The rewrite relation of the following TRS is considered.
0(0(1(0(2(x1))))) | → | 0(0(1(2(2(x1))))) | (1) |
0(0(1(0(2(x1))))) | → | 0(0(2(1(2(x1))))) | (2) |
0(0(1(0(2(x1))))) | → | 0(1(0(2(2(x1))))) | (3) |
0(0(1(0(2(x1))))) | → | 0(1(1(2(2(x1))))) | (4) |
0(0(1(0(2(x1))))) | → | 0(1(2(0(2(x1))))) | (5) |
0(0(1(0(2(x1))))) | → | 0(1(2(2(0(x1))))) | (6) |
0(0(1(0(2(x1))))) | → | 0(1(2(2(2(x1))))) | (7) |
0(0(1(0(2(x1))))) | → | 0(2(1(0(2(x1))))) | (8) |
0(0(1(0(2(x1))))) | → | 0(2(1(2(2(x1))))) | (9) |
0(0(1(0(2(x1))))) | → | 0(2(2(1(0(x1))))) | (10) |
0(0(1(0(2(x1))))) | → | 0(2(2(1(2(x1))))) | (11) |
0(0(1(0(2(x1))))) | → | 1(0(0(2(2(x1))))) | (12) |
0(0(1(0(2(x1))))) | → | 1(0(2(0(2(x1))))) | (13) |
0(0(1(0(2(x1))))) | → | 1(0(2(2(0(x1))))) | (14) |
0(0(1(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (15) |
0(0(1(0(2(x1))))) | → | 1(1(0(2(2(x1))))) | (16) |
0(0(1(0(2(x1))))) | → | 1(2(0(2(2(x1))))) | (17) |
0(0(1(0(2(x1))))) | → | 1(2(1(0(2(x1))))) | (18) |
0(0(1(0(2(x1))))) | → | 1(2(2(0(2(x1))))) | (19) |
0(0(1(0(2(x1))))) | → | 1(2(2(2(0(x1))))) | (20) |
0(0(1(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (21) |
0(0(1(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (22) |
0(0(1(0(2(x1))))) | → | 2(2(2(1(0(x1))))) | (23) |
0(1(2(0(2(x1))))) | → | 0(1(0(2(2(x1))))) | (24) |
0(1(2(0(2(x1))))) | → | 0(1(1(2(2(x1))))) | (25) |
0(1(2(0(2(x1))))) | → | 0(1(2(2(2(x1))))) | (26) |
0(1(2(0(2(x1))))) | → | 0(2(1(0(2(x1))))) | (27) |
0(1(2(0(2(x1))))) | → | 0(2(1(2(2(x1))))) | (28) |
0(1(2(0(2(x1))))) | → | 0(2(2(1(0(x1))))) | (29) |
0(1(2(0(2(x1))))) | → | 0(2(2(1(2(x1))))) | (30) |
0(1(2(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (31) |
0(1(2(0(2(x1))))) | → | 1(2(0(2(2(x1))))) | (32) |
0(1(2(0(2(x1))))) | → | 1(2(2(0(2(x1))))) | (33) |
0(1(2(0(2(x1))))) | → | 1(2(2(2(0(x1))))) | (34) |
1(0(1(0(2(x1))))) | → | 0(1(2(2(2(x1))))) | (35) |
1(0(1(0(2(x1))))) | → | 0(2(1(2(2(x1))))) | (36) |
1(0(1(0(2(x1))))) | → | 1(0(0(2(2(x1))))) | (37) |
1(0(1(0(2(x1))))) | → | 1(0(1(2(2(x1))))) | (38) |
1(0(1(0(2(x1))))) | → | 1(0(2(0(2(x1))))) | (39) |
1(0(1(0(2(x1))))) | → | 1(0(2(1(2(x1))))) | (40) |
1(0(1(0(2(x1))))) | → | 1(0(2(2(0(x1))))) | (41) |
1(0(1(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (42) |
1(0(1(0(2(x1))))) | → | 1(1(0(2(2(x1))))) | (43) |
1(0(1(0(2(x1))))) | → | 1(2(0(2(2(x1))))) | (44) |
1(0(1(0(2(x1))))) | → | 1(2(1(0(2(x1))))) | (45) |
1(0(1(0(2(x1))))) | → | 1(2(2(0(2(x1))))) | (46) |
1(0(1(0(2(x1))))) | → | 1(2(2(2(0(x1))))) | (47) |
1(0(1(0(2(x1))))) | → | 2(0(1(2(2(x1))))) | (48) |
1(0(1(0(2(x1))))) | → | 2(0(2(1(2(x1))))) | (49) |
1(0(1(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (50) |
1(0(1(0(2(x1))))) | → | 2(1(2(0(2(x1))))) | (51) |
1(0(1(0(2(x1))))) | → | 2(1(2(2(0(x1))))) | (52) |
1(0(1(0(2(x1))))) | → | 2(2(0(1(2(x1))))) | (53) |
1(0(1(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (54) |
1(0(1(0(2(x1))))) | → | 2(2(1(2(0(x1))))) | (55) |
1(0(1(0(2(x1))))) | → | 2(2(2(1(0(x1))))) | (56) |
1(0(2(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (57) |
1(0(2(0(2(x1))))) | → | 1(2(0(2(2(x1))))) | (58) |
1(0(2(0(2(x1))))) | → | 1(2(2(0(2(x1))))) | (59) |
1(0(2(0(2(x1))))) | → | 1(2(2(2(0(x1))))) | (60) |
1(0(2(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (61) |
1(0(2(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (62) |
1(1(2(0(2(x1))))) | → | 0(1(2(2(2(x1))))) | (63) |
1(1(2(0(2(x1))))) | → | 0(2(1(2(2(x1))))) | (64) |
1(1(2(0(2(x1))))) | → | 0(2(2(1(2(x1))))) | (65) |
1(1(2(0(2(x1))))) | → | 1(0(0(2(2(x1))))) | (66) |
1(1(2(0(2(x1))))) | → | 1(0(1(2(2(x1))))) | (67) |
1(1(2(0(2(x1))))) | → | 1(0(2(0(2(x1))))) | (68) |
1(1(2(0(2(x1))))) | → | 1(0(2(1(2(x1))))) | (69) |
1(1(2(0(2(x1))))) | → | 1(0(2(2(0(x1))))) | (70) |
1(1(2(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (71) |
1(1(2(0(2(x1))))) | → | 1(1(0(2(2(x1))))) | (72) |
1(1(2(0(2(x1))))) | → | 1(2(0(2(2(x1))))) | (73) |
1(1(2(0(2(x1))))) | → | 1(2(1(0(2(x1))))) | (74) |
1(1(2(0(2(x1))))) | → | 1(2(2(0(2(x1))))) | (75) |
1(1(2(0(2(x1))))) | → | 1(2(2(2(0(x1))))) | (76) |
1(1(2(0(2(x1))))) | → | 2(0(1(2(2(x1))))) | (77) |
1(1(2(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (78) |
1(1(2(0(2(x1))))) | → | 2(1(2(0(2(x1))))) | (79) |
1(1(2(0(2(x1))))) | → | 2(2(0(1(2(x1))))) | (80) |
1(1(2(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (81) |
1(1(2(0(2(x1))))) | → | 2(2(2(1(0(x1))))) | (82) |
1(2(2(0(2(x1))))) | → | 1(0(2(2(2(x1))))) | (83) |
2(0(1(0(2(x1))))) | → | 2(0(1(2(2(x1))))) | (84) |
2(0(1(0(2(x1))))) | → | 2(0(2(1(2(x1))))) | (85) |
2(0(1(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (86) |
2(0(1(0(2(x1))))) | → | 2(1(2(0(2(x1))))) | (87) |
2(0(1(0(2(x1))))) | → | 2(1(2(2(0(x1))))) | (88) |
2(0(1(0(2(x1))))) | → | 2(2(0(1(2(x1))))) | (89) |
2(0(1(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (90) |
2(0(1(0(2(x1))))) | → | 2(2(1(2(0(x1))))) | (91) |
2(0(1(0(2(x1))))) | → | 2(2(2(1(0(x1))))) | (92) |
2(1(1(0(2(x1))))) | → | 2(0(1(0(2(x1))))) | (93) |
2(1(1(0(2(x1))))) | → | 2(0(2(1(2(x1))))) | (94) |
2(1(1(0(2(x1))))) | → | 2(1(2(0(2(x1))))) | (95) |
2(1(1(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (96) |
2(1(2(0(2(x1))))) | → | 2(0(1(2(2(x1))))) | (97) |
2(1(2(0(2(x1))))) | → | 2(1(0(2(2(x1))))) | (98) |
2(1(2(0(2(x1))))) | → | 2(2(1(0(2(x1))))) | (99) |
2(1(2(0(2(x1))))) | → | 2(2(2(1(0(x1))))) | (100) |
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 176 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 528 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 1 |
[01(x1)] | = | 1 · x1 + 1 |
[10(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 + 1 |
[20(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 + 1 |
[22(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 + 1 |
There are 342 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 1 |
[01(x1)] | = | 1 · x1 + 4 |
[10(x1)] | = | 1 · x1 + 3 |
[02(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 + 3 |
[12(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 + 6 |
[11(x1)] | = | 1 · x1 + 2 |
There are 183 ruless (increase limit for explicit display).
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 + 1 |
[01(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
10(00(01(10(02(20(x1)))))) | → | 11(12(21(10(02(20(x1)))))) | (458) |
10(00(01(10(02(21(x1)))))) | → | 11(12(21(10(02(21(x1)))))) | (459) |
10(00(01(10(02(22(x1)))))) | → | 11(12(21(10(02(22(x1)))))) | (460) |
There are no rules in the TRS. Hence, it is terminating.