The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 2(1(0(3(x1)))) | (1) |
0(1(2(x1))) | → | 2(1(3(0(x1)))) | (2) |
0(1(2(x1))) | → | 2(1(3(0(4(x1))))) | (3) |
0(1(2(x1))) | → | 2(1(3(4(0(x1))))) | (4) |
0(1(2(x1))) | → | 2(1(3(4(0(4(x1)))))) | (5) |
0(0(1(2(x1)))) | → | 0(2(1(0(3(x1))))) | (6) |
0(1(1(2(x1)))) | → | 1(0(4(1(2(x1))))) | (7) |
0(1(1(2(x1)))) | → | 1(2(1(0(3(x1))))) | (8) |
0(1(2(0(x1)))) | → | 2(1(0(3(0(3(x1)))))) | (9) |
0(1(2(5(x1)))) | → | 2(1(0(3(5(x1))))) | (10) |
0(1(2(5(x1)))) | → | 5(1(0(3(2(x1))))) | (11) |
0(1(4(2(x1)))) | → | 2(1(3(4(0(x1))))) | (12) |
0(1(4(2(x1)))) | → | 2(4(1(0(3(x1))))) | (13) |
0(1(4(2(x1)))) | → | 0(2(1(0(3(4(x1)))))) | (14) |
2(1(1(5(x1)))) | → | 2(5(1(4(1(x1))))) | (15) |
2(1(1(5(x1)))) | → | 5(1(3(2(1(x1))))) | (16) |
2(1(2(0(x1)))) | → | 2(2(1(0(3(x1))))) | (17) |
2(3(5(5(x1)))) | → | 5(1(0(3(2(5(x1)))))) | (18) |
2(5(3(2(x1)))) | → | 5(1(3(2(2(x1))))) | (19) |
5(1(2(0(x1)))) | → | 2(5(1(0(3(x1))))) | (20) |
0(1(0(1(2(x1))))) | → | 0(2(1(1(3(0(x1)))))) | (21) |
0(1(1(2(5(x1))))) | → | 0(1(3(5(1(2(x1)))))) | (22) |
0(1(1(4(2(x1))))) | → | 4(1(0(3(2(1(x1)))))) | (23) |
0(1(1(5(0(x1))))) | → | 0(1(0(5(4(1(x1)))))) | (24) |
0(1(1(5(4(x1))))) | → | 1(4(1(0(3(5(x1)))))) | (25) |
0(1(2(3(5(x1))))) | → | 0(1(3(4(5(2(x1)))))) | (26) |
0(1(2(3(5(x1))))) | → | 0(2(5(1(0(3(x1)))))) | (27) |
0(1(2(3(5(x1))))) | → | 1(0(3(0(2(5(x1)))))) | (28) |
0(1(2(3(5(x1))))) | → | 5(1(3(0(2(0(x1)))))) | (29) |
0(1(4(0(2(x1))))) | → | 4(0(1(3(0(2(x1)))))) | (30) |
0(1(4(0(2(x1))))) | → | 4(0(2(1(3(0(x1)))))) | (31) |
0(4(5(3(5(x1))))) | → | 5(1(0(3(4(5(x1)))))) | (32) |
2(1(0(1(5(x1))))) | → | 1(0(3(2(5(1(x1)))))) | (33) |
2(1(4(3(5(x1))))) | → | 1(3(5(4(4(2(x1)))))) | (34) |
2(1(4(3(5(x1))))) | → | 5(4(4(1(3(2(x1)))))) | (35) |
2(1(4(5(0(x1))))) | → | 2(4(1(0(3(5(x1)))))) | (36) |
2(2(3(5(0(x1))))) | → | 5(2(4(2(0(3(x1)))))) | (37) |
2(2(4(3(5(x1))))) | → | 5(1(3(4(2(2(x1)))))) | (38) |
2(3(1(1(2(x1))))) | → | 1(3(2(1(2(0(x1)))))) | (39) |
2(3(1(1(2(x1))))) | → | 4(1(2(2(1(3(x1)))))) | (40) |
2(3(2(0(5(x1))))) | → | 2(2(1(0(3(5(x1)))))) | (41) |
2(3(3(1(5(x1))))) | → | 1(3(5(1(3(2(x1)))))) | (42) |
2(5(0(3(5(x1))))) | → | 5(2(1(3(0(5(x1)))))) | (43) |
4(2(0(1(2(x1))))) | → | 4(2(2(1(3(0(x1)))))) | (44) |
5(0(1(2(2(x1))))) | → | 4(1(5(2(0(2(x1)))))) | (45) |
5(1(4(2(2(x1))))) | → | 5(1(3(2(4(2(x1)))))) | (46) |
5(1(4(3(2(x1))))) | → | 4(5(1(3(4(2(x1)))))) | (47) |
5(5(4(3(2(x1))))) | → | 5(1(3(4(5(2(x1)))))) | (48) |
There are 146 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(1(2(x1))) | → | 0#(4(x1)) | (54) |
0#(1(2(x1))) | → | 0#(x1) | (52) |
0#(1(2(x1))) | → | 4#(x1) | (55) |
4#(2(0(1(2(x1))))) | → | 0#(x1) | (181) |
0#(1(2(x1))) | → | 4#(0(x1)) | (57) |
0#(1(2(x1))) | → | 4#(0(4(x1))) | (59) |
0#(1(2(5(x1)))) | → | 2#(x1) | (74) |
2#(1(1(5(x1)))) | → | 2#(1(x1)) | (89) |
2#(1(0(1(5(x1))))) | → | 2#(5(1(x1))) | (142) |
2#(1(0(1(5(x1))))) | → | 5#(1(x1)) | (143) |
5#(1(4(2(2(x1))))) | → | 2#(4(2(x1))) | (187) |
2#(1(4(5(0(x1))))) | → | 5#(x1) | (154) |
5#(0(1(2(2(x1))))) | → | 5#(2(0(2(x1)))) | (183) |
5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (184) |
5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (185) |
0#(1(4(2(x1)))) | → | 4#(0(x1)) | (76) |
0#(1(4(2(x1)))) | → | 0#(x1) | (77) |
0#(1(4(2(x1)))) | → | 4#(x1) | (84) |
0#(1(0(1(2(x1))))) | → | 0#(x1) | (103) |
0#(1(1(2(5(x1))))) | → | 5#(1(2(x1))) | (105) |
5#(1(4(2(2(x1))))) | → | 4#(2(x1)) | (188) |
0#(1(1(2(5(x1))))) | → | 2#(x1) | (106) |
2#(3(5(5(x1)))) | → | 2#(5(x1)) | (95) |
2#(5(3(2(x1)))) | → | 2#(2(x1)) | (97) |
2#(2(4(3(5(x1))))) | → | 4#(2(2(x1))) | (161) |
2#(2(4(3(5(x1))))) | → | 2#(2(x1)) | (162) |
2#(2(4(3(5(x1))))) | → | 2#(x1) | (163) |
2#(1(4(3(5(x1))))) | → | 5#(4(4(2(x1)))) | (144) |
2#(1(4(3(5(x1))))) | → | 4#(4(2(x1))) | (145) |
2#(1(4(3(5(x1))))) | → | 4#(2(x1)) | (146) |
2#(1(4(3(5(x1))))) | → | 2#(x1) | (147) |
2#(3(1(1(2(x1))))) | → | 2#(1(2(0(x1)))) | (164) |
2#(3(1(1(2(x1))))) | → | 2#(0(x1)) | (165) |
2#(3(1(1(2(x1))))) | → | 0#(x1) | (166) |
0#(1(1(4(2(x1))))) | → | 2#(1(x1)) | (109) |
0#(1(1(5(4(x1))))) | → | 5#(x1) | (116) |
5#(1(4(3(2(x1))))) | → | 4#(2(x1)) | (191) |
5#(5(4(3(2(x1))))) | → | 4#(5(2(x1))) | (193) |
5#(5(4(3(2(x1))))) | → | 5#(2(x1)) | (194) |
0#(1(2(3(5(x1))))) | → | 4#(5(2(x1))) | (118) |
0#(1(2(3(5(x1))))) | → | 5#(2(x1)) | (119) |
0#(1(2(3(5(x1))))) | → | 2#(x1) | (120) |
2#(3(3(1(5(x1))))) | → | 2#(x1) | (174) |
2#(5(0(3(5(x1))))) | → | 0#(5(x1)) | (177) |
0#(1(4(0(2(x1))))) | → | 0#(x1) | (137) |
0#(1(2(3(5(x1))))) | → | 0#(2(5(x1))) | (126) |
0#(1(2(3(5(x1))))) | → | 2#(5(x1)) | (127) |
0#(1(2(3(5(x1))))) | → | 0#(2(0(x1))) | (129) |
0#(1(2(3(5(x1))))) | → | 2#(0(x1)) | (130) |
0#(1(2(3(5(x1))))) | → | 0#(x1) | (131) |
0#(4(5(3(5(x1))))) | → | 4#(5(x1)) | (140) |
[0#(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[4#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 + 1 · x1 |
[2#(x1)] | = | 1 · x1 |
[5#(x1)] | = | 1 + 1 · x1 |
[3(x1)] | = | 1 · x1 |
0#(1(2(5(x1)))) | → | 2#(x1) | (74) |
2#(1(1(5(x1)))) | → | 2#(1(x1)) | (89) |
5#(1(4(2(2(x1))))) | → | 2#(4(2(x1))) | (187) |
5#(0(1(2(2(x1))))) | → | 2#(0(2(x1))) | (184) |
5#(0(1(2(2(x1))))) | → | 0#(2(x1)) | (185) |
5#(1(4(2(2(x1))))) | → | 4#(2(x1)) | (188) |
0#(1(1(2(5(x1))))) | → | 2#(x1) | (106) |
2#(3(5(5(x1)))) | → | 2#(5(x1)) | (95) |
2#(5(3(2(x1)))) | → | 2#(2(x1)) | (97) |
2#(2(4(3(5(x1))))) | → | 4#(2(2(x1))) | (161) |
2#(2(4(3(5(x1))))) | → | 2#(2(x1)) | (162) |
2#(2(4(3(5(x1))))) | → | 2#(x1) | (163) |
2#(1(4(3(5(x1))))) | → | 4#(4(2(x1))) | (145) |
2#(1(4(3(5(x1))))) | → | 4#(2(x1)) | (146) |
2#(1(4(3(5(x1))))) | → | 2#(x1) | (147) |
5#(1(4(3(2(x1))))) | → | 4#(2(x1)) | (191) |
5#(5(4(3(2(x1))))) | → | 4#(5(2(x1))) | (193) |
5#(5(4(3(2(x1))))) | → | 5#(2(x1)) | (194) |
0#(1(2(3(5(x1))))) | → | 2#(x1) | (120) |
2#(3(3(1(5(x1))))) | → | 2#(x1) | (174) |
2#(5(0(3(5(x1))))) | → | 0#(5(x1)) | (177) |
0#(1(2(3(5(x1))))) | → | 0#(2(0(x1))) | (129) |
0#(1(2(3(5(x1))))) | → | 2#(0(x1)) | (130) |
0#(1(2(3(5(x1))))) | → | 0#(x1) | (131) |
0#(4(5(3(5(x1))))) | → | 4#(5(x1)) | (140) |
The dependency pairs are split into 3 components.
0#(1(2(x1))) | → | 0#(x1) | (52) |
0#(1(2(x1))) | → | 0#(4(x1)) | (54) |
0#(1(2(x1))) | → | 4#(x1) | (55) |
4#(2(0(1(2(x1))))) | → | 0#(x1) | (181) |
0#(1(2(x1))) | → | 4#(0(x1)) | (57) |
0#(1(2(x1))) | → | 4#(0(4(x1))) | (59) |
0#(1(4(2(x1)))) | → | 4#(0(x1)) | (76) |
0#(1(4(2(x1)))) | → | 0#(x1) | (77) |
0#(1(4(2(x1)))) | → | 4#(x1) | (84) |
0#(1(0(1(2(x1))))) | → | 0#(x1) | (103) |
0#(1(2(3(5(x1))))) | → | 4#(5(2(x1))) | (118) |
0#(1(2(3(5(x1))))) | → | 0#(2(5(x1))) | (126) |
0#(1(4(0(2(x1))))) | → | 0#(x1) | (137) |
[0#(x1)] | = | 1 + 1 · x1 |
[1(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 + 1 · x1 |
[4(x1)] | = | 1 · x1 |
[4#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
0#(1(2(x1))) | → | 0#(x1) | (52) |
0#(1(2(x1))) | → | 0#(4(x1)) | (54) |
0#(1(2(x1))) | → | 4#(x1) | (55) |
4#(2(0(1(2(x1))))) | → | 0#(x1) | (181) |
0#(1(2(x1))) | → | 4#(0(x1)) | (57) |
0#(1(2(x1))) | → | 4#(0(4(x1))) | (59) |
0#(1(4(2(x1)))) | → | 4#(0(x1)) | (76) |
0#(1(4(2(x1)))) | → | 0#(x1) | (77) |
0#(1(4(2(x1)))) | → | 4#(x1) | (84) |
0#(1(0(1(2(x1))))) | → | 0#(x1) | (103) |
0#(1(2(3(5(x1))))) | → | 4#(5(2(x1))) | (118) |
0#(1(4(0(2(x1))))) | → | 0#(x1) | (137) |
[0#(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 + 1 · x1 |
[2(x1)] | = | 1 |
[3(x1)] | = | 0 |
[5(x1)] | = | 0 |
[0(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 |
2(1(1(5(x1)))) | → | 2(5(1(4(1(x1))))) | (15) |
2(1(1(5(x1)))) | → | 5(1(3(2(1(x1))))) | (16) |
2(1(2(0(x1)))) | → | 2(2(1(0(3(x1))))) | (17) |
2(3(5(5(x1)))) | → | 5(1(0(3(2(5(x1)))))) | (18) |
2(5(3(2(x1)))) | → | 5(1(3(2(2(x1))))) | (19) |
2(1(0(1(5(x1))))) | → | 1(0(3(2(5(1(x1)))))) | (33) |
2(1(4(3(5(x1))))) | → | 1(3(5(4(4(2(x1)))))) | (34) |
2(1(4(3(5(x1))))) | → | 5(4(4(1(3(2(x1)))))) | (35) |
2(1(4(5(0(x1))))) | → | 2(4(1(0(3(5(x1)))))) | (36) |
2(2(3(5(0(x1))))) | → | 5(2(4(2(0(3(x1)))))) | (37) |
2(2(4(3(5(x1))))) | → | 5(1(3(4(2(2(x1)))))) | (38) |
2(3(1(1(2(x1))))) | → | 1(3(2(1(2(0(x1)))))) | (39) |
2(3(1(1(2(x1))))) | → | 4(1(2(2(1(3(x1)))))) | (40) |
2(3(2(0(5(x1))))) | → | 2(2(1(0(3(5(x1)))))) | (41) |
2(3(3(1(5(x1))))) | → | 1(3(5(1(3(2(x1)))))) | (42) |
2(5(0(3(5(x1))))) | → | 5(2(1(3(0(5(x1)))))) | (43) |
0#(1(2(3(5(x1))))) | → | 0#(2(5(x1))) | (126) |
There are no pairs anymore.
2#(1(0(1(5(x1))))) | → | 2#(5(1(x1))) | (142) |
[2#(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 + 1 · x1 |
[0(x1)] | = | 1 + 1 · x1 |
[5(x1)] | = | 1 |
[2(x1)] | = | 0 |
[3(x1)] | = | 0 |
[4(x1)] | = | 1 · x1 |
5(1(2(0(x1)))) | → | 2(5(1(0(3(x1))))) | (20) |
5(1(4(2(2(x1))))) | → | 5(1(3(2(4(2(x1)))))) | (46) |
5(1(4(3(2(x1))))) | → | 4(5(1(3(4(2(x1)))))) | (47) |
2#(1(0(1(5(x1))))) | → | 2#(5(1(x1))) | (142) |
There are no pairs anymore.
5#(0(1(2(2(x1))))) | → | 5#(2(0(2(x1)))) | (183) |
[5#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 + 1 · x1 |
[1(x1)] | = | 0 |
[2(x1)] | = | 0 |
[5(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 |
2(1(1(5(x1)))) | → | 2(5(1(4(1(x1))))) | (15) |
2(1(1(5(x1)))) | → | 5(1(3(2(1(x1))))) | (16) |
2(1(2(0(x1)))) | → | 2(2(1(0(3(x1))))) | (17) |
2(3(5(5(x1)))) | → | 5(1(0(3(2(5(x1)))))) | (18) |
2(5(3(2(x1)))) | → | 5(1(3(2(2(x1))))) | (19) |
2(1(0(1(5(x1))))) | → | 1(0(3(2(5(1(x1)))))) | (33) |
2(1(4(3(5(x1))))) | → | 1(3(5(4(4(2(x1)))))) | (34) |
2(1(4(3(5(x1))))) | → | 5(4(4(1(3(2(x1)))))) | (35) |
2(1(4(5(0(x1))))) | → | 2(4(1(0(3(5(x1)))))) | (36) |
2(2(3(5(0(x1))))) | → | 5(2(4(2(0(3(x1)))))) | (37) |
2(2(4(3(5(x1))))) | → | 5(1(3(4(2(2(x1)))))) | (38) |
2(3(1(1(2(x1))))) | → | 1(3(2(1(2(0(x1)))))) | (39) |
2(3(1(1(2(x1))))) | → | 4(1(2(2(1(3(x1)))))) | (40) |
2(3(2(0(5(x1))))) | → | 2(2(1(0(3(5(x1)))))) | (41) |
2(3(3(1(5(x1))))) | → | 1(3(5(1(3(2(x1)))))) | (42) |
2(5(0(3(5(x1))))) | → | 5(2(1(3(0(5(x1)))))) | (43) |
5#(0(1(2(2(x1))))) | → | 5#(2(0(2(x1)))) | (183) |
There are no pairs anymore.