The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 1(0(0(2(x1)))) | (1) |
0(1(2(x1))) | → | 1(0(3(2(x1)))) | (2) |
0(1(2(x1))) | → | 1(0(0(3(2(x1))))) | (3) |
0(1(2(x1))) | → | 4(5(1(0(2(x1))))) | (4) |
0(5(2(x1))) | → | 5(0(0(2(x1)))) | (5) |
0(5(2(x1))) | → | 5(5(0(2(x1)))) | (6) |
0(5(2(x1))) | → | 5(0(3(3(2(x1))))) | (7) |
0(5(3(x1))) | → | 5(0(0(3(x1)))) | (8) |
0(5(3(x1))) | → | 5(5(0(3(x1)))) | (9) |
0(0(5(2(x1)))) | → | 0(2(0(3(5(5(x1)))))) | (10) |
0(1(2(3(x1)))) | → | 1(3(2(0(3(x1))))) | (11) |
0(1(2(4(x1)))) | → | 4(5(1(0(2(x1))))) | (12) |
0(1(4(2(x1)))) | → | 4(4(1(0(2(x1))))) | (13) |
0(4(1(2(x1)))) | → | 0(4(5(5(1(2(x1)))))) | (14) |
0(5(2(3(x1)))) | → | 5(0(3(2(3(x1))))) | (15) |
1(2(1(2(x1)))) | → | 1(1(5(2(2(x1))))) | (16) |
4(0(1(2(x1)))) | → | 4(1(0(0(2(x1))))) | (17) |
4(3(0(2(x1)))) | → | 4(0(0(3(2(x1))))) | (18) |
4(3(1(2(x1)))) | → | 3(2(5(4(1(1(x1)))))) | (19) |
0(0(1(2(3(x1))))) | → | 3(2(1(0(0(3(x1)))))) | (20) |
0(0(1(3(2(x1))))) | → | 1(0(2(0(0(3(x1)))))) | (21) |
0(0(1(3(3(x1))))) | → | 0(0(3(1(0(3(x1)))))) | (22) |
0(0(1(5(2(x1))))) | → | 1(5(0(0(3(2(x1)))))) | (23) |
0(1(2(1(2(x1))))) | → | 1(1(0(2(2(2(x1)))))) | (24) |
0(1(4(5(2(x1))))) | → | 4(1(0(3(2(5(x1)))))) | (25) |
0(5(0(1(2(x1))))) | → | 1(2(0(1(5(0(x1)))))) | (26) |
0(5(1(0(2(x1))))) | → | 1(5(0(0(3(2(x1)))))) | (27) |
0(5(1(4(3(x1))))) | → | 1(0(3(5(4(5(x1)))))) | (28) |
0(5(1(4(3(x1))))) | → | 4(5(5(1(0(3(x1)))))) | (29) |
0(5(3(1(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (30) |
0(5(3(1(2(x1))))) | → | 5(0(1(4(3(2(x1)))))) | (31) |
0(5(3(4(2(x1))))) | → | 3(2(0(3(5(4(x1)))))) | (32) |
0(5(4(3(2(x1))))) | → | 0(0(4(3(2(5(x1)))))) | (33) |
1(2(5(2(3(x1))))) | → | 5(1(2(3(3(2(x1)))))) | (34) |
1(3(0(5(2(x1))))) | → | 0(5(1(0(3(2(x1)))))) | (35) |
1(3(0(5(2(x1))))) | → | 1(3(0(0(2(5(x1)))))) | (36) |
1(3(3(4(2(x1))))) | → | 5(1(3(3(2(4(x1)))))) | (37) |
4(3(0(2(3(x1))))) | → | 0(3(3(3(2(4(x1)))))) | (38) |
4(3(0(5(3(x1))))) | → | 5(4(3(5(0(3(x1)))))) | (39) |
4(3(3(1(2(x1))))) | → | 1(3(0(4(3(2(x1)))))) | (40) |
5(2(3(0(2(x1))))) | → | 4(5(0(2(3(2(x1)))))) | (41) |
5(2(3(1(2(x1))))) | → | 2(3(2(4(1(5(x1)))))) | (42) |
5(3(0(2(2(x1))))) | → | 5(3(3(2(0(2(x1)))))) | (43) |
5(3(0(5(2(x1))))) | → | 5(5(3(0(2(4(x1)))))) | (44) |
5(3(1(2(2(x1))))) | → | 5(1(3(2(2(2(x1)))))) | (45) |
5(3(1(5(2(x1))))) | → | 2(5(5(1(5(3(x1)))))) | (46) |
{0(☐), 1(☐), 2(☐), 3(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 215 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 1290 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 + 16 |
[52(x1)] | = | 1 · x1 + 72 |
[20(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 + 6 |
[50(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 + 4 |
[22(x1)] | = | 1 · x1 + 61 |
[23(x1)] | = | 1 · x1 + 38 |
[53(x1)] | = | 1 · x1 + 48 |
[24(x1)] | = | 1 · x1 + 52 |
[54(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 + 4 |
[51(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 + 7 |
[12(x1)] | = | 1 · x1 + 65 |
[45(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 + 4 |
[01(x1)] | = | 1 · x1 + 3 |
[10(x1)] | = | 1 · x1 + 8 |
[43(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 + 37 |
[32(x1)] | = | 1 · x1 + 19 |
[13(x1)] | = | 1 · x1 + 46 |
[33(x1)] | = | 1 · x1 + 1 |
[31(x1)] | = | 1 · x1 + 41 |
[34(x1)] | = | 1 · x1 + 89 |
[42(x1)] | = | 1 · x1 + 18 |
[44(x1)] | = | 1 · x1 + 3 |
[14(x1)] | = | 1 · x1 + 50 |
There are 1273 ruless (increase limit for explicit display).
[20(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 + 1 |
[31(x1)] | = | 1 · x1 + 1 |
[51(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 + 1 |
[43(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
20(05(51(14(43(30(x1)))))) | → | 24(45(55(51(10(03(30(x1))))))) | (1120) |
20(05(51(14(43(35(x1)))))) | → | 24(45(55(51(10(03(35(x1))))))) | (1121) |
20(05(51(14(43(32(x1)))))) | → | 24(45(55(51(10(03(32(x1))))))) | (1122) |
20(05(51(14(43(33(x1)))))) | → | 24(45(55(51(10(03(33(x1))))))) | (1123) |
20(05(51(14(43(34(x1)))))) | → | 24(45(55(51(10(03(34(x1))))))) | (1124) |
20(05(51(14(43(31(x1)))))) | → | 24(45(55(51(10(03(31(x1))))))) | (1125) |
30(05(51(14(43(30(x1)))))) | → | 34(45(55(51(10(03(30(x1))))))) | (1126) |
30(05(51(14(43(35(x1)))))) | → | 34(45(55(51(10(03(35(x1))))))) | (1127) |
30(05(51(14(43(32(x1)))))) | → | 34(45(55(51(10(03(32(x1))))))) | (1128) |
30(05(51(14(43(33(x1)))))) | → | 34(45(55(51(10(03(33(x1))))))) | (1129) |
30(05(51(14(43(34(x1)))))) | → | 34(45(55(51(10(03(34(x1))))))) | (1130) |
30(05(51(14(43(31(x1)))))) | → | 34(45(55(51(10(03(31(x1))))))) | (1131) |
55(53(31(15(52(24(x1)))))) | → | 52(25(55(51(15(53(34(x1))))))) | (1538) |
20#(05(50(01(12(25(x1)))))) | → | 20#(01(15(50(05(x1))))) | (1540) |
30#(05(50(01(12(25(x1)))))) | → | 20#(01(15(50(05(x1))))) | (1541) |
55#(53(31(15(52(20(x1)))))) | → | 55#(51(15(53(30(x1))))) | (1542) |
55#(53(31(15(52(20(x1)))))) | → | 30#(x1) | (1543) |
55#(53(31(15(52(21(x1)))))) | → | 55#(51(15(53(31(x1))))) | (1544) |
The dependency pairs are split into 0 components.