The rewrite relation of the following TRS is considered.
0(1(2(3(4(x1))))) | → | 0(2(3(1(4(x1))))) | (1) |
0(5(1(2(3(4(x1)))))) | → | 0(1(2(5(3(4(x1)))))) | (2) |
0(5(1(2(3(4(x1)))))) | → | 0(5(2(1(3(4(x1)))))) | (3) |
0(5(1(2(3(4(x1)))))) | → | 5(0(2(3(1(4(x1)))))) | (4) |
0(5(2(3(1(4(x1)))))) | → | 0(1(5(2(3(4(x1)))))) | (5) |
final states:
{0, 1, 2, 3, 4, 5}
transitions:
00(0) | → | 0 |
00(1) | → | 0 |
00(2) | → | 0 |
00(3) | → | 0 |
00(4) | → | 0 |
00(5) | → | 0 |
10(0) | → | 1 |
10(1) | → | 1 |
10(2) | → | 1 |
10(3) | → | 1 |
10(4) | → | 1 |
10(5) | → | 1 |
20(0) | → | 2 |
20(1) | → | 2 |
20(2) | → | 2 |
20(3) | → | 2 |
20(4) | → | 2 |
20(5) | → | 2 |
30(0) | → | 3 |
30(1) | → | 3 |
30(2) | → | 3 |
30(3) | → | 3 |
30(4) | → | 3 |
30(5) | → | 3 |
40(0) | → | 4 |
40(1) | → | 4 |
40(2) | → | 4 |
40(3) | → | 4 |
40(4) | → | 4 |
40(5) | → | 4 |
50(0) | → | 5 |
50(1) | → | 5 |
50(2) | → | 5 |
50(3) | → | 5 |
50(4) | → | 5 |
50(5) | → | 5 |
41(0) | → | 9 |
11(9) | → | 8 |
31(8) | → | 7 |
21(7) | → | 6 |
01(6) | → | 0 |
41(1) | → | 9 |
41(2) | → | 9 |
41(3) | → | 9 |
41(4) | → | 9 |
41(5) | → | 9 |
31(9) | → | 12 |
51(12) | → | 11 |
21(11) | → | 10 |
11(10) | → | 6 |
11(12) | → | 14 |
21(14) | → | 13 |
51(13) | → | 6 |
51(0) | → | 0 |
21(12) | → | 15 |
51(15) | → | 10 |