Certification Problem

Input (TPDB SRS_Relative/Waldmann_19/random-168)

The rewrite relation of the following TRS is considered.

c(a(a(x1))) a(c(a(x1))) (1)
a(c(c(x1))) a(c(b(x1))) (2)
a(b(b(x1))) a(a(b(x1))) (3)
a(c(c(x1))) c(a(b(x1))) (4)
a(a(b(x1))) c(a(b(x1))) (5)
a(b(b(x1))) a(b(c(x1))) (6)
a(a(a(x1))) c(b(a(x1))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Closure Under Flat Contexts

Using the flat contexts

{c(), b(), a()}

We obtain the transformed TRS
c(c(a(a(x1)))) c(a(c(a(x1)))) (8)
c(a(c(c(x1)))) c(a(c(b(x1)))) (9)
c(a(b(b(x1)))) c(a(a(b(x1)))) (10)
c(a(c(c(x1)))) c(c(a(b(x1)))) (11)
c(a(a(b(x1)))) c(c(a(b(x1)))) (12)
c(a(b(b(x1)))) c(a(b(c(x1)))) (13)
c(a(a(a(x1)))) c(c(b(a(x1)))) (14)
b(c(a(a(x1)))) b(a(c(a(x1)))) (15)
b(a(c(c(x1)))) b(a(c(b(x1)))) (16)
b(a(b(b(x1)))) b(a(a(b(x1)))) (17)
b(a(c(c(x1)))) b(c(a(b(x1)))) (18)
b(a(a(b(x1)))) b(c(a(b(x1)))) (19)
b(a(b(b(x1)))) b(a(b(c(x1)))) (20)
b(a(a(a(x1)))) b(c(b(a(x1)))) (21)
a(c(a(a(x1)))) a(a(c(a(x1)))) (22)
a(a(c(c(x1)))) a(a(c(b(x1)))) (23)
a(a(b(b(x1)))) a(a(a(b(x1)))) (24)
a(a(c(c(x1)))) a(c(a(b(x1)))) (25)
a(a(a(b(x1)))) a(c(a(b(x1)))) (26)
a(a(b(b(x1)))) a(a(b(c(x1)))) (27)
a(a(a(a(x1)))) a(c(b(a(x1)))) (28)

1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):

[c(x1)] = 3x1 + 0
[b(x1)] = 3x1 + 1
[a(x1)] = 3x1 + 2

We obtain the labeled TRS
c0(c2(a2(a0(x1)))) c2(a0(c2(a0(x1)))) (29)
c0(c2(a2(a2(x1)))) c2(a0(c2(a2(x1)))) (30)
c0(c2(a2(a1(x1)))) c2(a0(c2(a1(x1)))) (31)
a0(c2(a2(a0(x1)))) a2(a0(c2(a0(x1)))) (32)
a0(c2(a2(a2(x1)))) a2(a0(c2(a2(x1)))) (33)
a0(c2(a2(a1(x1)))) a2(a0(c2(a1(x1)))) (34)
b0(c2(a2(a0(x1)))) b2(a0(c2(a0(x1)))) (35)
b0(c2(a2(a2(x1)))) b2(a0(c2(a2(x1)))) (36)
b0(c2(a2(a1(x1)))) b2(a0(c2(a1(x1)))) (37)
c2(a0(c0(c0(x1)))) c2(a0(c1(b0(x1)))) (38)
c2(a0(c0(c2(x1)))) c2(a0(c1(b2(x1)))) (39)
c2(a0(c0(c1(x1)))) c2(a0(c1(b1(x1)))) (40)
a2(a0(c0(c0(x1)))) a2(a0(c1(b0(x1)))) (41)
a2(a0(c0(c2(x1)))) a2(a0(c1(b2(x1)))) (42)
a2(a0(c0(c1(x1)))) a2(a0(c1(b1(x1)))) (43)
b2(a0(c0(c0(x1)))) b2(a0(c1(b0(x1)))) (44)
b2(a0(c0(c2(x1)))) b2(a0(c1(b2(x1)))) (45)
b2(a0(c0(c1(x1)))) b2(a0(c1(b1(x1)))) (46)
c2(a1(b1(b0(x1)))) c2(a2(a1(b0(x1)))) (47)
c2(a1(b1(b2(x1)))) c2(a2(a1(b2(x1)))) (48)
c2(a1(b1(b1(x1)))) c2(a2(a1(b1(x1)))) (49)
a2(a1(b1(b0(x1)))) a2(a2(a1(b0(x1)))) (50)
a2(a1(b1(b2(x1)))) a2(a2(a1(b2(x1)))) (51)
a2(a1(b1(b1(x1)))) a2(a2(a1(b1(x1)))) (52)
b2(a1(b1(b0(x1)))) b2(a2(a1(b0(x1)))) (53)
b2(a1(b1(b2(x1)))) b2(a2(a1(b2(x1)))) (54)
b2(a1(b1(b1(x1)))) b2(a2(a1(b1(x1)))) (55)
c2(a0(c0(c0(x1)))) c0(c2(a1(b0(x1)))) (56)
c2(a0(c0(c2(x1)))) c0(c2(a1(b2(x1)))) (57)
c2(a0(c0(c1(x1)))) c0(c2(a1(b1(x1)))) (58)
a2(a0(c0(c0(x1)))) a0(c2(a1(b0(x1)))) (59)
a2(a0(c0(c2(x1)))) a0(c2(a1(b2(x1)))) (60)
a2(a0(c0(c1(x1)))) a0(c2(a1(b1(x1)))) (61)
b2(a0(c0(c0(x1)))) b0(c2(a1(b0(x1)))) (62)
b2(a0(c0(c2(x1)))) b0(c2(a1(b2(x1)))) (63)
b2(a0(c0(c1(x1)))) b0(c2(a1(b1(x1)))) (64)
c2(a2(a1(b0(x1)))) c0(c2(a1(b0(x1)))) (65)
c2(a2(a1(b2(x1)))) c0(c2(a1(b2(x1)))) (66)
c2(a2(a1(b1(x1)))) c0(c2(a1(b1(x1)))) (67)
a2(a2(a1(b0(x1)))) a0(c2(a1(b0(x1)))) (68)
a2(a2(a1(b2(x1)))) a0(c2(a1(b2(x1)))) (69)
a2(a2(a1(b1(x1)))) a0(c2(a1(b1(x1)))) (70)
b2(a2(a1(b0(x1)))) b0(c2(a1(b0(x1)))) (71)
b2(a2(a1(b2(x1)))) b0(c2(a1(b2(x1)))) (72)
b2(a2(a1(b1(x1)))) b0(c2(a1(b1(x1)))) (73)
c2(a1(b1(b0(x1)))) c2(a1(b0(c0(x1)))) (74)
c2(a1(b1(b2(x1)))) c2(a1(b0(c2(x1)))) (75)
c2(a1(b1(b1(x1)))) c2(a1(b0(c1(x1)))) (76)
a2(a1(b1(b0(x1)))) a2(a1(b0(c0(x1)))) (77)
a2(a1(b1(b2(x1)))) a2(a1(b0(c2(x1)))) (78)
a2(a1(b1(b1(x1)))) a2(a1(b0(c1(x1)))) (79)
b2(a1(b1(b0(x1)))) b2(a1(b0(c0(x1)))) (80)
b2(a1(b1(b2(x1)))) b2(a1(b0(c2(x1)))) (81)
b2(a1(b1(b1(x1)))) b2(a1(b0(c1(x1)))) (82)
c2(a2(a2(a0(x1)))) c0(c1(b2(a0(x1)))) (83)
c2(a2(a2(a2(x1)))) c0(c1(b2(a2(x1)))) (84)
c2(a2(a2(a1(x1)))) c0(c1(b2(a1(x1)))) (85)
a2(a2(a2(a0(x1)))) a0(c1(b2(a0(x1)))) (86)
a2(a2(a2(a2(x1)))) a0(c1(b2(a2(x1)))) (87)
a2(a2(a2(a1(x1)))) a0(c1(b2(a1(x1)))) (88)
b2(a2(a2(a0(x1)))) b0(c1(b2(a0(x1)))) (89)
b2(a2(a2(a2(x1)))) b0(c1(b2(a2(x1)))) (90)
b2(a2(a2(a1(x1)))) b0(c1(b2(a1(x1)))) (91)

1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
3
[c1(x1)] = x1 +
1
[c2(x1)] = x1 +
0
[b0(x1)] = x1 +
1
[b1(x1)] = x1 +
3
[b2(x1)] = x1 +
0
[a0(x1)] = x1 +
3
[a1(x1)] = x1 +
0
[a2(x1)] = x1 +
3
all of the following rules can be deleted.
c0(c2(a2(a0(x1)))) c2(a0(c2(a0(x1)))) (29)
c0(c2(a2(a2(x1)))) c2(a0(c2(a2(x1)))) (30)
c0(c2(a2(a1(x1)))) c2(a0(c2(a1(x1)))) (31)
b0(c2(a2(a0(x1)))) b2(a0(c2(a0(x1)))) (35)
b0(c2(a2(a2(x1)))) b2(a0(c2(a2(x1)))) (36)
b0(c2(a2(a1(x1)))) b2(a0(c2(a1(x1)))) (37)
c2(a0(c0(c0(x1)))) c2(a0(c1(b0(x1)))) (38)
c2(a0(c0(c2(x1)))) c2(a0(c1(b2(x1)))) (39)
a2(a0(c0(c0(x1)))) a2(a0(c1(b0(x1)))) (41)
a2(a0(c0(c2(x1)))) a2(a0(c1(b2(x1)))) (42)
b2(a0(c0(c0(x1)))) b2(a0(c1(b0(x1)))) (44)
b2(a0(c0(c2(x1)))) b2(a0(c1(b2(x1)))) (45)
c2(a0(c0(c0(x1)))) c0(c2(a1(b0(x1)))) (56)
c2(a0(c0(c2(x1)))) c0(c2(a1(b2(x1)))) (57)
c2(a0(c0(c1(x1)))) c0(c2(a1(b1(x1)))) (58)
a2(a0(c0(c0(x1)))) a0(c2(a1(b0(x1)))) (59)
a2(a0(c0(c2(x1)))) a0(c2(a1(b2(x1)))) (60)
a2(a0(c0(c1(x1)))) a0(c2(a1(b1(x1)))) (61)
b2(a0(c0(c0(x1)))) b0(c2(a1(b0(x1)))) (62)
b2(a0(c0(c2(x1)))) b0(c2(a1(b2(x1)))) (63)
b2(a0(c0(c1(x1)))) b0(c2(a1(b1(x1)))) (64)
a2(a2(a1(b0(x1)))) a0(c2(a1(b0(x1)))) (68)
a2(a2(a1(b2(x1)))) a0(c2(a1(b2(x1)))) (69)
a2(a2(a1(b1(x1)))) a0(c2(a1(b1(x1)))) (70)
b2(a2(a1(b0(x1)))) b0(c2(a1(b0(x1)))) (71)
b2(a2(a1(b2(x1)))) b0(c2(a1(b2(x1)))) (72)
b2(a2(a1(b1(x1)))) b0(c2(a1(b1(x1)))) (73)
c2(a1(b1(b2(x1)))) c2(a1(b0(c2(x1)))) (75)
c2(a1(b1(b1(x1)))) c2(a1(b0(c1(x1)))) (76)
a2(a1(b1(b2(x1)))) a2(a1(b0(c2(x1)))) (78)
a2(a1(b1(b1(x1)))) a2(a1(b0(c1(x1)))) (79)
b2(a1(b1(b2(x1)))) b2(a1(b0(c2(x1)))) (81)
b2(a1(b1(b1(x1)))) b2(a1(b0(c1(x1)))) (82)
c2(a2(a2(a0(x1)))) c0(c1(b2(a0(x1)))) (83)
c2(a2(a2(a2(x1)))) c0(c1(b2(a2(x1)))) (84)
c2(a2(a2(a1(x1)))) c0(c1(b2(a1(x1)))) (85)
a2(a2(a2(a0(x1)))) a0(c1(b2(a0(x1)))) (86)
a2(a2(a2(a2(x1)))) a0(c1(b2(a2(x1)))) (87)
a2(a2(a2(a1(x1)))) a0(c1(b2(a1(x1)))) (88)
b2(a2(a2(a0(x1)))) b0(c1(b2(a0(x1)))) (89)
b2(a2(a2(a2(x1)))) b0(c1(b2(a2(x1)))) (90)
b2(a2(a2(a1(x1)))) b0(c1(b2(a1(x1)))) (91)

1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
a0(a2(c2(a0(x1)))) a0(c2(a0(a2(x1)))) (92)
a2(a2(c2(a0(x1)))) a2(c2(a0(a2(x1)))) (93)
a1(a2(c2(a0(x1)))) a1(c2(a0(a2(x1)))) (94)
c1(c0(a0(c2(x1)))) b1(c1(a0(c2(x1)))) (95)
c1(c0(a0(a2(x1)))) b1(c1(a0(a2(x1)))) (96)
c1(c0(a0(b2(x1)))) b1(c1(a0(b2(x1)))) (97)
b0(b1(a1(c2(x1)))) b0(a1(a2(c2(x1)))) (98)
b2(b1(a1(c2(x1)))) b2(a1(a2(c2(x1)))) (99)
b1(b1(a1(c2(x1)))) b1(a1(a2(c2(x1)))) (100)
b0(b1(a1(a2(x1)))) b0(a1(a2(a2(x1)))) (101)
b2(b1(a1(a2(x1)))) b2(a1(a2(a2(x1)))) (102)
b1(b1(a1(a2(x1)))) b1(a1(a2(a2(x1)))) (103)
b0(b1(a1(b2(x1)))) b0(a1(a2(b2(x1)))) (104)
b2(b1(a1(b2(x1)))) b2(a1(a2(b2(x1)))) (105)
b1(b1(a1(b2(x1)))) b1(a1(a2(b2(x1)))) (106)
b0(a1(a2(c2(x1)))) b0(a1(c2(c0(x1)))) (107)
b2(a1(a2(c2(x1)))) b2(a1(c2(c0(x1)))) (108)
b1(a1(a2(c2(x1)))) b1(a1(c2(c0(x1)))) (109)
b0(b1(a1(c2(x1)))) c0(b0(a1(c2(x1)))) (110)
b0(b1(a1(a2(x1)))) c0(b0(a1(a2(x1)))) (111)
b0(b1(a1(b2(x1)))) c0(b0(a1(b2(x1)))) (112)

1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c1#(c0(a0(c2(x1)))) c1#(a0(c2(x1))) (113)
c1#(c0(a0(c2(x1)))) b1#(c1(a0(c2(x1)))) (114)
c1#(c0(a0(b2(x1)))) c1#(a0(b2(x1))) (115)
c1#(c0(a0(b2(x1)))) b1#(c1(a0(b2(x1)))) (116)
c1#(c0(a0(a2(x1)))) c1#(a0(a2(x1))) (117)
c1#(c0(a0(a2(x1)))) b1#(c1(a0(a2(x1)))) (118)
b0#(b1(a1(c2(x1)))) b0#(a1(c2(x1))) (119)
b0#(b1(a1(c2(x1)))) b0#(a1(a2(c2(x1)))) (120)
b0#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (121)
b0#(b1(a1(c2(x1)))) a2#(c2(x1)) (122)
b0#(b1(a1(b2(x1)))) b0#(a1(b2(x1))) (123)
b0#(b1(a1(b2(x1)))) b0#(a1(a2(b2(x1)))) (124)
b0#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (125)
b0#(b1(a1(b2(x1)))) a2#(b2(x1)) (126)
b0#(b1(a1(a2(x1)))) b0#(a1(a2(x1))) (127)
b0#(b1(a1(a2(x1)))) b0#(a1(a2(a2(x1)))) (128)
b0#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (129)
b0#(b1(a1(a2(x1)))) a2#(a2(x1)) (130)
b0#(a1(a2(c2(x1)))) b0#(a1(c2(c0(x1)))) (131)
b0#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (132)
b1#(b1(a1(c2(x1)))) b1#(a1(a2(c2(x1)))) (133)
b1#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (134)
b1#(b1(a1(c2(x1)))) a2#(c2(x1)) (135)
b1#(b1(a1(b2(x1)))) b1#(a1(a2(b2(x1)))) (136)
b1#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (137)
b1#(b1(a1(b2(x1)))) a2#(b2(x1)) (138)
b1#(b1(a1(a2(x1)))) b1#(a1(a2(a2(x1)))) (139)
b1#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (140)
b1#(b1(a1(a2(x1)))) a2#(a2(x1)) (141)
b1#(a1(a2(c2(x1)))) b1#(a1(c2(c0(x1)))) (142)
b1#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (143)
b2#(b1(a1(c2(x1)))) b2#(a1(a2(c2(x1)))) (144)
b2#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (145)
b2#(b1(a1(c2(x1)))) a2#(c2(x1)) (146)
b2#(b1(a1(b2(x1)))) b2#(a1(a2(b2(x1)))) (147)
b2#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (148)
b2#(b1(a1(b2(x1)))) a2#(b2(x1)) (149)
b2#(b1(a1(a2(x1)))) b2#(a1(a2(a2(x1)))) (150)
b2#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (151)
b2#(b1(a1(a2(x1)))) a2#(a2(x1)) (152)
b2#(a1(a2(c2(x1)))) b2#(a1(c2(c0(x1)))) (153)
b2#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (154)
a0#(a2(c2(a0(x1)))) a0#(c2(a0(a2(x1)))) (155)
a0#(a2(c2(a0(x1)))) a0#(a2(x1)) (156)
a0#(a2(c2(a0(x1)))) a2#(x1) (157)
a1#(a2(c2(a0(x1)))) a0#(a2(x1)) (158)
a1#(a2(c2(a0(x1)))) a1#(c2(a0(a2(x1)))) (159)
a1#(a2(c2(a0(x1)))) a2#(x1) (160)
a2#(a2(c2(a0(x1)))) a0#(a2(x1)) (161)
a2#(a2(c2(a0(x1)))) a2#(x1) (162)
a2#(a2(c2(a0(x1)))) a2#(c2(a0(a2(x1)))) (163)

1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
1
[c1(x1)] = x1 +
0
[c2(x1)] = x1 +
1
[b0(x1)] = x1 +
0
[b1(x1)] = x1 +
1
[b2(x1)] = x1 +
0
[a0(x1)] = x1 +
1
[a1(x1)] = x1 +
1
[a2(x1)] = x1 +
1
[c1#(x1)] = x1 +
1
[b0#(x1)] = x1 +
1
[b1#(x1)] = x1 +
0
[b2#(x1)] = x1 +
1
[a0#(x1)] = x1 +
0
[a1#(x1)] = x1 +
0
[a2#(x1)] = x1 +
0
together with the usable rules
a0(a2(c2(a0(x1)))) a0(c2(a0(a2(x1)))) (92)
a2(a2(c2(a0(x1)))) a2(c2(a0(a2(x1)))) (93)
a1(a2(c2(a0(x1)))) a1(c2(a0(a2(x1)))) (94)
c1(c0(a0(c2(x1)))) b1(c1(a0(c2(x1)))) (95)
c1(c0(a0(a2(x1)))) b1(c1(a0(a2(x1)))) (96)
c1(c0(a0(b2(x1)))) b1(c1(a0(b2(x1)))) (97)
b0(b1(a1(c2(x1)))) b0(a1(a2(c2(x1)))) (98)
b2(b1(a1(c2(x1)))) b2(a1(a2(c2(x1)))) (99)
b1(b1(a1(c2(x1)))) b1(a1(a2(c2(x1)))) (100)
b0(b1(a1(a2(x1)))) b0(a1(a2(a2(x1)))) (101)
b2(b1(a1(a2(x1)))) b2(a1(a2(a2(x1)))) (102)
b1(b1(a1(a2(x1)))) b1(a1(a2(a2(x1)))) (103)
b0(b1(a1(b2(x1)))) b0(a1(a2(b2(x1)))) (104)
b2(b1(a1(b2(x1)))) b2(a1(a2(b2(x1)))) (105)
b1(b1(a1(b2(x1)))) b1(a1(a2(b2(x1)))) (106)
b0(a1(a2(c2(x1)))) b0(a1(c2(c0(x1)))) (107)
b2(a1(a2(c2(x1)))) b2(a1(c2(c0(x1)))) (108)
b1(a1(a2(c2(x1)))) b1(a1(c2(c0(x1)))) (109)
b0(b1(a1(c2(x1)))) c0(b0(a1(c2(x1)))) (110)
b0(b1(a1(a2(x1)))) c0(b0(a1(a2(x1)))) (111)
b0(b1(a1(b2(x1)))) c0(b0(a1(b2(x1)))) (112)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
c1#(c0(a0(c2(x1)))) c1#(a0(c2(x1))) (113)
c1#(c0(a0(c2(x1)))) b1#(c1(a0(c2(x1)))) (114)
c1#(c0(a0(b2(x1)))) c1#(a0(b2(x1))) (115)
c1#(c0(a0(b2(x1)))) b1#(c1(a0(b2(x1)))) (116)
c1#(c0(a0(a2(x1)))) c1#(a0(a2(x1))) (117)
c1#(c0(a0(a2(x1)))) b1#(c1(a0(a2(x1)))) (118)
b0#(b1(a1(c2(x1)))) b0#(a1(c2(x1))) (119)
b0#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (121)
b0#(b1(a1(c2(x1)))) a2#(c2(x1)) (122)
b0#(b1(a1(b2(x1)))) b0#(a1(b2(x1))) (123)
b0#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (125)
b0#(b1(a1(b2(x1)))) a2#(b2(x1)) (126)
b0#(b1(a1(a2(x1)))) b0#(a1(a2(x1))) (127)
b0#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (129)
b0#(b1(a1(a2(x1)))) a2#(a2(x1)) (130)
b0#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (132)
b1#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (134)
b1#(b1(a1(c2(x1)))) a2#(c2(x1)) (135)
b1#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (137)
b1#(b1(a1(b2(x1)))) a2#(b2(x1)) (138)
b1#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (140)
b1#(b1(a1(a2(x1)))) a2#(a2(x1)) (141)
b1#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (143)
b2#(b1(a1(c2(x1)))) a1#(a2(c2(x1))) (145)
b2#(b1(a1(c2(x1)))) a2#(c2(x1)) (146)
b2#(b1(a1(b2(x1)))) a1#(a2(b2(x1))) (148)
b2#(b1(a1(b2(x1)))) a2#(b2(x1)) (149)
b2#(b1(a1(a2(x1)))) a1#(a2(a2(x1))) (151)
b2#(b1(a1(a2(x1)))) a2#(a2(x1)) (152)
b2#(a1(a2(c2(x1)))) a1#(c2(c0(x1))) (154)
a0#(a2(c2(a0(x1)))) a0#(a2(x1)) (156)
a0#(a2(c2(a0(x1)))) a2#(x1) (157)
a1#(a2(c2(a0(x1)))) a0#(a2(x1)) (158)
a1#(a2(c2(a0(x1)))) a2#(x1) (160)
a2#(a2(c2(a0(x1)))) a0#(a2(x1)) (161)
a2#(a2(c2(a0(x1)))) a2#(x1) (162)
and no rules could be deleted.

1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 3 components.