c1(x1)))) a2#(c2(x1)) (102)
c0#(c0(b0(b1(x1)))) b2#(x1) (104)
c0#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (105)
c0#(c0(b0(b1(x1)))) a2#(b2(x1)) (106)
c0#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (108)
c0#(c0(b0(a1(x1)))) a2#(x1) (109)
c0#(c0(b0(a1(x1)))) a2#(a2(x1)) (110)
c1#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (111)
c1#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (113)
c1#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (115)
c1#(c0(b0(c1(x1)))) c2#(x1) (117)
c1#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (119)
c1#(c0(b0(c1(x1)))) a2#(c2(x1)) (120)
c1#(c0(b0(b1(x1)))) b2#(x1) (122)
c1#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (123)
c1#(c0(b0(b1(x1)))) a2#(b2(x1)) (124)
c1#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (126)
c1#(c0(b0(a1(x1)))) a2#(x1) (127)
c1#(c0(b0(a1(x1)))) a2#(a2(x1)) (128)
c2#(c0(c0(c0(x1)))) c1#(c0(c0(x1))) (129)
c2#(c0(c0(b0(x1)))) c1#(c0(b0(x1))) (131)
c2#(c0(c0(a0(x1)))) c1#(c0(a0(x1))) (133)
c2#(c0(b0(c1(x1)))) c2#(x1) (135)
c2#(c0(b0(c1(x1)))) a1#(a2(c2(x1))) (137)
c2#(c0(b0(c1(x1)))) a2#(c2(x1)) (138)
c2#(c0(b0(b1(x1)))) b2#(x1) (139)
c2#(c0(b0(b1(x1)))) a1#(a2(b2(x1))) (141)
c2#(c0(b0(b1(x1)))) a2#(b2(x1)) (142)
c2#(c0(b0(a1(x1)))) a1#(a2(a2(x1))) (144)
c2#(c0(b0(a1(x1)))) a2#(x1) (145)
c2#(c0(b0(a1(x1)))) a2#(a2(x1)) (146)
b0#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (148)
b0#(c1(a0(a2(x1)))) c0#(a0(x1)) (149)
b1#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (150)
b1#(c1(a0(a2(x1)))) c0#(a0(x1)) (151)
b2#(c1(a0(a2(x1)))) c0#(c0(a0(x1))) (153)
b2#(c1(a0(a2(x1)))) c0#(a0(x1)) (154)
a1#(c2(b0(c1(x1)))) c1#(b0(a1(c2(x1)))) (156)
a1#(c2(b0(c1(x1)))) c2#(x1) (157)
a1#(c2(b0(c1(x1)))) b0#(a1(c2(x1))) (158)
a1#(c2(b0(c1(x1)))) a1#(c2(x1)) (159)
a1#(c2(b0(b1(x1)))) c1#(b0(a1(b2(x1)))) (160)
a1#(c2(b0(b1(x1)))) b0#(a1(b2(x1))) (161)
a1#(c2(b0(b1(x1)))) b2#(x1) (162)
a1#(c2(b0(b1(x1)))) a1#(b2(x1)) (163)
a1#(c2(b0(a1(x1)))) c1#(b0(a1(a2(x1)))) (164)
a1#(c2(b0(a1(x1)))) b0#(a1(a2(x1))) (165)
a1#(c2(b0(a1(x1)))) a1#(a2(x1)) (166)
a1#(c2(b0(a1(x1)))) a2#(x1) (167)
a2#(c2(b0(c1(x1)))) c2#(x1) (168)
a2#(c2(b0(c1(x1)))) c2#(b0(a1(c2(x1)))) (169)
a2#(c2(b0(c1(x1)))) b0#(a1(c2(x1))) (170)
a2#(c2(b0(c1(x1)))) a1#(c2(x1)) (171)
a2#(c2(b0(b1(x1)))) c2#(b0(a1(b2(x1)))) (172)
a2#(c2(b0(b1(x1)))) b0#(a1(b2(x1))) (173)
a2#(c2(b0(b1(x1)))) b2#(x1) (174)
a2#(c2(b0(b1(x1)))) a1#(b2(x1)) (175)
a2#(c2(b0(a1(x1)))) c2#(b0(a1(a2(x1)))) (176)
a2#(c2(b0(a1(x1)))) b0#(a1(a2(x1))) (177)
a2#(c2(b0(a1(x1)))) a1#(a2(x1)) (178)
a2#(c2(b0(a1(x1)))) a2#(x1) (179)
and no rules could be deleted.

1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.