The rewrite relation of the following TRS is considered.
a(a(x1)) | → | c(b(a(b(a(x1))))) | (1) |
b(a(b(x1))) | → | b(x1) | (2) |
a(a(a(x1))) | → | c(c(a(x1))) | (3) |
c(c(x1)) | → | a(b(c(b(a(x1))))) | (4) |
a(c(a(x1))) | → | c(c(a(x1))) | (5) |
c(a(c(x1))) | → | a(a(c(x1))) | (6) |
a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
a#(a(x1)) | → | b#(a(b(a(x1)))) | (8) |
a#(a(x1)) | → | a#(b(a(x1))) | (9) |
a#(a(x1)) | → | b#(a(x1)) | (10) |
a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
a#(a(a(x1))) | → | c#(a(x1)) | (12) |
c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
c#(c(x1)) | → | b#(c(b(a(x1)))) | (14) |
c#(c(x1)) | → | c#(b(a(x1))) | (15) |
c#(c(x1)) | → | b#(a(x1)) | (16) |
c#(c(x1)) | → | a#(x1) | (17) |
a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
The dependency pairs are split into 1 component.
c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
c#(c(x1)) | → | c#(b(a(x1))) | (15) |
c#(c(x1)) | → | a#(x1) | (17) |
a#(a(x1)) | → | a#(b(a(x1))) | (9) |
a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
a#(a(a(x1))) | → | c#(a(x1)) | (12) |
a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
[c#(x1)] | = | 1 + 1 · x1 |
[c(x1)] | = | 1 + 1 · x1 |
[a#(x1)] | = | 1 + 1 · x1 |
[b(x1)] | = | 0 |
[a(x1)] | = | 1 + 1 · x1 |
c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
c#(c(x1)) | → | c#(b(a(x1))) | (15) |
c#(c(x1)) | → | a#(x1) | (17) |
a#(a(x1)) | → | a#(b(a(x1))) | (9) |
a#(a(a(x1))) | → | c#(a(x1)) | (12) |
[a#(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||
[c#(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.