The rewrite relation of the following TRS is considered.
0(0(0(x1))) | → | 0(0(1(0(2(x1))))) | (1) |
0(3(2(x1))) | → | 4(3(0(2(x1)))) | (2) |
0(0(4(2(x1)))) | → | 0(4(1(0(2(x1))))) | (3) |
0(0(5(2(x1)))) | → | 5(0(2(3(0(x1))))) | (4) |
0(1(3(2(x1)))) | → | 0(3(1(0(2(x1))))) | (5) |
0(1(3(2(x1)))) | → | 3(1(1(0(2(x1))))) | (6) |
0(1(3(2(x1)))) | → | 0(1(4(3(1(2(x1)))))) | (7) |
0(4(1(3(x1)))) | → | 1(4(3(0(2(2(x1)))))) | (8) |
0(4(2(3(x1)))) | → | 5(4(3(0(2(x1))))) | (9) |
0(4(5(2(x1)))) | → | 5(0(2(2(4(2(x1)))))) | (10) |
0(5(1(3(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (11) |
0(5(3(0(x1)))) | → | 5(0(1(4(3(0(x1)))))) | (12) |
0(5(3(2(x1)))) | → | 5(1(5(0(2(3(x1)))))) | (13) |
4(0(2(3(x1)))) | → | 3(4(3(0(2(x1))))) | (14) |
4(0(2(3(x1)))) | → | 4(3(5(0(2(x1))))) | (15) |
4(4(1(3(x1)))) | → | 4(3(4(1(2(2(x1)))))) | (16) |
4(5(2(0(x1)))) | → | 4(2(1(5(0(2(x1)))))) | (17) |
4(5(2(0(x1)))) | → | 5(1(0(2(2(4(x1)))))) | (18) |
5(1(0(0(x1)))) | → | 5(1(0(2(0(x1))))) | (19) |
5(1(0(0(x1)))) | → | 5(2(1(0(2(0(x1)))))) | (20) |
5(1(3(0(x1)))) | → | 5(0(2(1(3(x1))))) | (21) |
5(1(3(2(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (22) |
5(1(3(2(x1)))) | → | 3(1(1(5(2(2(x1)))))) | (23) |
5(3(0(0(x1)))) | → | 5(0(4(3(0(2(x1)))))) | (24) |
0(0(4(1(3(x1))))) | → | 4(0(1(0(2(3(x1)))))) | (25) |
0(0(4(5(2(x1))))) | → | 5(0(1(0(2(4(x1)))))) | (26) |
0(0(5(3(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (27) |
0(1(0(5(2(x1))))) | → | 1(0(2(5(1(0(x1)))))) | (28) |
0(1(4(5(2(x1))))) | → | 2(1(5(0(2(4(x1)))))) | (29) |
0(3(1(4(0(x1))))) | → | 4(1(0(1(0(3(x1)))))) | (30) |
0(3(2(0(0(x1))))) | → | 0(0(1(0(2(3(x1)))))) | (31) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(1(0(x1)))))) | (32) |
0(3(4(0(2(x1))))) | → | 4(3(0(2(3(0(x1)))))) | (33) |
0(3(4(4(2(x1))))) | → | 4(0(3(4(2(2(x1)))))) | (34) |
0(4(2(5(3(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (35) |
0(5(1(2(0(x1))))) | → | 3(0(1(5(0(2(x1)))))) | (36) |
4(4(2(2(0(x1))))) | → | 4(1(0(2(2(4(x1)))))) | (37) |
4(5(1(2(0(x1))))) | → | 5(0(4(1(2(2(x1)))))) | (38) |
4(5(2(3(2(x1))))) | → | 5(4(3(5(2(2(x1)))))) | (39) |
5(1(0(3(2(x1))))) | → | 5(0(3(1(0(2(x1)))))) | (40) |
5(1(0(5(3(x1))))) | → | 5(5(0(1(3(1(x1)))))) | (41) |
5(1(3(0(0(x1))))) | → | 3(5(0(1(2(0(x1)))))) | (42) |
5(1(3(0(2(x1))))) | → | 3(0(2(1(5(2(x1)))))) | (43) |
5(1(3(0(2(x1))))) | → | 5(0(1(0(3(2(x1)))))) | (44) |
5(1(3(0(2(x1))))) | → | 5(0(1(1(2(3(x1)))))) | (45) |
5(1(3(2(0(x1))))) | → | 5(3(1(5(2(0(x1)))))) | (46) |
5(1(3(2(3(x1))))) | → | 3(4(3(5(1(2(x1)))))) | (47) |
5(1(4(5(2(x1))))) | → | 5(1(4(1(5(2(x1)))))) | (48) |
5(5(1(3(2(x1))))) | → | 3(5(5(4(1(2(x1)))))) | (49) |
0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) |
2(3(0(x1))) | → | 2(0(3(4(x1)))) | (51) |
2(4(0(0(x1)))) | → | 2(0(1(4(0(x1))))) | (52) |
2(5(0(0(x1)))) | → | 0(3(2(0(5(x1))))) | (53) |
2(3(1(0(x1)))) | → | 2(0(1(3(0(x1))))) | (54) |
2(3(1(0(x1)))) | → | 2(0(1(1(3(x1))))) | (55) |
2(3(1(0(x1)))) | → | 2(1(3(4(1(0(x1)))))) | (56) |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
2(5(4(0(x1)))) | → | 2(4(2(2(0(5(x1)))))) | (59) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) |
2(3(5(0(x1)))) | → | 3(2(0(5(1(5(x1)))))) | (62) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) |
0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) |
0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) |
0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) |
0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) |
2(3(1(5(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (71) |
2(3(1(5(x1)))) | → | 2(2(5(1(1(3(x1)))))) | (72) |
0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
2(5(4(0(0(x1))))) | → | 4(2(0(1(0(5(x1)))))) | (75) |
2(3(5(0(0(x1))))) | → | 3(2(0(5(1(0(x1)))))) | (76) |
2(5(0(1(0(x1))))) | → | 0(1(5(2(0(1(x1)))))) | (77) |
2(5(4(1(0(x1))))) | → | 4(2(0(5(1(2(x1)))))) | (78) |
0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) |
0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) |
2(0(4(3(0(x1))))) | → | 0(1(2(0(3(4(x1)))))) | (81) |
2(0(4(3(0(x1))))) | → | 0(3(2(0(3(4(x1)))))) | (82) |
2(4(4(3(0(x1))))) | → | 2(2(4(3(0(4(x1)))))) | (83) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) |
0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) |
0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) |
2(3(2(5(4(x1))))) | → | 2(2(5(3(4(5(x1)))))) | (88) |
2(3(0(1(5(x1))))) | → | 2(0(1(3(0(5(x1)))))) | (89) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) |
2(0(3(1(5(x1))))) | → | 2(5(1(2(0(3(x1)))))) | (92) |
2(0(3(1(5(x1))))) | → | 2(3(0(1(0(5(x1)))))) | (93) |
2(0(3(1(5(x1))))) | → | 3(2(1(1(0(5(x1)))))) | (94) |
0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
2(5(4(1(5(x1))))) | → | 2(5(1(4(1(5(x1)))))) | (97) |
2(3(1(5(5(x1))))) | → | 2(1(4(5(5(3(x1)))))) | (98) |
There are 150 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(2(5(4(x1)))) | → | 2#(4(x1)) | (150) |
2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) |
2#(3(1(0(x1)))) | → | 3#(0(x1)) | (112) |
3#(2(0(4(x1)))) | → | 3#(x1) | (141) |
3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) |
0#(0(1(5(x1)))) | → | 2#(5(x1)) | (159) |
2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) |
2#(3(1(0(x1)))) | → | 3#(x1) | (115) |
3#(1(5(0(x1)))) | → | 3#(x1) | (131) |
3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) |
2#(3(1(5(x1)))) | → | 0#(3(x1)) | (164) |
0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) |
0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) |
0#(2(1(5(0(x1))))) | → | 3#(x1) | (210) |
0#(0(3(1(5(x1))))) | → | 3#(x1) | (229) |
2#(3(1(5(x1)))) | → | 3#(x1) | (165) |
2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) |
2#(4(4(3(0(x1))))) | → | 3#(0(4(x1))) | (203) |
2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) |
2#(0(3(1(5(x1))))) | → | 0#(3(x1)) | (232) |
2#(0(3(1(5(x1))))) | → | 3#(x1) | (233) |
2#(3(1(5(5(x1))))) | → | 3#(x1) | (248) |
[0#(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 |
[4(x1)] | = | 0 |
[2#(x1)] | = | 0 |
[3(x1)] | = | 0 |
[0(x1)] | = | 0 |
[1(x1)] | = | 0 |
[3#(x1)] | = | 0 |
0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) |
0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) |
0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) |
0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) |
0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) |
0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) |
0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) |
0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) |
0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) |
0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) |
0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) |
0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) |
0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) |
0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) |
0#(2(5(4(x1)))) | → | 2#(4(x1)) | (150) |
[2#(x1)] | = | 0 |
[4(x1)] | = | 0 |
[3(x1)] | = | 0 |
[0(x1)] | = | 1 |
[2(x1)] | = | 0 |
[1(x1)] | = | 0 |
[3#(x1)] | = | 0 |
[5(x1)] | = | 0 |
[0#(x1)] | = | 1 · x1 |
0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) |
0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) |
0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) |
0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) |
0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) |
0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) |
0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) |
0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) |
0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) |
0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) |
0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) |
0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) |
0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) |
0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) |
0#(0(1(5(x1)))) | → | 2#(5(x1)) | (159) |
0#(0(3(1(5(x1))))) | → | 3#(x1) | (229) |
The dependency pairs are split into 4 components.
2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) |
[5(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[2#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) |
[2#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 + 1 · x1 |
[4(x1)] | = | 0 |
[2(x1)] | = | 0 |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) |
0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) |
0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) |
0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) |
0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) |
0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) |
0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) |
0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) |
0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) |
0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) |
0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) |
0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) |
0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) |
0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) |
0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) |
2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) |
There are no pairs anymore.
2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) |
2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) |
[2#(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 + 1 · x1 |
[3(x1)] | = | 0 |
[0(x1)] | = | 0 |
[2(x1)] | = | 1 · x1 |
[1(x1)] | = | 0 |
[5(x1)] | = | 1 · x1 |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
2(4(0(0(x1)))) | → | 2(0(1(4(0(x1))))) | (52) |
2(4(4(3(0(x1))))) | → | 2(2(4(3(0(4(x1)))))) | (83) |
2(3(1(0(x1)))) | → | 2(0(1(3(0(x1))))) | (54) |
2(3(1(0(x1)))) | → | 2(0(1(1(3(x1))))) | (55) |
2(3(1(0(x1)))) | → | 2(1(3(4(1(0(x1)))))) | (56) |
2(3(1(5(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (71) |
2(3(1(5(x1)))) | → | 2(2(5(1(1(3(x1)))))) | (72) |
2(3(5(0(0(x1))))) | → | 3(2(0(5(1(0(x1)))))) | (76) |
2(5(4(1(0(x1))))) | → | 4(2(0(5(1(2(x1)))))) | (78) |
2(0(3(1(5(x1))))) | → | 2(5(1(2(0(3(x1)))))) | (92) |
2(3(1(5(5(x1))))) | → | 2(1(4(5(5(3(x1)))))) | (98) |
2(5(0(0(x1)))) | → | 0(3(2(0(5(x1))))) | (53) |
2(5(4(0(x1)))) | → | 2(4(2(2(0(5(x1)))))) | (59) |
2(5(4(0(0(x1))))) | → | 4(2(0(1(0(5(x1)))))) | (75) |
2(5(0(1(0(x1))))) | → | 0(1(5(2(0(1(x1)))))) | (77) |
2(5(4(1(5(x1))))) | → | 2(5(1(4(1(5(x1)))))) | (97) |
2(3(0(x1))) | → | 2(0(3(4(x1)))) | (51) |
2(3(5(0(x1)))) | → | 3(2(0(5(1(5(x1)))))) | (62) |
2(0(4(3(0(x1))))) | → | 0(1(2(0(3(4(x1)))))) | (81) |
2(0(4(3(0(x1))))) | → | 0(3(2(0(3(4(x1)))))) | (82) |
2(3(2(5(4(x1))))) | → | 2(2(5(3(4(5(x1)))))) | (88) |
2(3(0(1(5(x1))))) | → | 2(0(1(3(0(5(x1)))))) | (89) |
2(0(3(1(5(x1))))) | → | 2(3(0(1(0(5(x1)))))) | (93) |
2(0(3(1(5(x1))))) | → | 3(2(1(1(0(5(x1)))))) | (94) |
2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) |
2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) |
There are no pairs anymore.
3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) |
0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) |
0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) |
0#(2(1(5(0(x1))))) | → | 3#(x1) | (210) |
3#(1(5(0(x1)))) | → | 3#(x1) | (131) |
3#(2(0(4(x1)))) | → | 3#(x1) | (141) |
3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) |
[0#(x1)] | = | -1 + 2 · x1 |
[3(x1)] | = | 0 |
[1(x1)] | = | -2 + 2 · x1 |
[4(x1)] | = | -2 |
[0(x1)] | = | 1 |
[2(x1)] | = | -1 + x1 |
[5(x1)] | = | 2 · x1 |
[3#(x1)] | = | 1 |
3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) |
3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) |
3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) |
3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) |
3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) |
3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) |
3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) |
3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) |
3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) |
3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) |
0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) |
0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) |
0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) |
0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) |
0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) |
0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) |
0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) |
0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) |
0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) |
0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) |
0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) |
0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) |
0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) |
0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) |
0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) |
3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) |
0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) |
The dependency pairs are split into 2 components.
0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
3#(2(0(4(x1)))) | → | 3#(x1) | (141) |
3#(1(5(0(x1)))) | → | 3#(x1) | (131) |
3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) |
[2(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 · x1 |
[3#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
3#(2(0(4(x1)))) | → | 3#(x1) | (141) |
1 | > | 1 | |
3#(1(5(0(x1)))) | → | 3#(x1) | (131) |
1 | > | 1 | |
3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.