The rewrite relation of the following TRS is considered.
0(0(1(x1))) | → | 2(0(3(3(0(1(x1)))))) | (1) |
0(1(0(x1))) | → | 0(1(3(4(0(3(x1)))))) | (2) |
0(1(0(x1))) | → | 2(0(3(0(1(4(x1)))))) | (3) |
0(1(1(x1))) | → | 0(3(1(3(1(x1))))) | (4) |
0(1(1(x1))) | → | 1(3(0(1(4(x1))))) | (5) |
0(1(1(x1))) | → | 0(1(3(1(3(1(x1)))))) | (6) |
0(1(1(x1))) | → | 1(3(2(1(3(0(x1)))))) | (7) |
0(1(1(x1))) | → | 1(3(3(1(4(0(x1)))))) | (8) |
0(1(1(x1))) | → | 3(0(3(1(5(1(x1)))))) | (9) |
0(1(1(x1))) | → | 5(0(3(1(5(1(x1)))))) | (10) |
0(5(0(x1))) | → | 3(0(3(5(0(x1))))) | (11) |
0(5(0(x1))) | → | 3(5(0(0(3(x1))))) | (12) |
0(5(0(x1))) | → | 5(0(3(0(2(x1))))) | (13) |
0(5(0(x1))) | → | 5(0(3(3(0(x1))))) | (14) |
0(5(0(x1))) | → | 4(5(0(3(3(0(x1)))))) | (15) |
0(5(0(x1))) | → | 4(5(0(3(5(0(x1)))))) | (16) |
0(5(0(x1))) | → | 5(3(0(1(3(0(x1)))))) | (17) |
2(0(0(x1))) | → | 0(3(0(3(2(x1))))) | (18) |
2(0(0(x1))) | → | 0(3(3(0(2(3(x1)))))) | (19) |
2(0(0(x1))) | → | 0(3(5(2(0(3(x1)))))) | (20) |
5(1(0(x1))) | → | 3(5(0(1(4(3(x1)))))) | (21) |
5(1(0(x1))) | → | 3(5(1(4(0(3(x1)))))) | (22) |
5(1(1(x1))) | → | 3(1(5(1(x1)))) | (23) |
5(1(1(x1))) | → | 1(3(1(3(5(x1))))) | (24) |
5(1(1(x1))) | → | 1(3(3(3(5(1(x1)))))) | (25) |
5(1(1(x1))) | → | 1(3(5(5(1(4(x1)))))) | (26) |
0(2(0(1(x1)))) | → | 0(2(3(3(0(1(x1)))))) | (27) |
0(5(1(0(x1)))) | → | 0(0(1(3(5(x1))))) | (28) |
0(5(4(0(x1)))) | → | 0(4(5(0(3(x1))))) | (29) |
2(0(2(0(x1)))) | → | 3(0(3(0(2(2(x1)))))) | (30) |
2(0(4(1(x1)))) | → | 2(3(0(1(4(4(x1)))))) | (31) |
2(0(5(0(x1)))) | → | 0(0(3(5(2(x1))))) | (32) |
2(2(4(1(x1)))) | → | 3(2(4(3(2(1(x1)))))) | (33) |
5(1(0(1(x1)))) | → | 0(5(1(4(3(1(x1)))))) | (34) |
5(1(1(0(x1)))) | → | 0(5(1(5(1(x1))))) | (35) |
5(1(2(0(x1)))) | → | 3(1(3(5(0(2(x1)))))) | (36) |
5(1(5(0(x1)))) | → | 5(3(5(0(1(x1))))) | (37) |
5(2(0(1(x1)))) | → | 5(1(0(3(2(x1))))) | (38) |
5(3(1(1(x1)))) | → | 5(3(1(3(1(5(x1)))))) | (39) |
5(4(1(1(x1)))) | → | 5(1(4(1(4(5(x1)))))) | (40) |
5(5(1(0(x1)))) | → | 5(0(5(1(3(x1))))) | (41) |
5(5(1(1(x1)))) | → | 5(1(3(5(0(1(x1)))))) | (42) |
0(2(4(1(0(x1))))) | → | 2(4(0(0(1(3(x1)))))) | (43) |
0(5(5(1(1(x1))))) | → | 5(1(3(5(0(1(x1)))))) | (44) |
2(2(2(4(1(x1))))) | → | 1(2(2(1(4(2(x1)))))) | (45) |
2(5(0(1(1(x1))))) | → | 5(1(2(0(1(3(x1)))))) | (46) |
5(0(2(4(1(x1))))) | → | 5(1(4(0(3(2(x1)))))) | (47) |
5(2(4(1(0(x1))))) | → | 0(2(3(4(5(1(x1)))))) | (48) |
5(3(0(4(1(x1))))) | → | 5(3(0(1(4(1(x1)))))) | (49) |
5(3(4(1(1(x1))))) | → | 1(4(3(5(2(1(x1)))))) | (50) |
1(0(0(x1))) | → | 1(0(3(3(0(2(x1)))))) | (51) |
0(1(0(x1))) | → | 3(0(4(3(1(0(x1)))))) | (52) |
0(1(0(x1))) | → | 4(1(0(3(0(2(x1)))))) | (53) |
1(1(0(x1))) | → | 1(3(1(3(0(x1))))) | (54) |
1(1(0(x1))) | → | 4(1(0(3(1(x1))))) | (55) |
1(1(0(x1))) | → | 1(3(1(3(1(0(x1)))))) | (56) |
1(1(0(x1))) | → | 0(3(1(2(3(1(x1)))))) | (57) |
1(1(0(x1))) | → | 0(4(1(3(3(1(x1)))))) | (58) |
1(1(0(x1))) | → | 1(5(1(3(0(3(x1)))))) | (59) |
1(1(0(x1))) | → | 1(5(1(3(0(5(x1)))))) | (60) |
0(5(0(x1))) | → | 0(5(3(0(3(x1))))) | (61) |
0(5(0(x1))) | → | 3(0(0(5(3(x1))))) | (62) |
0(5(0(x1))) | → | 2(0(3(0(5(x1))))) | (63) |
0(5(0(x1))) | → | 0(3(3(0(5(x1))))) | (64) |
0(5(0(x1))) | → | 0(3(3(0(5(4(x1)))))) | (65) |
0(5(0(x1))) | → | 0(5(3(0(5(4(x1)))))) | (66) |
0(5(0(x1))) | → | 0(3(1(0(3(5(x1)))))) | (67) |
0(0(2(x1))) | → | 2(3(0(3(0(x1))))) | (68) |
0(0(2(x1))) | → | 3(2(0(3(3(0(x1)))))) | (69) |
0(0(2(x1))) | → | 3(0(2(5(3(0(x1)))))) | (70) |
0(1(5(x1))) | → | 3(4(1(0(5(3(x1)))))) | (71) |
0(1(5(x1))) | → | 3(0(4(1(5(3(x1)))))) | (72) |
1(1(5(x1))) | → | 1(5(1(3(x1)))) | (73) |
1(1(5(x1))) | → | 5(3(1(3(1(x1))))) | (74) |
1(1(5(x1))) | → | 1(5(3(3(3(1(x1)))))) | (75) |
1(1(5(x1))) | → | 4(1(5(5(3(1(x1)))))) | (76) |
1(0(2(0(x1)))) | → | 1(0(3(3(2(0(x1)))))) | (77) |
0(1(5(0(x1)))) | → | 5(3(1(0(0(x1))))) | (78) |
0(4(5(0(x1)))) | → | 3(0(5(4(0(x1))))) | (79) |
0(2(0(2(x1)))) | → | 2(2(0(3(0(3(x1)))))) | (80) |
1(4(0(2(x1)))) | → | 4(4(1(0(3(2(x1)))))) | (81) |
0(5(0(2(x1)))) | → | 2(5(3(0(0(x1))))) | (82) |
1(4(2(2(x1)))) | → | 1(2(3(4(2(3(x1)))))) | (83) |
1(0(1(5(x1)))) | → | 1(3(4(1(5(0(x1)))))) | (84) |
0(1(1(5(x1)))) | → | 1(5(1(5(0(x1))))) | (85) |
0(2(1(5(x1)))) | → | 2(0(5(3(1(3(x1)))))) | (86) |
0(5(1(5(x1)))) | → | 1(0(5(3(5(x1))))) | (87) |
1(0(2(5(x1)))) | → | 2(3(0(1(5(x1))))) | (88) |
1(1(3(5(x1)))) | → | 5(1(3(1(3(5(x1)))))) | (89) |
1(1(4(5(x1)))) | → | 5(4(1(4(1(5(x1)))))) | (90) |
0(1(5(5(x1)))) | → | 3(1(5(0(5(x1))))) | (91) |
1(1(5(5(x1)))) | → | 1(0(5(3(1(5(x1)))))) | (92) |
0(1(4(2(0(x1))))) | → | 3(1(0(0(4(2(x1)))))) | (93) |
1(1(5(5(0(x1))))) | → | 1(0(5(3(1(5(x1)))))) | (94) |
1(4(2(2(2(x1))))) | → | 2(4(1(2(2(1(x1)))))) | (95) |
1(1(0(5(2(x1))))) | → | 3(1(0(2(1(5(x1)))))) | (96) |
1(4(2(0(5(x1))))) | → | 2(3(0(4(1(5(x1)))))) | (97) |
0(1(4(2(5(x1))))) | → | 1(5(4(3(2(0(x1)))))) | (98) |
1(4(0(3(5(x1))))) | → | 1(4(1(0(3(5(x1)))))) | (99) |
1(1(4(3(5(x1))))) | → | 1(2(5(3(4(1(x1)))))) | (100) |
{1(☐), 0(☐), 3(☐), 2(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 205 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 1230 ruless (increase limit for explicit display).
[10(x1)] | = | 1 · x1 + 31 |
[00(x1)] | = | 1 · x1 + 31 |
[01(x1)] | = | 1 · x1 + 31 |
[03(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 + 3 |
[02(x1)] | = | 1 · x1 + 18 |
[21(x1)] | = | 1 · x1 + 21 |
[20(x1)] | = | 1 · x1 + 24 |
[23(x1)] | = | 1 · x1 + 9 |
[22(x1)] | = | 1 · x1 + 27 |
[05(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 + 1 |
[24(x1)] | = | 1 · x1 + 11 |
[11(x1)] | = | 1 · x1 + 31 |
[13(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 + 31 |
[32(x1)] | = | 1 · x1 + 6 |
[35(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 + 31 |
[53(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 + 18 |
[55(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 + 1 |
[41(x1)] | = | 1 · x1 + 2 |
[40(x1)] | = | 1 · x1 + 33 |
[43(x1)] | = | 1 · x1 + 1 |
[42(x1)] | = | 1 · x1 + 8 |
[45(x1)] | = | 1 · x1 + 2 |
[44(x1)] | = | 1 · x1 + 15 |
[12(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 + 16 |
There are 1128 ruless (increase limit for explicit display).
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 + 1 |
[03(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 + 1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
10(00(04(x1))) | → | 10(03(33(30(02(24(x1)))))) | (292) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 + 1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
41(14(40(02(21(x1))))) | → | 44(44(41(10(03(32(21(x1))))))) | (1037) |
41(14(40(02(20(x1))))) | → | 44(44(41(10(03(32(20(x1))))))) | (1038) |
41(14(40(02(23(x1))))) | → | 44(44(41(10(03(32(23(x1))))))) | (1039) |
41(14(40(02(22(x1))))) | → | 44(44(41(10(03(32(22(x1))))))) | (1040) |
41(14(40(02(25(x1))))) | → | 44(44(41(10(03(32(25(x1))))))) | (1041) |
41(14(40(02(24(x1))))) | → | 44(44(41(10(03(32(24(x1))))))) | (1042) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 + 1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 + 1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 + 1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 + 1 |
[32(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
11(15(55(51(x1)))) | → | 10(05(53(31(15(51(x1)))))) | (377) |
11(15(55(50(x1)))) | → | 10(05(53(31(15(50(x1)))))) | (378) |
11(15(55(53(x1)))) | → | 10(05(53(31(15(53(x1)))))) | (379) |
11(15(55(52(x1)))) | → | 10(05(53(31(15(52(x1)))))) | (380) |
11(15(55(55(x1)))) | → | 10(05(53(31(15(55(x1)))))) | (381) |
11(15(55(54(x1)))) | → | 10(05(53(31(15(54(x1)))))) | (382) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 + 1 |
[32(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 + 1 |
[42(x1)] | = | 1 · x1 + 1 |
31(10(02(25(51(x1))))) | → | 32(23(30(01(15(51(x1)))))) | (1205) |
31(10(02(25(50(x1))))) | → | 32(23(30(01(15(50(x1)))))) | (1206) |
31(10(02(25(53(x1))))) | → | 32(23(30(01(15(53(x1)))))) | (1207) |
31(10(02(25(52(x1))))) | → | 32(23(30(01(15(52(x1)))))) | (1208) |
31(10(02(25(55(x1))))) | → | 32(23(30(01(15(55(x1)))))) | (1209) |
31(10(02(25(54(x1))))) | → | 32(23(30(01(15(54(x1)))))) | (1210) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 + 1 |
[25(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
21(10(02(25(51(x1))))) | → | 22(23(30(01(15(51(x1)))))) | (1211) |
21(10(02(25(50(x1))))) | → | 22(23(30(01(15(50(x1)))))) | (1212) |
21(10(02(25(53(x1))))) | → | 22(23(30(01(15(53(x1)))))) | (1213) |
21(10(02(25(52(x1))))) | → | 22(23(30(01(15(52(x1)))))) | (1214) |
21(10(02(25(55(x1))))) | → | 22(23(30(01(15(55(x1)))))) | (1215) |
21(10(02(25(54(x1))))) | → | 22(23(30(01(15(54(x1)))))) | (1216) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 + 1 |
[42(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
41(10(02(25(51(x1))))) | → | 42(23(30(01(15(51(x1)))))) | (1217) |
41(10(02(25(50(x1))))) | → | 42(23(30(01(15(50(x1)))))) | (1218) |
41(10(02(25(53(x1))))) | → | 42(23(30(01(15(53(x1)))))) | (1219) |
41(10(02(25(52(x1))))) | → | 42(23(30(01(15(52(x1)))))) | (1220) |
41(10(02(25(55(x1))))) | → | 42(23(30(01(15(55(x1)))))) | (1221) |
41(10(02(25(54(x1))))) | → | 42(23(30(01(15(54(x1)))))) | (1222) |
There are 135 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
05#(50(00(x1))) | → | 50#(x1) | (1521) |
50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
50#(01(11(15(50(x1))))) | → | 50#(00(x1)) | (1589) |
50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
50#(01(11(15(55(x1))))) | → | 50#(05(x1)) | (1593) |
50#(01(11(15(55(x1))))) | → | 05#(x1) | (1594) |
00#(01(11(15(50(x1))))) | → | 50#(00(x1)) | (1581) |
00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
00#(01(11(15(55(x1))))) | → | 50#(05(x1)) | (1585) |
00#(01(11(15(55(x1))))) | → | 05#(x1) | (1586) |
[05(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[50#(x1)] | = | 1 · x1 |
[05#(x1)] | = | 1 · x1 |
[00#(x1)] | = | 1 · x1 |
05(50(01(x1))) | → | 03(31(10(03(35(51(x1)))))) | (341) |
05(50(00(x1))) | → | 03(31(10(03(35(50(x1)))))) | (342) |
05(50(03(x1))) | → | 03(31(10(03(35(53(x1)))))) | (343) |
05(50(02(x1))) | → | 03(31(10(03(35(52(x1)))))) | (344) |
05(50(05(x1))) | → | 03(31(10(03(35(55(x1)))))) | (345) |
05(50(04(x1))) | → | 03(31(10(03(35(54(x1)))))) | (346) |
50(01(11(15(51(x1))))) | → | 51(15(51(15(50(01(x1)))))) | (1115) |
50(01(11(15(50(x1))))) | → | 51(15(51(15(50(00(x1)))))) | (1116) |
50(01(11(15(53(x1))))) | → | 51(15(51(15(50(03(x1)))))) | (1117) |
50(01(11(15(52(x1))))) | → | 51(15(51(15(50(02(x1)))))) | (1118) |
50(01(11(15(55(x1))))) | → | 51(15(51(15(50(05(x1)))))) | (1119) |
50(01(11(15(54(x1))))) | → | 51(15(51(15(50(04(x1)))))) | (1120) |
50(05(51(15(51(x1))))) | → | 51(10(05(53(35(51(x1)))))) | (1187) |
50(05(51(15(50(x1))))) | → | 51(10(05(53(35(50(x1)))))) | (1188) |
50(05(51(15(53(x1))))) | → | 51(10(05(53(35(53(x1)))))) | (1189) |
50(05(51(15(52(x1))))) | → | 51(10(05(53(35(52(x1)))))) | (1190) |
50(05(51(15(55(x1))))) | → | 51(10(05(53(35(55(x1)))))) | (1191) |
50(05(51(15(54(x1))))) | → | 51(10(05(53(35(54(x1)))))) | (1192) |
00(01(11(15(51(x1))))) | → | 01(15(51(15(50(01(x1)))))) | (1091) |
00(01(11(15(50(x1))))) | → | 01(15(51(15(50(00(x1)))))) | (1092) |
00(01(11(15(53(x1))))) | → | 01(15(51(15(50(03(x1)))))) | (1093) |
00(01(11(15(52(x1))))) | → | 01(15(51(15(50(02(x1)))))) | (1094) |
00(01(11(15(55(x1))))) | → | 01(15(51(15(50(05(x1)))))) | (1095) |
00(01(11(15(54(x1))))) | → | 01(15(51(15(50(04(x1)))))) | (1096) |
00(05(51(15(51(x1))))) | → | 01(10(05(53(35(51(x1)))))) | (1163) |
00(05(51(15(50(x1))))) | → | 01(10(05(53(35(50(x1)))))) | (1164) |
00(05(51(15(53(x1))))) | → | 01(10(05(53(35(53(x1)))))) | (1165) |
00(05(51(15(52(x1))))) | → | 01(10(05(53(35(52(x1)))))) | (1166) |
00(05(51(15(55(x1))))) | → | 01(10(05(53(35(55(x1)))))) | (1167) |
00(05(51(15(54(x1))))) | → | 01(10(05(53(35(54(x1)))))) | (1168) |
The dependency pairs are split into 1 component.
50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
50#(01(11(15(55(x1))))) | → | 05#(x1) | (1594) |
05#(50(00(x1))) | → | 50#(x1) | (1521) |
00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
00#(01(11(15(55(x1))))) | → | 05#(x1) | (1586) |
[01(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[50#(x1)] | = | 1 · x1 |
[00#(x1)] | = | 1 · x1 |
[05#(x1)] | = | 1 · x1 |
[50#(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[00#(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[05#(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
05#(50(00(x1))) | → | 50#(x1) | (1521) |
The dependency pairs are split into 1 component.
50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
[50#(x1)] | = | -2 + 2 · x1 |
[01(x1)] | = | x1 |
[11(x1)] | = | 2 · x1 |
[15(x1)] | = | x1 |
[50(x1)] | = | 1 + x1 |
[00#(x1)] | = | 1 + 2 · x1 |
[51(x1)] | = | 1 + 2 · x1 |
50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
There are no pairs anymore.