Certification Problem

Input (TPDB SRS_Standard/Waldmann_06_SRS/jw4)

The rewrite relation of the following TRS is considered.

b(a(b(b(x1)))) b(b(b(a(b(x1))))) (1)
b(a(a(b(b(x1))))) b(a(b(b(a(a(b(x1))))))) (2)
b(a(a(a(b(b(x1)))))) b(a(a(b(b(a(a(a(b(x1))))))))) (3)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(b(a(b(x1)))) b(a(b(b(b(x1))))) (4)
b(b(a(a(b(x1))))) b(a(a(b(b(a(b(x1))))))) (5)
b(b(a(a(a(b(x1)))))) b(a(a(a(b(b(a(a(b(x1))))))))) (6)

1.1 Semantic Labeling

Root-labeling is applied.

We obtain the labeled TRS
bb(ba(ab(bb(x1)))) ba(ab(bb(bb(bb(x1))))) (7)
bb(ba(ab(ba(x1)))) ba(ab(bb(bb(ba(x1))))) (8)
bb(ba(aa(ab(bb(x1))))) ba(aa(ab(bb(ba(ab(bb(x1))))))) (9)
bb(ba(aa(ab(ba(x1))))) ba(aa(ab(bb(ba(ab(ba(x1))))))) (10)
bb(ba(aa(aa(ab(bb(x1)))))) ba(aa(aa(ab(bb(ba(aa(ab(bb(x1))))))))) (11)
bb(ba(aa(aa(ab(ba(x1)))))) ba(aa(aa(ab(bb(ba(aa(ab(ba(x1))))))))) (12)

1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
bb#(ba(ab(bb(x1)))) bb#(bb(bb(x1))) (13)
bb#(ba(ab(bb(x1)))) bb#(bb(x1)) (14)
bb#(ba(ab(ba(x1)))) bb#(bb(ba(x1))) (15)
bb#(ba(ab(ba(x1)))) bb#(ba(x1)) (16)
bb#(ba(aa(ab(bb(x1))))) bb#(ba(ab(bb(x1)))) (17)
bb#(ba(aa(ab(ba(x1))))) bb#(ba(ab(ba(x1)))) (18)
bb#(ba(aa(aa(ab(bb(x1)))))) bb#(ba(aa(ab(bb(x1))))) (19)
bb#(ba(aa(aa(ab(ba(x1)))))) bb#(ba(aa(ab(ba(x1))))) (20)

1.1.1.1 Reduction Pair Processor

Using the matrix interpretations of dimension 3 with strict dimension 1 over the arctic semiring over the naturals
[bb#(x1)] =
-∞
-∞
-∞
+
0 0 -∞
-∞ -∞ -∞
-∞ -∞ -∞
· x1
[ba(x1)] =
-∞
-∞
-∞
+
0 0 0
0 0 0
0 0 0
· x1
[ab(x1)] =
-∞
-∞
-∞
+
0 0 0
-∞ -∞ -∞
0 0 0
· x1
[bb(x1)] =
-∞
-∞
-∞
+
0 0 0
0 0 0
0 0 0
· x1
[aa(x1)] =
-∞
-∞
-∞
+
0 1 0
0 0 0
0 0 0
· x1
the pairs
bb#(ba(aa(aa(ab(bb(x1)))))) bb#(ba(aa(ab(bb(x1))))) (19)
bb#(ba(aa(aa(ab(ba(x1)))))) bb#(ba(aa(ab(ba(x1))))) (20)
could be deleted.

1.1.1.1.1 Reduction Pair Processor

Using the matrix interpretations of dimension 3 with strict dimension 1 over the arctic semiring over the naturals
[bb#(x1)] =
0
-∞
-∞
+
0 0 0
-∞ -∞ -∞
-∞ -∞ -∞
· x1
[ba(x1)] =
0
0
0
+
0 0 0
0 -∞ 0
0 -∞ 0
· x1
[ab(x1)] =
0
0
0
+
0 0 0
0 0 0
0 0 0
· x1
[bb(x1)] =
0
0
0
+
0 0 0
0 0 0
0 0 0
· x1
[aa(x1)] =
0
0
0
+
-∞ -∞ -∞
0 -∞ 1
-∞ -∞ -∞
· x1
the pairs
bb#(ba(aa(ab(bb(x1))))) bb#(ba(ab(bb(x1)))) (17)
bb#(ba(aa(ab(ba(x1))))) bb#(ba(ab(ba(x1)))) (18)
could be deleted.

1.1.1.1.1.1 Reduction Pair Processor

Using the linear polynomial interpretation over the naturals
[bb#(x1)] = 1 · x1
[ba(x1)] = 1 + 1 · x1
[ab(x1)] = 1 · x1
[bb(x1)] = 1 · x1
[aa(x1)] = 0
the pairs
bb#(ba(ab(bb(x1)))) bb#(bb(bb(x1))) (13)
bb#(ba(ab(bb(x1)))) bb#(bb(x1)) (14)
bb#(ba(ab(ba(x1)))) bb#(bb(ba(x1))) (15)
bb#(ba(ab(ba(x1)))) bb#(ba(x1)) (16)
could be deleted.

1.1.1.1.1.1.1 P is empty

There are no pairs anymore.