The rewrite relation of the following TRS is considered.
c(a(b(a(b(x1))))) | → | a(b(a(b(b(a(b(b(c(a(b(c(a(x1))))))))))))) | (1) |
{c(☐), a(☐), b(☐)}
We obtain the transformed TRSc(c(a(b(a(b(x1)))))) | → | c(a(b(a(b(b(a(b(b(c(a(b(c(a(x1)))))))))))))) | (2) |
a(c(a(b(a(b(x1)))))) | → | a(a(b(a(b(b(a(b(b(c(a(b(c(a(x1)))))))))))))) | (3) |
b(c(a(b(a(b(x1)))))) | → | b(a(b(a(b(b(a(b(b(c(a(b(c(a(x1)))))))))))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRScc(ca(ab(ba(ab(bc(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ac(x1)))))))))))))) | (5) |
cc(ca(ab(ba(ab(ba(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(aa(x1)))))))))))))) | (6) |
cc(ca(ab(ba(ab(bb(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ab(x1)))))))))))))) | (7) |
ac(ca(ab(ba(ab(bc(x1)))))) | → | aa(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ac(x1)))))))))))))) | (8) |
ac(ca(ab(ba(ab(ba(x1)))))) | → | aa(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(aa(x1)))))))))))))) | (9) |
ac(ca(ab(ba(ab(bb(x1)))))) | → | aa(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ab(x1)))))))))))))) | (10) |
bc(ca(ab(ba(ab(bc(x1)))))) | → | ba(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ac(x1)))))))))))))) | (11) |
bc(ca(ab(ba(ab(ba(x1)))))) | → | ba(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(aa(x1)))))))))))))) | (12) |
bc(ca(ab(ba(ab(bb(x1)))))) | → | ba(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ab(x1)))))))))))))) | (13) |
[cc(x1)] | = | 1 · x1 + 1 |
[ca(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 · x1 |
cc(ca(ab(ba(ab(bc(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ac(x1)))))))))))))) | (5) |
cc(ca(ab(ba(ab(ba(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(aa(x1)))))))))))))) | (6) |
cc(ca(ab(ba(ab(bb(x1)))))) | → | ca(ab(ba(ab(bb(ba(ab(bb(bc(ca(ab(bc(ca(ab(x1)))))))))))))) | (7) |
ac#(ca(ab(ba(ab(bc(x1)))))) | → | bc#(ca(ab(bc(ca(ac(x1)))))) | (14) |
ac#(ca(ab(ba(ab(bc(x1)))))) | → | bc#(ca(ac(x1))) | (15) |
ac#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (16) |
ac#(ca(ab(ba(ab(ba(x1)))))) | → | bc#(ca(ab(bc(ca(aa(x1)))))) | (17) |
ac#(ca(ab(ba(ab(ba(x1)))))) | → | bc#(ca(aa(x1))) | (18) |
ac#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(bc(ca(ab(x1)))))) | (19) |
ac#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (20) |
bc#(ca(ab(ba(ab(bc(x1)))))) | → | bc#(ca(ab(bc(ca(ac(x1)))))) | (21) |
bc#(ca(ab(ba(ab(bc(x1)))))) | → | bc#(ca(ac(x1))) | (22) |
bc#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (23) |
bc#(ca(ab(ba(ab(ba(x1)))))) | → | bc#(ca(ab(bc(ca(aa(x1)))))) | (24) |
bc#(ca(ab(ba(ab(ba(x1)))))) | → | bc#(ca(aa(x1))) | (25) |
bc#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(bc(ca(ab(x1)))))) | (26) |
bc#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (27) |
The dependency pairs are split into 1 component.
ac#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (20) |
bc#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (23) |
ac#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (16) |
bc#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (27) |
[ca(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
[ac#(x1)] | = | 1 · x1 |
[ac#(x1)] | = | 1 + 1 · x1 |
[ca(x1)] | = | 1 + 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 + 1 · x1 |
[bc(x1)] | = | 1 · x1 |
bc#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (23) |
ac#(ca(ab(ba(ab(bc(x1)))))) | → | ac#(x1) | (16) |
The dependency pairs are split into 1 component.
bc#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (27) |
[bc#(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 + 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 + 1 · x1 |
bc#(ca(ab(ba(ab(bb(x1)))))) | → | bc#(ca(ab(x1))) | (27) |
There are no pairs anymore.