The rewrite relation of the following TRS is considered.
a(a(x1)) | → | b(c(x1)) | (1) |
b(b(x1)) | → | a(c(c(c(x1)))) | (2) |
c(c(x1)) | → | a(b(x1)) | (3) |
a(a(x1)) | → | c(b(x1)) | (4) |
b(b(x1)) | → | c(c(c(a(x1)))) | (5) |
c(c(x1)) | → | b(a(x1)) | (6) |
a#(a(x1)) | → | c#(b(x1)) | (7) |
a#(a(x1)) | → | b#(x1) | (8) |
b#(b(x1)) | → | c#(c(c(a(x1)))) | (9) |
b#(b(x1)) | → | c#(c(a(x1))) | (10) |
b#(b(x1)) | → | c#(a(x1)) | (11) |
b#(b(x1)) | → | a#(x1) | (12) |
c#(c(x1)) | → | b#(a(x1)) | (13) |
c#(c(x1)) | → | a#(x1) | (14) |
[a#(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||
[c#(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[b#(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
a#(a(x1)) | → | c#(b(x1)) | (7) |
b#(b(x1)) | → | c#(c(c(a(x1)))) | (9) |
b#(b(x1)) | → | c#(a(x1)) | (11) |
[a#(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||
[b#(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[c#(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
c#(c(x1)) | → | a#(x1) | (14) |
[a#(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||
[b#(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[c#(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
c#(c(x1)) | → | b#(a(x1)) | (13) |
The dependency pairs are split into 1 component.
b#(b(x1)) | → | a#(x1) | (12) |
a#(a(x1)) | → | b#(x1) | (8) |
[b(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
[b#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
a#(a(x1)) | → | b#(x1) | (8) |
1 | > | 1 | |
b#(b(x1)) | → | a#(x1) | (12) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.