The relative rewrite relation R/S is considered where R is the following TRS
a(c(b(x1))) | → | b(b(a(x1))) | (1) |
a(c(b(x1))) | → | a(c(c(x1))) | (2) |
b(b(b(x1))) | → | a(a(c(x1))) | (3) |
c(a(c(x1))) | → | b(b(b(x1))) | (4) |
and S is the following TRS.
b(a(b(x1))) | → | b(a(b(x1))) | (5) |
b(a(a(x1))) | → | b(a(b(x1))) | (6) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(a(c(b(x1)))) | → | c(b(b(a(x1)))) | (7) |
c(a(c(b(x1)))) | → | c(a(c(c(x1)))) | (8) |
c(b(b(b(x1)))) | → | c(a(a(c(x1)))) | (9) |
c(c(a(c(x1)))) | → | c(b(b(b(x1)))) | (10) |
c(b(a(a(x1)))) | → | c(b(a(b(x1)))) | (11) |
b(a(c(b(x1)))) | → | b(b(b(a(x1)))) | (12) |
b(a(c(b(x1)))) | → | b(a(c(c(x1)))) | (13) |
b(b(b(b(x1)))) | → | b(a(a(c(x1)))) | (14) |
b(c(a(c(x1)))) | → | b(b(b(b(x1)))) | (15) |
b(b(a(a(x1)))) | → | b(b(a(b(x1)))) | (16) |
a(a(c(b(x1)))) | → | a(b(b(a(x1)))) | (17) |
a(a(c(b(x1)))) | → | a(a(c(c(x1)))) | (18) |
a(b(b(b(x1)))) | → | a(a(a(c(x1)))) | (19) |
a(c(a(c(x1)))) | → | a(b(b(b(x1)))) | (20) |
a(b(a(a(x1)))) | → | a(b(a(b(x1)))) | (21) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSc(c(a(c(b(x1))))) | → | c(c(b(b(a(x1))))) | (22) |
c(c(a(c(b(x1))))) | → | c(c(a(c(c(x1))))) | (23) |
c(c(b(b(b(x1))))) | → | c(c(a(a(c(x1))))) | (24) |
c(c(c(a(c(x1))))) | → | c(c(b(b(b(x1))))) | (25) |
c(c(b(a(a(x1))))) | → | c(c(b(a(b(x1))))) | (26) |
c(b(a(c(b(x1))))) | → | c(b(b(b(a(x1))))) | (27) |
c(b(a(c(b(x1))))) | → | c(b(a(c(c(x1))))) | (28) |
c(b(b(b(b(x1))))) | → | c(b(a(a(c(x1))))) | (29) |
c(b(c(a(c(x1))))) | → | c(b(b(b(b(x1))))) | (30) |
c(b(b(a(a(x1))))) | → | c(b(b(a(b(x1))))) | (31) |
c(a(a(c(b(x1))))) | → | c(a(b(b(a(x1))))) | (32) |
c(a(a(c(b(x1))))) | → | c(a(a(c(c(x1))))) | (33) |
c(a(b(b(b(x1))))) | → | c(a(a(a(c(x1))))) | (34) |
c(a(c(a(c(x1))))) | → | c(a(b(b(b(x1))))) | (35) |
c(a(b(a(a(x1))))) | → | c(a(b(a(b(x1))))) | (36) |
b(c(a(c(b(x1))))) | → | b(c(b(b(a(x1))))) | (37) |
b(c(a(c(b(x1))))) | → | b(c(a(c(c(x1))))) | (38) |
b(c(b(b(b(x1))))) | → | b(c(a(a(c(x1))))) | (39) |
b(c(c(a(c(x1))))) | → | b(c(b(b(b(x1))))) | (40) |
b(c(b(a(a(x1))))) | → | b(c(b(a(b(x1))))) | (41) |
b(b(a(c(b(x1))))) | → | b(b(b(b(a(x1))))) | (42) |
b(b(a(c(b(x1))))) | → | b(b(a(c(c(x1))))) | (43) |
b(b(b(b(b(x1))))) | → | b(b(a(a(c(x1))))) | (44) |
b(b(c(a(c(x1))))) | → | b(b(b(b(b(x1))))) | (45) |
b(b(b(a(a(x1))))) | → | b(b(b(a(b(x1))))) | (46) |
b(a(a(c(b(x1))))) | → | b(a(b(b(a(x1))))) | (47) |
b(a(a(c(b(x1))))) | → | b(a(a(c(c(x1))))) | (48) |
b(a(b(b(b(x1))))) | → | b(a(a(a(c(x1))))) | (49) |
b(a(c(a(c(x1))))) | → | b(a(b(b(b(x1))))) | (50) |
b(a(b(a(a(x1))))) | → | b(a(b(a(b(x1))))) | (51) |
a(c(a(c(b(x1))))) | → | a(c(b(b(a(x1))))) | (52) |
a(c(a(c(b(x1))))) | → | a(c(a(c(c(x1))))) | (53) |
a(c(b(b(b(x1))))) | → | a(c(a(a(c(x1))))) | (54) |
a(c(c(a(c(x1))))) | → | a(c(b(b(b(x1))))) | (55) |
a(c(b(a(a(x1))))) | → | a(c(b(a(b(x1))))) | (56) |
a(b(a(c(b(x1))))) | → | a(b(b(b(a(x1))))) | (57) |
a(b(a(c(b(x1))))) | → | a(b(a(c(c(x1))))) | (58) |
a(b(b(b(b(x1))))) | → | a(b(a(a(c(x1))))) | (59) |
a(b(c(a(c(x1))))) | → | a(b(b(b(b(x1))))) | (60) |
a(b(b(a(a(x1))))) | → | a(b(b(a(b(x1))))) | (61) |
a(a(a(c(b(x1))))) | → | a(a(b(b(a(x1))))) | (62) |
a(a(a(c(b(x1))))) | → | a(a(a(c(c(x1))))) | (63) |
a(a(b(b(b(x1))))) | → | a(a(a(a(c(x1))))) | (64) |
a(a(c(a(c(x1))))) | → | a(a(b(b(b(x1))))) | (65) |
a(a(b(a(a(x1))))) | → | a(a(b(a(b(x1))))) | (66) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSThere are 135 ruless (increase limit for explicit display).
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
[c(x1)] | = | 3x1 + 0 |
[b(x1)] | = | 3x1 + 1 |
[a(x1)] | = | 3x1 + 2 |
There are 3645 ruless (increase limit for explicit display).
[c0(x1)] | = |
x1 +
|
||||
[c9(x1)] | = |
x1 +
|
||||
[c18(x1)] | = |
x1 +
|
||||
[c3(x1)] | = |
x1 +
|
||||
[c12(x1)] | = |
x1 +
|
||||
[c21(x1)] | = |
x1 +
|
||||
[c6(x1)] | = |
x1 +
|
||||
[c15(x1)] | = |
x1 +
|
||||
[c24(x1)] | = |
x1 +
|
||||
[c1(x1)] | = |
x1 +
|
||||
[c10(x1)] | = |
x1 +
|
||||
[c19(x1)] | = |
x1 +
|
||||
[c4(x1)] | = |
x1 +
|
||||
[c13(x1)] | = |
x1 +
|
||||
[c22(x1)] | = |
x1 +
|
||||
[c7(x1)] | = |
x1 +
|
||||
[c16(x1)] | = |
x1 +
|
||||
[c25(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[c11(x1)] | = |
x1 +
|
||||
[c20(x1)] | = |
x1 +
|
||||
[c5(x1)] | = |
x1 +
|
||||
[c14(x1)] | = |
x1 +
|
||||
[c23(x1)] | = |
x1 +
|
||||
[c8(x1)] | = |
x1 +
|
||||
[c17(x1)] | = |
x1 +
|
||||
[c26(x1)] | = |
x1 +
|
||||
[b0(x1)] | = |
x1 +
|
||||
[b9(x1)] | = |
x1 +
|
||||
[b18(x1)] | = |
x1 +
|
||||
[b3(x1)] | = |
x1 +
|
||||
[b12(x1)] | = |
x1 +
|
||||
[b21(x1)] | = |
x1 +
|
||||
[b6(x1)] | = |
x1 +
|
||||
[b15(x1)] | = |
x1 +
|
||||
[b24(x1)] | = |
x1 +
|
||||
[b1(x1)] | = |
x1 +
|
||||
[b10(x1)] | = |
x1 +
|
||||
[b19(x1)] | = |
x1 +
|
||||
[b4(x1)] | = |
x1 +
|
||||
[b13(x1)] | = |
x1 +
|
||||
[b22(x1)] | = |
x1 +
|
||||
[b7(x1)] | = |
x1 +
|
||||
[b16(x1)] | = |
x1 +
|
||||
[b25(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[b11(x1)] | = |
x1 +
|
||||
[b20(x1)] | = |
x1 +
|
||||
[b5(x1)] | = |
x1 +
|
||||
[b14(x1)] | = |
x1 +
|
||||
[b23(x1)] | = |
x1 +
|
||||
[b8(x1)] | = |
x1 +
|
||||
[b17(x1)] | = |
x1 +
|
||||
[b26(x1)] | = |
x1 +
|
||||
[a0(x1)] | = |
x1 +
|
||||
[a9(x1)] | = |
x1 +
|
||||
[a18(x1)] | = |
x1 +
|
||||
[a3(x1)] | = |
x1 +
|
||||
[a12(x1)] | = |
x1 +
|
||||
[a21(x1)] | = |
x1 +
|
||||
[a6(x1)] | = |
x1 +
|
||||
[a15(x1)] | = |
x1 +
|
||||
[a24(x1)] | = |
x1 +
|
||||
[a1(x1)] | = |
x1 +
|
||||
[a10(x1)] | = |
x1 +
|
||||
[a19(x1)] | = |
x1 +
|
||||
[a4(x1)] | = |
x1 +
|
||||
[a13(x1)] | = |
x1 +
|
||||
[a22(x1)] | = |
x1 +
|
||||
[a7(x1)] | = |
x1 +
|
||||
[a16(x1)] | = |
x1 +
|
||||
[a25(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[a11(x1)] | = |
x1 +
|
||||
[a20(x1)] | = |
x1 +
|
||||
[a5(x1)] | = |
x1 +
|
||||
[a14(x1)] | = |
x1 +
|
||||
[a23(x1)] | = |
x1 +
|
||||
[a8(x1)] | = |
x1 +
|
||||
[a17(x1)] | = |
x1 +
|
||||
[a26(x1)] | = |
x1 +
|
There are 3429 ruless (increase limit for explicit display).
[c9(x1)] | = |
|
||||||||
[c18(x1)] | = |
|
||||||||
[c12(x1)] | = |
|
||||||||
[c21(x1)] | = |
|
||||||||
[c6(x1)] | = |
|
||||||||
[c15(x1)] | = |
|
||||||||
[c24(x1)] | = |
|
||||||||
[c10(x1)] | = |
|
||||||||
[c19(x1)] | = |
|
||||||||
[c13(x1)] | = |
|
||||||||
[c22(x1)] | = |
|
||||||||
[c7(x1)] | = |
|
||||||||
[c16(x1)] | = |
|
||||||||
[c25(x1)] | = |
|
||||||||
[c2(x1)] | = |
|
||||||||
[c11(x1)] | = |
|
||||||||
[c20(x1)] | = |
|
||||||||
[c14(x1)] | = |
|
||||||||
[c23(x1)] | = |
|
||||||||
[c8(x1)] | = |
|
||||||||
[c17(x1)] | = |
|
||||||||
[c26(x1)] | = |
|
||||||||
[b9(x1)] | = |
|
||||||||
[b18(x1)] | = |
|
||||||||
[b12(x1)] | = |
|
||||||||
[b21(x1)] | = |
|
||||||||
[b6(x1)] | = |
|
||||||||
[b15(x1)] | = |
|
||||||||
[b24(x1)] | = |
|
||||||||
[b10(x1)] | = |
|
||||||||
[b19(x1)] | = |
|
||||||||
[b4(x1)] | = |
|
||||||||
[b13(x1)] | = |
|
||||||||
[b22(x1)] | = |
|
||||||||
[b7(x1)] | = |
|
||||||||
[b16(x1)] | = |
|
||||||||
[b25(x1)] | = |
|
||||||||
[b2(x1)] | = |
|
||||||||
[b11(x1)] | = |
|
||||||||
[b20(x1)] | = |
|
||||||||
[b14(x1)] | = |
|
||||||||
[b23(x1)] | = |
|
||||||||
[b8(x1)] | = |
|
||||||||
[b17(x1)] | = |
|
||||||||
[b26(x1)] | = |
|
||||||||
[a9(x1)] | = |
|
||||||||
[a18(x1)] | = |
|
||||||||
[a12(x1)] | = |
|
||||||||
[a21(x1)] | = |
|
||||||||
[a6(x1)] | = |
|
||||||||
[a15(x1)] | = |
|
||||||||
[a24(x1)] | = |
|
||||||||
[a10(x1)] | = |
|
||||||||
[a19(x1)] | = |
|
||||||||
[a13(x1)] | = |
|
||||||||
[a22(x1)] | = |
|
||||||||
[a7(x1)] | = |
|
||||||||
[a16(x1)] | = |
|
||||||||
[a25(x1)] | = |
|
||||||||
[a2(x1)] | = |
|
||||||||
[a11(x1)] | = |
|
||||||||
[a20(x1)] | = |
|
||||||||
[a14(x1)] | = |
|
||||||||
[a23(x1)] | = |
|
||||||||
[a8(x1)] | = |
|
||||||||
[a17(x1)] | = |
|
||||||||
[a26(x1)] | = |
|
There are 127 ruless (increase limit for explicit display).
[c9(x1)] | = |
x1 +
|
||||
[c18(x1)] | = |
x1 +
|
||||
[c12(x1)] | = |
x1 +
|
||||
[c21(x1)] | = |
x1 +
|
||||
[c6(x1)] | = |
x1 +
|
||||
[c15(x1)] | = |
x1 +
|
||||
[c24(x1)] | = |
x1 +
|
||||
[c10(x1)] | = |
x1 +
|
||||
[c19(x1)] | = |
x1 +
|
||||
[c13(x1)] | = |
x1 +
|
||||
[c22(x1)] | = |
x1 +
|
||||
[c7(x1)] | = |
x1 +
|
||||
[c16(x1)] | = |
x1 +
|
||||
[c25(x1)] | = |
x1 +
|
||||
[c2(x1)] | = |
x1 +
|
||||
[c11(x1)] | = |
x1 +
|
||||
[c20(x1)] | = |
x1 +
|
||||
[c14(x1)] | = |
x1 +
|
||||
[c23(x1)] | = |
x1 +
|
||||
[c8(x1)] | = |
x1 +
|
||||
[c17(x1)] | = |
x1 +
|
||||
[c26(x1)] | = |
x1 +
|
||||
[b9(x1)] | = |
x1 +
|
||||
[b18(x1)] | = |
x1 +
|
||||
[b12(x1)] | = |
x1 +
|
||||
[b21(x1)] | = |
x1 +
|
||||
[b6(x1)] | = |
x1 +
|
||||
[b15(x1)] | = |
x1 +
|
||||
[b24(x1)] | = |
x1 +
|
||||
[b10(x1)] | = |
x1 +
|
||||
[b19(x1)] | = |
x1 +
|
||||
[b4(x1)] | = |
x1 +
|
||||
[b13(x1)] | = |
x1 +
|
||||
[b22(x1)] | = |
x1 +
|
||||
[b7(x1)] | = |
x1 +
|
||||
[b16(x1)] | = |
x1 +
|
||||
[b25(x1)] | = |
x1 +
|
||||
[b2(x1)] | = |
x1 +
|
||||
[b11(x1)] | = |
x1 +
|
||||
[b20(x1)] | = |
x1 +
|
||||
[b14(x1)] | = |
x1 +
|
||||
[b23(x1)] | = |
x1 +
|
||||
[b8(x1)] | = |
x1 +
|
||||
[b17(x1)] | = |
x1 +
|
||||
[b26(x1)] | = |
x1 +
|
||||
[a9(x1)] | = |
x1 +
|
||||
[a18(x1)] | = |
x1 +
|
||||
[a12(x1)] | = |
x1 +
|
||||
[a21(x1)] | = |
x1 +
|
||||
[a6(x1)] | = |
x1 +
|
||||
[a15(x1)] | = |
x1 +
|
||||
[a24(x1)] | = |
x1 +
|
||||
[a10(x1)] | = |
x1 +
|
||||
[a19(x1)] | = |
x1 +
|
||||
[a13(x1)] | = |
x1 +
|
||||
[a22(x1)] | = |
x1 +
|
||||
[a7(x1)] | = |
x1 +
|
||||
[a16(x1)] | = |
x1 +
|
||||
[a25(x1)] | = |
x1 +
|
||||
[a2(x1)] | = |
x1 +
|
||||
[a11(x1)] | = |
x1 +
|
||||
[a20(x1)] | = |
x1 +
|
||||
[a14(x1)] | = |
x1 +
|
||||
[a23(x1)] | = |
x1 +
|
||||
[a8(x1)] | = |
x1 +
|
||||
[a17(x1)] | = |
x1 +
|
||||
[a26(x1)] | = |
x1 +
|
a26(a8(a11(a21(c7(b2(x1)))))) | → | a26(a8(a2(a18(c6(c2(x1)))))) | (935) |
a26(a8(a11(a21(c7(b11(x1)))))) | → | a26(a8(a2(a18(c6(c11(x1)))))) | (936) |
a20(a6(c11(a21(c7(b2(x1)))))) | → | a20(a6(c2(a18(c6(c2(x1)))))) | (962) |
a20(a6(c11(a21(c7(b11(x1)))))) | → | a20(a6(c2(a18(c6(c11(x1)))))) | (963) |
a23(a7(b11(a21(c7(b2(x1)))))) | → | a23(a7(b2(a18(c6(c2(x1)))))) | (989) |
a23(a7(b11(a21(c7(b11(x1)))))) | → | a23(a7(b2(a18(c6(c11(x1)))))) | (990) |
a24(c8(a11(a21(c7(b2(x1)))))) | → | a24(c8(a2(a18(c6(c2(x1)))))) | (1016) |
a24(c8(a11(a21(c7(b11(x1)))))) | → | a24(c8(a2(a18(c6(c11(x1)))))) | (1017) |
a18(c6(c11(a21(c7(b2(x1)))))) | → | a18(c6(c2(a18(c6(c2(x1)))))) | (1043) |
a18(c6(c11(a21(c7(b11(x1)))))) | → | a18(c6(c2(a18(c6(c11(x1)))))) | (1044) |
a21(c7(b11(a21(c7(b2(x1)))))) | → | a21(c7(b2(a18(c6(c2(x1)))))) | (1070) |
a21(c7(b11(a21(c7(b11(x1)))))) | → | a21(c7(b2(a18(c6(c11(x1)))))) | (1071) |
a25(b8(a11(a21(c7(b2(x1)))))) | → | a25(b8(a2(a18(c6(c2(x1)))))) | (1097) |
a25(b8(a11(a21(c7(b11(x1)))))) | → | a25(b8(a2(a18(c6(c11(x1)))))) | (1098) |
a19(b6(c11(a21(c7(b2(x1)))))) | → | a19(b6(c2(a18(c6(c2(x1)))))) | (1124) |
a19(b6(c11(a21(c7(b11(x1)))))) | → | a19(b6(c2(a18(c6(c11(x1)))))) | (1125) |
a22(b7(b11(a21(c7(b2(x1)))))) | → | a22(b7(b2(a18(c6(c2(x1)))))) | (1151) |
a22(b7(b11(a21(c7(b11(x1)))))) | → | a22(b7(b2(a18(c6(c11(x1)))))) | (1152) |
c26(a8(a11(a21(c7(b2(x1)))))) | → | c26(a8(a2(a18(c6(c2(x1)))))) | (1178) |
c26(a8(a11(a21(c7(b11(x1)))))) | → | c26(a8(a2(a18(c6(c11(x1)))))) | (1179) |
c20(a6(c11(a21(c7(b2(x1)))))) | → | c20(a6(c2(a18(c6(c2(x1)))))) | (1205) |
c20(a6(c11(a21(c7(b11(x1)))))) | → | c20(a6(c2(a18(c6(c11(x1)))))) | (1206) |
c23(a7(b11(a21(c7(b2(x1)))))) | → | c23(a7(b2(a18(c6(c2(x1)))))) | (1232) |
c23(a7(b11(a21(c7(b11(x1)))))) | → | c23(a7(b2(a18(c6(c11(x1)))))) | (1233) |
c24(c8(a11(a21(c7(b2(x1)))))) | → | c24(c8(a2(a18(c6(c2(x1)))))) | (1259) |
c24(c8(a11(a21(c7(b11(x1)))))) | → | c24(c8(a2(a18(c6(c11(x1)))))) | (1260) |
c18(c6(c11(a21(c7(b2(x1)))))) | → | c18(c6(c2(a18(c6(c2(x1)))))) | (1286) |
c18(c6(c11(a21(c7(b11(x1)))))) | → | c18(c6(c2(a18(c6(c11(x1)))))) | (1287) |
c21(c7(b11(a21(c7(b2(x1)))))) | → | c21(c7(b2(a18(c6(c2(x1)))))) | (1313) |
c21(c7(b11(a21(c7(b11(x1)))))) | → | c21(c7(b2(a18(c6(c11(x1)))))) | (1314) |
c25(b8(a11(a21(c7(b2(x1)))))) | → | c25(b8(a2(a18(c6(c2(x1)))))) | (1340) |
c25(b8(a11(a21(c7(b11(x1)))))) | → | c25(b8(a2(a18(c6(c11(x1)))))) | (1341) |
c19(b6(c11(a21(c7(b2(x1)))))) | → | c19(b6(c2(a18(c6(c2(x1)))))) | (1367) |
c19(b6(c11(a21(c7(b11(x1)))))) | → | c19(b6(c2(a18(c6(c11(x1)))))) | (1368) |
c22(b7(b11(a21(c7(b2(x1)))))) | → | c22(b7(b2(a18(c6(c2(x1)))))) | (1394) |
c22(b7(b11(a21(c7(b11(x1)))))) | → | c22(b7(b2(a18(c6(c11(x1)))))) | (1395) |
b26(a8(a11(a21(c7(b2(x1)))))) | → | b26(a8(a2(a18(c6(c2(x1)))))) | (1421) |
b26(a8(a11(a21(c7(b11(x1)))))) | → | b26(a8(a2(a18(c6(c11(x1)))))) | (1422) |
b20(a6(c11(a21(c7(b2(x1)))))) | → | b20(a6(c2(a18(c6(c2(x1)))))) | (1448) |
b20(a6(c11(a21(c7(b11(x1)))))) | → | b20(a6(c2(a18(c6(c11(x1)))))) | (1449) |
b23(a7(b11(a21(c7(b2(x1)))))) | → | b23(a7(b2(a18(c6(c2(x1)))))) | (1475) |
b23(a7(b11(a21(c7(b11(x1)))))) | → | b23(a7(b2(a18(c6(c11(x1)))))) | (1476) |
b24(c8(a11(a21(c7(b2(x1)))))) | → | b24(c8(a2(a18(c6(c2(x1)))))) | (1502) |
b24(c8(a11(a21(c7(b11(x1)))))) | → | b24(c8(a2(a18(c6(c11(x1)))))) | (1503) |
b18(c6(c11(a21(c7(b2(x1)))))) | → | b18(c6(c2(a18(c6(c2(x1)))))) | (1529) |
b18(c6(c11(a21(c7(b11(x1)))))) | → | b18(c6(c2(a18(c6(c11(x1)))))) | (1530) |
b21(c7(b11(a21(c7(b2(x1)))))) | → | b21(c7(b2(a18(c6(c2(x1)))))) | (1556) |
b21(c7(b11(a21(c7(b11(x1)))))) | → | b21(c7(b2(a18(c6(c11(x1)))))) | (1557) |
b25(b8(a11(a21(c7(b2(x1)))))) | → | b25(b8(a2(a18(c6(c2(x1)))))) | (1583) |
b25(b8(a11(a21(c7(b11(x1)))))) | → | b25(b8(a2(a18(c6(c11(x1)))))) | (1584) |
b19(b6(c11(a21(c7(b2(x1)))))) | → | b19(b6(c2(a18(c6(c2(x1)))))) | (1610) |
b19(b6(c11(a21(c7(b11(x1)))))) | → | b19(b6(c2(a18(c6(c11(x1)))))) | (1611) |
b22(b7(b11(a21(c7(b2(x1)))))) | → | b22(b7(b2(a18(c6(c2(x1)))))) | (1637) |
b22(b7(b11(a21(c7(b11(x1)))))) | → | b22(b7(b2(a18(c6(c11(x1)))))) | (1638) |
a2(a18(c6(c2(a18(c6(x1)))))) | → | a11(a12(c13(b4(b19(b6(x1)))))) | (2426) |
a2(a18(c6(c11(a12(c13(x1)))))) | → | a11(a12(c13(b13(b13(b13(x1)))))) | (2442) |
c2(a18(c6(c2(a18(c6(x1)))))) | → | c11(a12(c13(b4(b19(b6(x1)))))) | (2669) |
c2(a18(c6(c11(a12(c13(x1)))))) | → | c11(a12(c13(b13(b13(b13(x1)))))) | (2685) |
b2(a18(c6(c2(a18(c6(x1)))))) | → | b11(a12(c13(b4(b19(b6(x1)))))) | (2912) |
b2(a18(c6(c11(a12(c13(x1)))))) | → | b11(a12(c13(b13(b13(b13(x1)))))) | (2928) |
b4(b19(b6(c2(a18(c6(x1)))))) | → | b13(b13(b13(b4(b19(b6(x1)))))) | (3101) |
b4(b19(b6(c11(a12(c13(x1)))))) | → | b13(b13(b13(b13(b13(b13(x1)))))) | (3117) |
a17(a23(a25(b17(a14(a22(x1)))))) | → | a17(a23(a16(b14(a13(b22(x1)))))) | (3142) |
a11(a21(c25(b17(a14(a22(x1)))))) | → | a11(a21(c16(b14(a13(b22(x1)))))) | (3169) |
a14(a22(b25(b17(a14(a22(x1)))))) | → | a14(a22(b16(b14(a13(b22(x1)))))) | (3196) |
a15(c23(a25(b17(a14(a22(x1)))))) | → | a15(c23(a16(b14(a13(b22(x1)))))) | (3223) |
a9(c21(c25(b17(a14(a22(x1)))))) | → | a9(c21(c16(b14(a13(b22(x1)))))) | (3250) |
a12(c22(b25(b17(a14(a22(x1)))))) | → | a12(c22(b16(b14(a13(b22(x1)))))) | (3277) |
a16(b23(a25(b17(a14(a22(x1)))))) | → | a16(b23(a16(b14(a13(b22(x1)))))) | (3304) |
a10(b21(c25(b17(a14(a22(x1)))))) | → | a10(b21(c16(b14(a13(b22(x1)))))) | (3331) |
a13(b22(b25(b17(a14(a22(x1)))))) | → | a13(b22(b16(b14(a13(b22(x1)))))) | (3358) |
c17(a23(a25(b17(a14(a22(x1)))))) | → | c17(a23(a16(b14(a13(b22(x1)))))) | (3385) |
c11(a21(c25(b17(a14(a22(x1)))))) | → | c11(a21(c16(b14(a13(b22(x1)))))) | (3412) |
c14(a22(b25(b17(a14(a22(x1)))))) | → | c14(a22(b16(b14(a13(b22(x1)))))) | (3439) |
c15(c23(a25(b17(a14(a22(x1)))))) | → | c15(c23(a16(b14(a13(b22(x1)))))) | (3466) |
c9(c21(c25(b17(a14(a22(x1)))))) | → | c9(c21(c16(b14(a13(b22(x1)))))) | (3493) |
c12(c22(b25(b17(a14(a22(x1)))))) | → | c12(c22(b16(b14(a13(b22(x1)))))) | (3520) |
c16(b23(a25(b17(a14(a22(x1)))))) | → | c16(b23(a16(b14(a13(b22(x1)))))) | (3547) |
c10(b21(c25(b17(a14(a22(x1)))))) | → | c10(b21(c16(b14(a13(b22(x1)))))) | (3574) |
c13(b22(b25(b17(a14(a22(x1)))))) | → | c13(b22(b16(b14(a13(b22(x1)))))) | (3601) |
b17(a23(a25(b17(a14(a22(x1)))))) | → | b17(a23(a16(b14(a13(b22(x1)))))) | (3628) |
b11(a21(c25(b17(a14(a22(x1)))))) | → | b11(a21(c16(b14(a13(b22(x1)))))) | (3655) |
b14(a22(b25(b17(a14(a22(x1)))))) | → | b14(a22(b16(b14(a13(b22(x1)))))) | (3682) |
b15(c23(a25(b17(a14(a22(x1)))))) | → | b15(c23(a16(b14(a13(b22(x1)))))) | (3709) |
b9(c21(c25(b17(a14(a22(x1)))))) | → | b9(c21(c16(b14(a13(b22(x1)))))) | (3736) |
b12(c22(b25(b17(a14(a22(x1)))))) | → | b12(c22(b16(b14(a13(b22(x1)))))) | (3763) |
b16(b23(a25(b17(a14(a22(x1)))))) | → | b16(b23(a16(b14(a13(b22(x1)))))) | (3790) |
b10(b21(c25(b17(a14(a22(x1)))))) | → | b10(b21(c16(b14(a13(b22(x1)))))) | (3817) |
b13(b22(b25(b17(a14(a22(x1)))))) | → | b13(b22(b16(b14(a13(b22(x1)))))) | (3844) |
There are no rules in the TRS. Hence, it is terminating.