The rewrite relation of the following TRS is considered.
3(1(x1)) | → | 4(1(x1)) | (1) |
5(9(x1)) | → | 2(6(5(x1))) | (2) |
3(5(x1)) | → | 8(9(7(x1))) | (3) |
9(x1) | → | 3(2(3(x1))) | (4) |
8(4(x1)) | → | 6(x1) | (5) |
2(6(x1)) | → | 4(3(x1)) | (6) |
3(8(x1)) | → | 3(2(7(x1))) | (7) |
9(x1) | → | 5(0(2(x1))) | (8) |
8(8(4(x1))) | → | 1(9(x1)) | (9) |
7(1(x1)) | → | 6(9(x1)) | (10) |
3(9(x1)) | → | 9(3(x1)) | (11) |
7(5(x1)) | → | 1(0(x1)) | (12) |
5#(9(x1)) | → | 2#(6(5(x1))) | (13) |
5#(9(x1)) | → | 5#(x1) | (14) |
3#(5(x1)) | → | 8#(9(7(x1))) | (15) |
3#(5(x1)) | → | 9#(7(x1)) | (16) |
3#(5(x1)) | → | 7#(x1) | (17) |
9#(x1) | → | 3#(2(3(x1))) | (18) |
9#(x1) | → | 2#(3(x1)) | (19) |
9#(x1) | → | 3#(x1) | (20) |
2#(6(x1)) | → | 3#(x1) | (21) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
3#(8(x1)) | → | 2#(7(x1)) | (23) |
3#(8(x1)) | → | 7#(x1) | (24) |
9#(x1) | → | 5#(0(2(x1))) | (25) |
9#(x1) | → | 2#(x1) | (26) |
8#(8(4(x1))) | → | 9#(x1) | (27) |
7#(1(x1)) | → | 9#(x1) | (28) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
3#(9(x1)) | → | 3#(x1) | (30) |
The dependency pairs are split into 2 components.
5#(9(x1)) | → | 5#(x1) | (14) |
[9(x1)] | = | 1 · x1 |
[5#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
5#(9(x1)) | → | 5#(x1) | (14) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
8#(8(4(x1))) | → | 9#(x1) | (27) |
9#(x1) | → | 3#(2(3(x1))) | (18) |
3#(5(x1)) | → | 8#(9(7(x1))) | (15) |
3#(5(x1)) | → | 9#(7(x1)) | (16) |
9#(x1) | → | 2#(3(x1)) | (19) |
2#(6(x1)) | → | 3#(x1) | (21) |
3#(5(x1)) | → | 7#(x1) | (17) |
7#(1(x1)) | → | 9#(x1) | (28) |
9#(x1) | → | 3#(x1) | (20) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
3#(8(x1)) | → | 2#(7(x1)) | (23) |
3#(8(x1)) | → | 7#(x1) | (24) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
9#(x1) | → | 2#(x1) | (26) |
3#(9(x1)) | → | 3#(x1) | (30) |
[3(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[8(x1)] | = | 1 · x1 |
[9(x1)] | = | 1 · x1 |
[7(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[6(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[9#(x1)] | = | 1 · x1 |
[8#(x1)] | = | 1 · x1 |
[3#(x1)] | = | 1 · x1 |
[2#(x1)] | = | 1 · x1 |
[7#(x1)] | = | 1 · x1 |
3(1(x1)) | → | 4(1(x1)) | (1) |
3(5(x1)) | → | 8(9(7(x1))) | (3) |
3(8(x1)) | → | 3(2(7(x1))) | (7) |
3(9(x1)) | → | 9(3(x1)) | (11) |
9(x1) | → | 3(2(3(x1))) | (4) |
7(1(x1)) | → | 6(9(x1)) | (10) |
7(5(x1)) | → | 1(0(x1)) | (12) |
2(6(x1)) | → | 4(3(x1)) | (6) |
9(x1) | → | 5(0(2(x1))) | (8) |
8(4(x1)) | → | 6(x1) | (5) |
8(8(4(x1))) | → | 1(9(x1)) | (9) |
[2#(x1)] | = | 0 |
[8#(x1)] | = | -2 + 2 · x1 |
[9#(x1)] | = | -2 |
[2(x1)] | = | -2 |
[3#(x1)] | = | -2 |
[4(x1)] | = | -2 |
[3(x1)] | = | 2 · x1 |
[1(x1)] | = | 2 |
[5(x1)] | = | 1 |
[8(x1)] | = | 2 |
[9(x1)] | = | 1 |
[7(x1)] | = | 0 |
[0(x1)] | = | -2 |
[6(x1)] | = | 2 |
[7#(x1)] | = | 0 |
3(1(x1)) | → | 4(1(x1)) | (1) |
3(5(x1)) | → | 8(9(7(x1))) | (3) |
3(9(x1)) | → | 9(3(x1)) | (11) |
9(x1) | → | 3(2(3(x1))) | (4) |
3(8(x1)) | → | 3(2(7(x1))) | (7) |
2(6(x1)) | → | 4(3(x1)) | (6) |
9(x1) | → | 5(0(2(x1))) | (8) |
8(8(4(x1))) | → | 1(9(x1)) | (9) |
8(4(x1)) | → | 6(x1) | (5) |
8#(8(4(x1))) | → | 9#(x1) | (27) |
The dependency pairs are split into 1 component.
3#(5(x1)) | → | 9#(7(x1)) | (16) |
9#(x1) | → | 3#(2(3(x1))) | (18) |
3#(5(x1)) | → | 7#(x1) | (17) |
7#(1(x1)) | → | 9#(x1) | (28) |
9#(x1) | → | 2#(3(x1)) | (19) |
2#(6(x1)) | → | 3#(x1) | (21) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
3#(8(x1)) | → | 2#(7(x1)) | (23) |
3#(8(x1)) | → | 7#(x1) | (24) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
9#(x1) | → | 3#(x1) | (20) |
3#(9(x1)) | → | 3#(x1) | (30) |
9#(x1) | → | 2#(x1) | (26) |
[3#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[9#(x1)] | = |
|
||||||||||||||||||
[7(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
||||||||||||||||||
[7#(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2#(x1)] | = |
|
||||||||||||||||||
[6(x1)] | = |
|
||||||||||||||||||
[8(x1)] | = |
|
||||||||||||||||||
[9(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
7#(1(x1)) | → | 9#(x1) | (28) |
The dependency pairs are split into 1 component.
9#(x1) | → | 3#(2(3(x1))) | (18) |
3#(5(x1)) | → | 9#(7(x1)) | (16) |
9#(x1) | → | 2#(3(x1)) | (19) |
2#(6(x1)) | → | 3#(x1) | (21) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
3#(8(x1)) | → | 2#(7(x1)) | (23) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
9#(x1) | → | 3#(x1) | (20) |
3#(9(x1)) | → | 3#(x1) | (30) |
9#(x1) | → | 2#(x1) | (26) |
[9#(x1)] | = |
|
||||||||||||||||||
[3#(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[7(x1)] | = |
|
||||||||||||||||||
[2#(x1)] | = |
|
||||||||||||||||||
[6(x1)] | = |
|
||||||||||||||||||
[8(x1)] | = |
|
||||||||||||||||||
[9(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
2#(6(x1)) | → | 3#(x1) | (21) |
The dependency pairs are split into 1 component.
3#(5(x1)) | → | 9#(7(x1)) | (16) |
9#(x1) | → | 3#(2(3(x1))) | (18) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
9#(x1) | → | 3#(x1) | (20) |
3#(9(x1)) | → | 3#(x1) | (30) |
[3#(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 |
[9#(x1)] | = | 1 · x1 |
[7(x1)] | = | 0 |
[2(x1)] | = | 0 |
[3(x1)] | = | 1 · x1 |
[8(x1)] | = | 0 |
[9(x1)] | = | 1 + 1 · x1 |
[1(x1)] | = | 0 |
[6(x1)] | = | 0 |
[0(x1)] | = | 0 |
[4(x1)] | = | 0 |
3#(5(x1)) | → | 9#(7(x1)) | (16) |
3#(9(x1)) | → | 9#(3(x1)) | (29) |
3#(9(x1)) | → | 3#(x1) | (30) |
The dependency pairs are split into 1 component.
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
[3#(x1)] | = | 1 · x1 |
[8(x1)] | = | 1 + 1 · x1 |
[2(x1)] | = | 0 |
[7(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 |
[6(x1)] | = | 1 |
[9(x1)] | = | 1 + 1 · x1 |
[5(x1)] | = | 1 + 1 · x1 |
[0(x1)] | = | 1 · x1 |
[4(x1)] | = | 0 |
[3(x1)] | = | 1 + 1 · x1 |
2(6(x1)) | → | 4(3(x1)) | (6) |
3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
There are no pairs anymore.