Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/247906)

The rewrite relation of the following TRS is considered.

0(x1) 1(x1) (1)
0(0(x1)) 0(x1) (2)
3(4(5(x1))) 4(3(5(x1))) (3)
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (4)
1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Closure Under Flat Contexts

Using the flat contexts

{0(), 1(), 3(), 4(), 5(), 2()}

We obtain the transformed TRS
0(0(x1)) 0(x1) (2)
0(0(x1)) 0(1(x1)) (6)
1(0(x1)) 1(1(x1)) (7)
3(0(x1)) 3(1(x1)) (8)
4(0(x1)) 4(1(x1)) (9)
5(0(x1)) 5(1(x1)) (10)
2(0(x1)) 2(1(x1)) (11)
0(3(4(5(x1)))) 0(4(3(5(x1)))) (12)
1(3(4(5(x1)))) 1(4(3(5(x1)))) (13)
3(3(4(5(x1)))) 3(4(3(5(x1)))) (14)
4(3(4(5(x1)))) 4(4(3(5(x1)))) (15)
5(3(4(5(x1)))) 5(4(3(5(x1)))) (16)
2(3(4(5(x1)))) 2(4(3(5(x1)))) (17)
0(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 0(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (18)
1(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 1(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (19)
3(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 3(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (20)
4(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 4(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (21)
5(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 5(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (22)
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 2(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (23)
0(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 0(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (24)
1(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 1(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (25)
3(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 3(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (26)
4(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 4(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (27)
5(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 5(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (28)
2(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (29)

1.1 Semantic Labeling

Root-labeling is applied.

We obtain the labeled TRS

There are 150 ruless (increase limit for explicit display).

1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[00(x1)] = 1 · x1 + 6
[01(x1)] = 1 · x1 + 1
[03(x1)] = 1 · x1 + 1
[04(x1)] = 1 · x1
[05(x1)] = 1 · x1 + 4
[02(x1)] = 1 · x1 + 6
[10(x1)] = 1 · x1 + 2
[11(x1)] = 1 · x1 + 1
[13(x1)] = 1 · x1
[14(x1)] = 1 · x1
[15(x1)] = 1 · x1 + 3
[12(x1)] = 1 · x1 + 5
[30(x1)] = 1 · x1 + 1
[31(x1)] = 1 · x1
[40(x1)] = 1 · x1 + 2
[41(x1)] = 1 · x1
[50(x1)] = 1 · x1
[51(x1)] = 1 · x1
[20(x1)] = 1 · x1 + 1
[21(x1)] = 1 · x1
[34(x1)] = 1 · x1 + 1
[45(x1)] = 1 · x1
[43(x1)] = 1 · x1
[35(x1)] = 1 · x1
[53(x1)] = 1 · x1
[54(x1)] = 1 · x1 + 1
[55(x1)] = 1 · x1
[52(x1)] = 1 · x1 + 4
[33(x1)] = 1 · x1 + 1
[44(x1)] = 1 · x1 + 1
[23(x1)] = 1 · x1
[24(x1)] = 1 · x1
[22(x1)] = 1 · x1 + 4
[25(x1)] = 1 · x1
[32(x1)] = 1 · x1 + 5
[42(x1)] = 1 · x1 + 3
all of the following rules can be deleted.

There are 132 ruless (increase limit for explicit display).

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[50(x1)] = 1 · x1 + 1
[01(x1)] = 1 · x1
[51(x1)] = 1 · x1
[11(x1)] = 1 · x1
[04(x1)] = 1 · x1 + 1
[14(x1)] = 1 · x1 + 1
[43(x1)] = 1 · x1
[34(x1)] = 1 · x1
[45(x1)] = 1 · x1
[44(x1)] = 1 · x1
[35(x1)] = 1 · x1
[53(x1)] = 1 · x1
[54(x1)] = 1 · x1
[55(x1)] = 1 · x1
[52(x1)] = 1 · x1
[10(x1)] = 1 · x1
[00(x1)] = 1 · x1
[13(x1)] = 1 · x1 + 1
[02(x1)] = 1 · x1
[22(x1)] = 1 · x1
[23(x1)] = 1 · x1
[24(x1)] = 1 · x1
[31(x1)] = 1 · x1
[32(x1)] = 1 · x1
all of the following rules can be deleted.
50(01(x1)) 51(11(x1)) (61)
50(04(x1)) 51(14(x1)) (63)
01(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 02(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (146)
01(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 02(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (147)
31(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 32(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (158)
31(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) 32(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) (159)

1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[43(x1)] = 1 · x1 + 1
[34(x1)] = 1 · x1
[45(x1)] = 1 · x1 + 1
[50(x1)] = 1 · x1
[44(x1)] = 1 · x1
[35(x1)] = 1 · x1
[51(x1)] = 1 · x1
[53(x1)] = 1 · x1
[54(x1)] = 1 · x1
[55(x1)] = 1 · x1
[52(x1)] = 1 · x1
all of the following rules can be deleted.
43(34(45(50(x1)))) 44(43(35(50(x1)))) (90)
43(34(45(51(x1)))) 44(43(35(51(x1)))) (91)
43(34(45(53(x1)))) 44(43(35(53(x1)))) (92)
43(34(45(54(x1)))) 44(43(35(54(x1)))) (93)
43(34(45(55(x1)))) 44(43(35(55(x1)))) (94)
43(34(45(52(x1)))) 44(43(35(52(x1)))) (95)

1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[53(x1)] = 1 · x1
[34(x1)] = 1 · x1 + 1
[45(x1)] = 1 · x1
[50(x1)] = 1 · x1
[54(x1)] = 1 · x1
[43(x1)] = 1 · x1
[35(x1)] = 1 · x1
[51(x1)] = 1 · x1
[55(x1)] = 1 · x1
[52(x1)] = 1 · x1
all of the following rules can be deleted.
53(34(45(50(x1)))) 54(43(35(50(x1)))) (96)
53(34(45(51(x1)))) 54(43(35(51(x1)))) (97)
53(34(45(53(x1)))) 54(43(35(53(x1)))) (98)
53(34(45(54(x1)))) 54(43(35(54(x1)))) (99)
53(34(45(55(x1)))) 54(43(35(55(x1)))) (100)
53(34(45(52(x1)))) 54(43(35(52(x1)))) (101)

1.1.1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.