The rewrite relation of the following TRS is considered.
0(0(1(2(x1)))) | → | 3(4(5(4(4(5(3(0(0(3(x1)))))))))) | (1) |
3(2(2(2(x1)))) | → | 0(3(2(4(4(4(1(3(5(3(x1)))))))))) | (2) |
0(2(4(5(2(x1))))) | → | 0(3(4(0(0(0(0(3(1(3(x1)))))))))) | (3) |
1(4(0(5(1(x1))))) | → | 5(4(4(4(5(4(3(3(3(0(x1)))))))))) | (4) |
5(4(1(2(0(x1))))) | → | 0(0(4(4(3(0(4(1(3(0(x1)))))))))) | (5) |
0(3(2(5(3(5(x1)))))) | → | 3(1(3(4(4(3(4(3(3(5(x1)))))))))) | (6) |
0(5(1(1(5(0(x1)))))) | → | 0(0(0(3(1(3(3(1(3(0(x1)))))))))) | (7) |
1(2(5(2(2(3(x1)))))) | → | 0(4(2(4(5(4(3(4(3(3(x1)))))))))) | (8) |
2(0(0(1(2(3(x1)))))) | → | 1(3(3(3(1(3(4(4(4(3(x1)))))))))) | (9) |
2(0(1(3(5(1(x1)))))) | → | 0(0(3(4(5(4(5(3(0(1(x1)))))))))) | (10) |
2(5(5(0(0(1(x1)))))) | → | 4(1(0(3(4(3(1(5(3(0(x1)))))))))) | (11) |
3(0(4(0(3(1(x1)))))) | → | 4(4(4(5(3(0(1(0(3(1(x1)))))))))) | (12) |
3(2(1(5(5(0(x1)))))) | → | 4(1(3(3(4(0(4(3(3(0(x1)))))))))) | (13) |
3(2(4(1(2(2(x1)))))) | → | 4(4(4(5(4(2(0(3(4(2(x1)))))))))) | (14) |
3(2(5(2(2(0(x1)))))) | → | 3(4(4(0(2(1(3(5(3(0(x1)))))))))) | (15) |
3(4(1(2(2(3(x1)))))) | → | 3(5(4(1(4(4(4(4(4(5(x1)))))))))) | (16) |
3(5(2(0(3(5(x1)))))) | → | 3(3(4(3(4(3(4(4(2(5(x1)))))))))) | (17) |
4(0(0(0(1(4(x1)))))) | → | 2(3(0(3(3(4(1(3(1(4(x1)))))))))) | (18) |
4(0(1(3(2(4(x1)))))) | → | 4(1(4(1(3(3(1(4(1(4(x1)))))))))) | (19) |
4(3(0(5(4(4(x1)))))) | → | 4(3(4(5(3(1(4(4(2(4(x1)))))))))) | (20) |
5(1(2(3(5(0(x1)))))) | → | 2(2(4(4(2(4(4(3(3(0(x1)))))))))) | (21) |
5(3(0(1(3(3(x1)))))) | → | 2(4(4(1(4(4(3(1(3(3(x1)))))))))) | (22) |
5(4(5(5(5(3(x1)))))) | → | 3(5(4(4(2(4(3(4(0(3(x1)))))))))) | (23) |
5(5(0(1(5(3(x1)))))) | → | 5(4(4(4(1(3(0(5(4(3(x1)))))))))) | (24) |
5(5(5(0(2(2(x1)))))) | → | 2(4(1(4(3(4(3(4(4(3(x1)))))))))) | (25) |
5(5(5(5(2(3(x1)))))) | → | 3(3(0(4(1(4(2(4(4(3(x1)))))))))) | (26) |
0(2(4(5(2(2(3(x1))))))) | → | 0(5(1(4(4(1(3(1(5(3(x1)))))))))) | (27) |
0(3(0(4(1(5(3(x1))))))) | → | 0(0(3(3(4(4(3(0(0(5(x1)))))))))) | (28) |
0(4(3(4(5(2(2(x1))))))) | → | 0(0(4(5(3(4(2(3(3(2(x1)))))))))) | (29) |
1(3(2(0(2(2(3(x1))))))) | → | 1(3(4(3(5(1(1(1(2(3(x1)))))))))) | (30) |
1(4(5(5(2(2(0(x1))))))) | → | 3(2(1(3(4(4(5(0(3(0(x1)))))))))) | (31) |
1(5(0(2(2(2(4(x1))))))) | → | 0(5(1(3(5(4(3(3(1(4(x1)))))))))) | (32) |
1(5(4(0(2(1(3(x1))))))) | → | 0(1(1(5(3(3(4(4(0(3(x1)))))))))) | (33) |
2(0(1(5(2(0(5(x1))))))) | → | 3(4(0(0(3(1(3(0(2(5(x1)))))))))) | (34) |
2(2(0(0(2(2(4(x1))))))) | → | 2(1(1(4(4(5(4(4(4(4(x1)))))))))) | (35) |
2(3(0(5(0(1(3(x1))))))) | → | 2(3(1(0(5(1(0(3(1(3(x1)))))))))) | (36) |
2(4(0(2(2(5(0(x1))))))) | → | 1(3(0(4(5(4(4(0(3(0(x1)))))))))) | (37) |
2(4(5(0(2(5(0(x1))))))) | → | 4(4(3(1(3(4(0(5(1(1(x1)))))))))) | (38) |
2(5(2(2(5(2(4(x1))))))) | → | 4(3(4(1(3(0(4(0(4(4(x1)))))))))) | (39) |
3(2(0(2(2(2(2(x1))))))) | → | 4(5(3(1(3(2(3(5(0(5(x1)))))))))) | (40) |
3(2(5(5(2(4(5(x1))))))) | → | 3(0(0(0(3(2(4(3(4(5(x1)))))))))) | (41) |
3(2(5(5(3(2(3(x1))))))) | → | 3(1(0(5(0(3(2(4(3(3(x1)))))))))) | (42) |
3(3(5(0(2(2(2(x1))))))) | → | 4(4(3(0(4(3(3(5(3(5(x1)))))))))) | (43) |
3(4(5(2(1(1(2(x1))))))) | → | 3(4(5(3(5(4(4(2(0(5(x1)))))))))) | (44) |
4(0(3(3(1(5(4(x1))))))) | → | 1(3(1(0(0(0(3(4(4(4(x1)))))))))) | (45) |
4(1(2(4(1(2(2(x1))))))) | → | 3(4(5(3(1(1(4(4(0(5(x1)))))))))) | (46) |
5(2(5(2(3(3(2(x1))))))) | → | 4(3(1(0(3(1(3(2(5(3(x1)))))))))) | (47) |
5(3(2(2(3(0(2(x1))))))) | → | 4(5(4(3(3(1(0(5(0(2(x1)))))))))) | (48) |
5(3(2(5(2(5(0(x1))))))) | → | 5(4(2(2(4(4(3(0(3(1(x1)))))))))) | (49) |
5(5(2(2(2(2(0(x1))))))) | → | 0(5(3(5(1(3(1(0(3(0(x1)))))))))) | (50) |
5(5(5(2(1(1(0(x1))))))) | → | 4(2(2(4(5(4(2(3(3(1(x1)))))))))) | (51) |
5(5(5(2(2(0(0(x1))))))) | → | 1(4(0(3(3(4(2(3(3(1(x1)))))))))) | (52) |
2(1(0(0(x1)))) | → | 3(0(0(3(5(4(4(5(4(3(x1)))))))))) | (53) |
2(2(2(3(x1)))) | → | 3(5(3(1(4(4(4(2(3(0(x1)))))))))) | (54) |
2(5(4(2(0(x1))))) | → | 3(1(3(0(0(0(0(4(3(0(x1)))))))))) | (55) |
1(5(0(4(1(x1))))) | → | 0(3(3(3(4(5(4(4(4(5(x1)))))))))) | (56) |
0(2(1(4(5(x1))))) | → | 0(3(1(4(0(3(4(4(0(0(x1)))))))))) | (57) |
5(3(5(2(3(0(x1)))))) | → | 5(3(3(4(3(4(4(3(1(3(x1)))))))))) | (58) |
0(5(1(1(5(0(x1)))))) | → | 0(3(1(3(3(1(3(0(0(0(x1)))))))))) | (59) |
3(2(2(5(2(1(x1)))))) | → | 3(3(4(3(4(5(4(2(4(0(x1)))))))))) | (60) |
3(2(1(0(0(2(x1)))))) | → | 3(4(4(4(3(1(3(3(3(1(x1)))))))))) | (61) |
1(5(3(1(0(2(x1)))))) | → | 1(0(3(5(4(5(4(3(0(0(x1)))))))))) | (62) |
1(0(0(5(5(2(x1)))))) | → | 0(3(5(1(3(4(3(0(1(4(x1)))))))))) | (63) |
1(3(0(4(0(3(x1)))))) | → | 1(3(0(1(0(3(5(4(4(4(x1)))))))))) | (64) |
0(5(5(1(2(3(x1)))))) | → | 0(3(3(4(0(4(3(3(1(4(x1)))))))))) | (65) |
2(2(1(4(2(3(x1)))))) | → | 2(4(3(0(2(4(5(4(4(4(x1)))))))))) | (66) |
0(2(2(5(2(3(x1)))))) | → | 0(3(5(3(1(2(0(4(4(3(x1)))))))))) | (67) |
3(2(2(1(4(3(x1)))))) | → | 5(4(4(4(4(4(1(4(5(3(x1)))))))))) | (68) |
5(3(0(2(5(3(x1)))))) | → | 5(2(4(4(3(4(3(4(3(3(x1)))))))))) | (69) |
4(1(0(0(0(4(x1)))))) | → | 4(1(3(1(4(3(3(0(3(2(x1)))))))))) | (70) |
4(2(3(1(0(4(x1)))))) | → | 4(1(4(1(3(3(1(4(1(4(x1)))))))))) | (71) |
4(4(5(0(3(4(x1)))))) | → | 4(2(4(4(1(3(5(4(3(4(x1)))))))))) | (72) |
0(5(3(2(1(5(x1)))))) | → | 0(3(3(4(4(2(4(4(2(2(x1)))))))))) | (73) |
3(3(1(0(3(5(x1)))))) | → | 3(3(1(3(4(4(1(4(4(2(x1)))))))))) | (74) |
3(5(5(5(4(5(x1)))))) | → | 3(0(4(3(4(2(4(4(5(3(x1)))))))))) | (75) |
3(5(1(0(5(5(x1)))))) | → | 3(4(5(0(3(1(4(4(4(5(x1)))))))))) | (76) |
2(2(0(5(5(5(x1)))))) | → | 3(4(4(3(4(3(4(1(4(2(x1)))))))))) | (77) |
3(2(5(5(5(5(x1)))))) | → | 3(4(4(2(4(1(4(0(3(3(x1)))))))))) | (78) |
3(2(2(5(4(2(0(x1))))))) | → | 3(5(1(3(1(4(4(1(5(0(x1)))))))))) | (79) |
3(5(1(4(0(3(0(x1))))))) | → | 5(0(0(3(4(4(3(3(0(0(x1)))))))))) | (80) |
2(2(5(4(3(4(0(x1))))))) | → | 2(3(3(2(4(3(5(4(0(0(x1)))))))))) | (81) |
3(2(2(0(2(3(1(x1))))))) | → | 3(2(1(1(1(5(3(4(3(1(x1)))))))))) | (82) |
0(2(2(5(5(4(1(x1))))))) | → | 0(3(0(5(4(4(3(1(2(3(x1)))))))))) | (83) |
4(2(2(2(0(5(1(x1))))))) | → | 4(1(3(3(4(5(3(1(5(0(x1)))))))))) | (84) |
3(1(2(0(4(5(1(x1))))))) | → | 3(0(4(4(3(3(5(1(1(0(x1)))))))))) | (85) |
5(0(2(5(1(0(2(x1))))))) | → | 5(2(0(3(1(3(0(0(4(3(x1)))))))))) | (86) |
4(2(2(0(0(2(2(x1))))))) | → | 4(4(4(4(5(4(4(1(1(2(x1)))))))))) | (87) |
3(1(0(5(0(3(2(x1))))))) | → | 3(1(3(0(1(5(0(1(3(2(x1)))))))))) | (88) |
0(5(2(2(0(4(2(x1))))))) | → | 0(3(0(4(4(5(4(0(3(1(x1)))))))))) | (89) |
0(5(2(0(5(4(2(x1))))))) | → | 1(1(5(0(4(3(1(3(4(4(x1)))))))))) | (90) |
4(2(5(2(2(5(2(x1))))))) | → | 4(4(0(4(0(3(1(4(3(4(x1)))))))))) | (91) |
2(2(2(2(0(2(3(x1))))))) | → | 5(0(5(3(2(3(1(3(5(4(x1)))))))))) | (92) |
5(4(2(5(5(2(3(x1))))))) | → | 5(4(3(4(2(3(0(0(0(3(x1)))))))))) | (93) |
3(2(3(5(5(2(3(x1))))))) | → | 3(3(4(2(3(0(5(0(1(3(x1)))))))))) | (94) |
2(2(2(0(5(3(3(x1))))))) | → | 5(3(5(3(3(4(0(3(4(4(x1)))))))))) | (95) |
2(1(1(2(5(4(3(x1))))))) | → | 5(0(2(4(4(5(3(5(4(3(x1)))))))))) | (96) |
4(5(1(3(3(0(4(x1))))))) | → | 4(4(4(3(0(0(0(1(3(1(x1)))))))))) | (97) |
2(2(1(4(2(1(4(x1))))))) | → | 5(0(4(4(1(1(3(5(4(3(x1)))))))))) | (98) |
2(3(3(2(5(2(5(x1))))))) | → | 3(5(2(3(1(3(0(1(3(4(x1)))))))))) | (99) |
2(0(3(2(2(3(5(x1))))))) | → | 2(0(5(0(1(3(3(4(5(4(x1)))))))))) | (100) |
0(5(2(5(2(3(5(x1))))))) | → | 1(3(0(3(4(4(2(2(4(5(x1)))))))))) | (101) |
0(2(2(2(2(5(5(x1))))))) | → | 0(3(0(1(3(1(5(3(5(0(x1)))))))))) | (102) |
0(1(1(2(5(5(5(x1))))))) | → | 1(3(3(2(4(5(4(2(2(4(x1)))))))))) | (103) |
0(0(2(2(5(5(5(x1))))))) | → | 1(3(3(2(4(3(3(0(4(1(x1)))))))))) | (104) |
There are 497 ruless (increase limit for explicit display).
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[5(x1)] | = | 0 |
[3#(x1)] | = | 0 |
[2#(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[5#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[1#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[1(x1)] | = | 0 |
[2(x1)] | = | 0 |
[3(x1)] | = | 0 |
[4(x1)] | = | 1 |
There are 994 ruless (increase limit for explicit display).
and the set of labeled rules:There are 104 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
There are 247 ruless (increase limit for explicit display).
[20(x1)] | = | 1 + 1 · x1 |
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[31(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 + 1 · x1 |
[11(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[3#0(x1)] | = | 1 · x1 |
[4#0(x1)] | = | 1 · x1 |
[5#0(x1)] | = | 1 + 1 · x1 |
[0#0(x1)] | = | 1 · x1 |
[1#0(x1)] | = | 1 · x1 |
[5#1(x1)] | = | 1 · x1 |
[2#0(x1)] | = | 1 · x1 |
There are 224 ruless (increase limit for explicit display).
and the rules20(10(00(00(x1)))) | → | 30(00(00(30(51(41(40(51(40(30(x1)))))))))) | (1596) |
20(10(00(01(x1)))) | → | 30(00(00(30(51(41(40(51(40(31(x1)))))))))) | (1597) |
20(20(20(30(x1)))) | → | 30(50(30(11(41(41(40(20(30(00(x1)))))))))) | (1598) |
20(51(40(20(00(x1))))) | → | 30(10(30(00(00(00(01(40(30(00(x1)))))))))) | (1600) |
20(51(40(20(01(x1))))) | → | 30(10(30(00(00(00(01(40(30(01(x1)))))))))) | (1601) |
10(50(01(40(10(x1))))) | → | 00(30(30(31(40(51(41(41(40(50(x1)))))))))) | (1602) |
10(50(01(40(11(x1))))) | → | 00(30(30(31(40(51(41(41(40(51(x1)))))))))) | (1603) |
00(20(11(40(50(x1))))) | → | 00(30(11(40(00(31(41(40(00(00(x1)))))))))) | (1604) |
50(30(50(20(30(00(x1)))))) | → | 50(30(31(40(31(41(40(30(10(30(x1)))))))))) | (1606) |
50(30(50(20(30(01(x1)))))) | → | 50(30(31(40(31(41(40(30(10(31(x1)))))))))) | (1607) |
00(50(10(10(50(00(x1)))))) | → | 00(30(10(30(30(10(30(00(00(00(x1)))))))))) | (1608) |
00(50(10(10(50(01(x1)))))) | → | 00(30(10(30(30(10(30(00(00(01(x1)))))))))) | (1609) |
30(20(20(50(20(10(x1)))))) | → | 30(31(40(31(40(51(40(21(40(00(x1)))))))))) | (1610) |
30(20(20(50(20(11(x1)))))) | → | 30(31(40(31(40(51(40(21(40(01(x1)))))))))) | (1611) |
30(20(10(00(00(20(x1)))))) | → | 31(41(41(40(30(10(30(30(30(10(x1)))))))))) | (1612) |
30(20(10(00(00(21(x1)))))) | → | 31(41(41(40(30(10(30(30(30(11(x1)))))))))) | (1613) |
10(50(30(10(00(20(x1)))))) | → | 10(00(30(51(40(51(40(30(00(00(x1)))))))))) | (1614) |
10(00(00(50(50(20(x1)))))) | → | 00(30(50(10(31(40(30(00(11(40(x1)))))))))) | (1616) |
10(00(00(50(50(21(x1)))))) | → | 00(30(50(10(31(40(30(00(11(41(x1)))))))))) | (1617) |
10(30(01(40(00(30(x1)))))) | → | 10(30(00(10(00(30(51(41(41(40(x1)))))))))) | (1618) |
10(30(01(40(00(31(x1)))))) | → | 10(30(00(10(00(30(51(41(41(41(x1)))))))))) | (1619) |
00(50(50(10(20(30(x1)))))) | → | 00(30(31(40(01(40(30(30(11(40(x1)))))))))) | (1620) |
00(50(50(10(20(31(x1)))))) | → | 00(30(31(40(01(40(30(30(11(41(x1)))))))))) | (1621) |
20(20(11(40(20(30(x1)))))) | → | 21(40(30(00(21(40(51(41(41(40(x1)))))))))) | (1622) |
20(20(11(40(20(31(x1)))))) | → | 21(40(30(00(21(40(51(41(41(41(x1)))))))))) | (1623) |
00(20(20(50(20(30(x1)))))) | → | 00(30(50(30(10(20(01(41(40(30(x1)))))))))) | (1624) |
00(20(20(50(20(31(x1)))))) | → | 00(30(50(30(10(20(01(41(40(31(x1)))))))))) | (1625) |
30(20(20(11(40(30(x1)))))) | → | 51(41(41(41(41(40(11(40(50(30(x1)))))))))) | (1626) |
30(20(20(11(40(31(x1)))))) | → | 51(41(41(41(41(40(11(40(50(31(x1)))))))))) | (1627) |
50(30(00(20(50(30(x1)))))) | → | 50(21(41(40(31(40(31(40(30(30(x1)))))))))) | (1628) |
50(30(00(20(50(31(x1)))))) | → | 50(21(41(40(31(40(31(40(30(31(x1)))))))))) | (1629) |
40(10(00(00(01(41(x1)))))) | → | 40(10(30(11(40(30(30(00(30(21(x1)))))))))) | (1631) |
40(20(30(10(01(40(x1)))))) | → | 40(11(40(10(30(30(11(40(11(40(x1)))))))))) | (1632) |
40(20(30(10(01(41(x1)))))) | → | 40(11(40(10(30(30(11(40(11(41(x1)))))))))) | (1633) |
41(40(50(00(31(40(x1)))))) | → | 40(21(41(40(10(30(51(40(31(40(x1)))))))))) | (1634) |
41(40(50(00(31(41(x1)))))) | → | 40(21(41(40(10(30(51(40(31(41(x1)))))))))) | (1635) |
00(50(30(20(10(50(x1)))))) | → | 00(30(31(41(40(21(41(40(20(20(x1)))))))))) | (1636) |
00(50(30(20(10(51(x1)))))) | → | 00(30(31(41(40(21(41(40(20(21(x1)))))))))) | (1637) |
30(50(50(51(40(50(x1)))))) | → | 30(01(40(31(40(21(41(40(50(30(x1)))))))))) | (1640) |
30(50(10(00(50(50(x1)))))) | → | 31(40(50(00(30(11(41(41(40(50(x1)))))))))) | (1642) |
30(50(10(00(50(51(x1)))))) | → | 31(40(50(00(30(11(41(41(40(51(x1)))))))))) | (1643) |
20(20(00(50(50(50(x1)))))) | → | 31(41(40(31(40(31(40(11(40(20(x1)))))))))) | (1644) |
20(20(00(50(50(51(x1)))))) | → | 31(41(40(31(40(31(40(11(40(21(x1)))))))))) | (1645) |
30(20(50(50(50(50(x1)))))) | → | 31(41(40(21(40(11(40(00(30(30(x1)))))))))) | (1646) |
30(20(50(50(50(51(x1)))))) | → | 31(41(40(21(40(11(40(00(30(31(x1)))))))))) | (1647) |
30(20(20(51(40(20(00(x1))))))) | → | 30(50(10(30(11(41(40(10(50(00(x1)))))))))) | (1648) |
30(20(20(51(40(20(01(x1))))))) | → | 30(50(10(30(11(41(40(10(50(01(x1)))))))))) | (1649) |
20(20(51(40(31(40(00(x1))))))) | → | 20(30(30(21(40(30(51(40(00(00(x1)))))))))) | (1652) |
20(20(51(40(31(40(01(x1))))))) | → | 20(30(30(21(40(30(51(40(00(01(x1)))))))))) | (1653) |
30(20(20(00(20(30(10(x1))))))) | → | 30(20(10(10(10(50(31(40(30(10(x1)))))))))) | (1654) |
30(20(20(00(20(30(11(x1))))))) | → | 30(20(10(10(10(50(31(40(30(11(x1)))))))))) | (1655) |
00(20(20(50(51(40(10(x1))))))) | → | 00(30(00(51(41(40(30(10(20(30(x1)))))))))) | (1656) |
00(20(20(50(51(40(11(x1))))))) | → | 00(30(00(51(41(40(30(10(20(31(x1)))))))))) | (1657) |
40(20(20(20(00(50(10(x1))))))) | → | 40(10(30(31(40(50(30(10(50(00(x1)))))))))) | (1658) |
40(20(20(20(00(50(11(x1))))))) | → | 40(10(30(31(40(50(30(10(50(01(x1)))))))))) | (1659) |
30(10(20(01(40(50(10(x1))))))) | → | 30(01(41(40(30(30(50(10(10(00(x1)))))))))) | (1660) |
50(00(20(50(10(00(20(x1))))))) | → | 50(20(00(30(10(30(00(01(40(30(x1)))))))))) | (1662) |
40(20(20(00(00(20(20(x1))))))) | → | 41(41(41(40(51(41(40(10(10(20(x1)))))))))) | (1664) |
40(20(20(00(00(20(21(x1))))))) | → | 41(41(41(40(51(41(40(10(10(21(x1)))))))))) | (1665) |
00(50(20(20(01(40(20(x1))))))) | → | 00(30(01(41(40(51(40(00(30(10(x1)))))))))) | (1668) |
00(50(20(20(01(40(21(x1))))))) | → | 00(30(01(41(40(51(40(00(30(11(x1)))))))))) | (1669) |
00(50(20(00(51(40(20(x1))))))) | → | 10(10(50(01(40(30(10(31(41(40(x1)))))))))) | (1670) |
40(20(50(20(20(50(20(x1))))))) | → | 41(40(01(40(00(30(11(40(31(40(x1)))))))))) | (1672) |
40(20(50(20(20(50(21(x1))))))) | → | 41(40(01(40(00(30(11(40(31(41(x1)))))))))) | (1673) |
20(20(20(20(00(20(30(x1))))))) | → | 50(00(50(30(20(30(10(30(51(40(x1)))))))))) | (1674) |
20(20(20(20(00(20(31(x1))))))) | → | 50(00(50(30(20(30(10(30(51(41(x1)))))))))) | (1675) |
51(40(20(50(50(20(30(x1))))))) | → | 51(40(31(40(20(30(00(00(00(30(x1)))))))))) | (1676) |
51(40(20(50(50(20(31(x1))))))) | → | 51(40(31(40(20(30(00(00(00(31(x1)))))))))) | (1677) |
30(20(30(50(50(20(30(x1))))))) | → | 30(31(40(20(30(00(50(00(10(30(x1)))))))))) | (1678) |
30(20(30(50(50(20(31(x1))))))) | → | 30(31(40(20(30(00(50(00(10(31(x1)))))))))) | (1679) |
20(20(20(00(50(30(30(x1))))))) | → | 50(30(50(30(31(40(00(31(41(40(x1)))))))))) | (1680) |
20(20(20(00(50(30(31(x1))))))) | → | 50(30(50(30(31(40(00(31(41(41(x1)))))))))) | (1681) |
40(50(10(30(30(01(40(x1))))))) | → | 41(41(40(30(00(00(00(10(30(10(x1)))))))))) | (1684) |
40(50(10(30(30(01(41(x1))))))) | → | 41(41(40(30(00(00(00(10(30(11(x1)))))))))) | (1685) |
20(20(11(40(20(11(40(x1))))))) | → | 50(01(41(40(10(10(30(51(40(30(x1)))))))))) | (1686) |
20(20(11(40(20(11(41(x1))))))) | → | 50(01(41(40(10(10(30(51(40(31(x1)))))))))) | (1687) |
20(30(30(20(50(20(50(x1))))))) | → | 30(50(20(30(10(30(00(10(31(40(x1)))))))))) | (1688) |
20(30(30(20(50(20(51(x1))))))) | → | 30(50(20(30(10(30(00(10(31(41(x1)))))))))) | (1689) |
20(00(30(20(20(30(50(x1))))))) | → | 20(00(50(00(10(30(31(40(51(40(x1)))))))))) | (1690) |
20(00(30(20(20(30(51(x1))))))) | → | 20(00(50(00(10(30(31(40(51(41(x1)))))))))) | (1691) |
00(50(20(50(20(30(50(x1))))))) | → | 10(30(00(31(41(40(20(21(40(50(x1)))))))))) | (1692) |
00(50(20(50(20(30(51(x1))))))) | → | 10(30(00(31(41(40(20(21(40(51(x1)))))))))) | (1693) |
00(20(20(20(20(50(50(x1))))))) | → | 00(30(00(10(30(10(50(30(50(00(x1)))))))))) | (1694) |
00(20(20(20(20(50(51(x1))))))) | → | 00(30(00(10(30(10(50(30(50(01(x1)))))))))) | (1695) |
00(10(10(20(50(50(50(x1))))))) | → | 10(30(30(21(40(51(40(20(21(40(x1)))))))))) | (1696) |
00(10(10(20(50(50(51(x1))))))) | → | 10(30(30(21(40(51(40(20(21(41(x1)))))))))) | (1697) |
00(00(20(20(50(50(50(x1))))))) | → | 10(30(30(21(40(30(30(01(40(10(x1)))))))))) | (1698) |
00(00(20(20(50(50(51(x1))))))) | → | 10(30(30(21(40(30(30(01(40(11(x1)))))))))) | (1699) |
The dependency pairs are split into 0 components.